Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 6(7): e2000337, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35481696

RESUMO

In the rapidly expanding field of molecular optogenetics, the performance of the engineered systems relies on the switching properties of the underlying genetically encoded photoreceptors. In this study, the bacterial phytochromes Cph1 and DrBphP are engineered, recombinantly produced in Escherichia coli, and characterized regarding their switching properties in order to synthesize biohybrid hydrogels with increased light-responsive stiffness modulations. The R472A mutant of the cyanobacterial phytochrome 1 (Cph1) is identified to confer the phytochrome-based hydrogels with an increased dynamic range for the storage modulus but a different light-response for the loss modulus compared to the original Cph1-based hydrogel. Stiffness measurements of human atrial fibroblasts grown on these hydrogels suggest that differences in the loss modulus at comparable changes in the storage modulus affect cell stiffness and thus underline the importance of matrix viscoelasticity on cellular mechanotransduction. The hydrogels presented here are of interest for analyzing how mammalian cells respond to dynamic viscoelastic cues. Moreover, the Cph1-R472A mutant, as well as the benchmarking of the other phytochrome variants, are expected to foster the development and performance of future optogenetic systems.


Assuntos
Proteínas de Bactérias , Hidrogéis , Mecanotransdução Celular , Optogenética , Fotorreceptores Microbianos , Fitocromo , Proteínas Quinases , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/efeitos da radiação , Benchmarking , Cianobactérias/genética , Escherichia coli/metabolismo , Fibroblastos , Engenharia Genética , Humanos , Hidrogéis/química , Mecanotransdução Celular/efeitos da radiação , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/efeitos da radiação , Fitocromo/química , Fitocromo/genética , Fitocromo/efeitos da radiação , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/efeitos da radiação , Viscosidade
2.
Biochemistry ; 60(40): 2967-2977, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34570488

RESUMO

Phytochromes switch between a physiologically inactive and active state via a light-induced reaction cascade, which is initiated by isomerization of the tetrapyrrole chromophore and leads to the functionally relevant secondary structure transition of a protein segment (tongue). Although details of the underlying cause-effect relationships are not known, electrostatic fields are likely to play a crucial role in coupling chromophores and protein structural changes. Here, we studied local electric field changes during the photoconversion of the dark state Pfr to the photoactivated state Pr of the bathy phytochrome Agp2. Substituting Tyr165 and Phe192 in the chromophore pocket by para-cyanophenylalanine (pCNF), we monitored the respective nitrile stretching modes in the various states of photoconversion (vibrational Stark effect). Resonance Raman and IR spectroscopic analyses revealed that both pCNF-substituted variants undergo the same photoinduced structural changes as wild-type Agp2. Based on a structural model for the Pfr state of F192pCNF, a molecular mechanical-quantum mechanical approach was employed to calculate the electric field at the nitrile group and the respective stretching frequency, in excellent agreement with the experiment. These calculations serve as a reference for determining the electric field changes in the photoinduced states of F192pCNF. Unlike F192pCNF, the nitrile group in Y165pCNF is strongly hydrogen bonded such that the theoretical approach is not applicable. However, in both variants, the largest changes of the nitrile stretching modes occur in the last step of the photoconversion, supporting the view that the proton-coupled restructuring of the tongue is accompanied by a change of the electric field.


Assuntos
Proteínas de Bactérias/química , Fitocromo/química , Agrobacterium/química , Alanina/análogos & derivados , Alanina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/efeitos da radiação , Sítios de Ligação , Luz , Simulação de Dinâmica Molecular , Mutação , Nitrilas/química , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo/efeitos da radiação , Conformação Proteica/efeitos da radiação , Eletricidade Estática , Estereoisomerismo , Tetrapirróis/química , Tetrapirróis/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(1): 300-307, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31852825

RESUMO

A major barrier to defining the structural intermediates that arise during the reversible photointerconversion of phytochromes between their biologically inactive and active states has been the lack of crystals that faithfully undergo this transition within the crystal lattice. Here, we describe a crystalline form of the cyclic GMP phosphodiesterases/adenylyl cyclase/FhlA (GAF) domain from the cyanobacteriochrome PixJ in Thermosynechococcus elongatus assembled with phycocyanobilin that permits reversible photoconversion between the blue light-absorbing Pb and green light-absorbing Pg states, as well as thermal reversion of Pg back to Pb. The X-ray crystallographic structure of Pb matches previous models, including autocatalytic conversion of phycocyanobilin to phycoviolobilin upon binding and its tandem thioether linkage to the GAF domain. Cryocrystallography at 150 K, which compared diffraction data from a single crystal as Pb or after irradiation with blue light, detected photoconversion product(s) based on Fobs - Fobs difference maps that were consistent with rotation of the bonds connecting pyrrole rings C and D. Further spectroscopic analyses showed that phycoviolobilin is susceptible to X-ray radiation damage, especially as Pg, during single-crystal X-ray diffraction analyses, which could complicate fine mapping of the various intermediate states. Fortunately, we found that PixJ crystals are amenable to serial femtosecond crystallography (SFX) analyses using X-ray free-electron lasers (XFELs). As proof of principle, we solved by room temperature SFX the GAF domain structure of Pb to 1.55-Å resolution, which was strongly congruent with synchrotron-based models. Analysis of these crystals by SFX should now enable structural characterization of the early events that drive phytochrome photoconversion.


Assuntos
Ficobilinas/metabolismo , Ficocianina/metabolismo , Fitocromo/química , Fitocromo/efeitos da radiação , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Cristalografia , Cristalografia por Raios X , Cianobactérias/química , GMP Cíclico , Luz , Modelos Moleculares , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Células Fotorreceptoras/metabolismo , Ficobilinas/química , Ficocianina/química , Conformação Proteica , Domínios Proteicos , Thermosynechococcus , Transativadores/química
4.
Plant Cell ; 31(11): 2649-2663, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31530733

RESUMO

Plants have evolved two major ways to deal with nearby vegetation or shade: avoidance and tolerance. Moreover, some plants respond to shade in different ways; for example, Arabidopsis (Arabidopsis thaliana) undergoes an avoidance response to shade produced by vegetation, but its close relative Cardamine hirsuta tolerates shade. How plants adopt opposite strategies to respond to the same environmental challenge is unknown. Here, using a genetic strategy, we identified the C. hirsuta slender in shade1 mutants, which produce strongly elongated hypocotyls in response to shade. These mutants lack the phytochrome A (phyA) photoreceptor. Our findings suggest that C. hirsuta has evolved a highly efficient phyA-dependent pathway that suppresses hypocotyl elongation when challenged by shade from nearby vegetation. This suppression relies, at least in part, on stronger phyA activity in C. hirsuta; this is achieved by increased ChPHYA expression and protein accumulation combined with a stronger specific intrinsic repressor activity. We suggest that modulation of photoreceptor activity is a powerful mechanism in nature to achieve physiological variation (shade tolerance versus avoidance) for species to colonize different habitats.


Assuntos
Arabidopsis/fisiologia , Cardamine/fisiologia , Luz , Fitocromo/metabolismo , Plântula/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis , Cardamine/genética , Cardamine/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Hipocótilo/metabolismo , Fitocromo/genética , Fitocromo/efeitos da radiação , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação
5.
Plant Cell ; 31(10): 2510-2524, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409629

RESUMO

Plant photoreceptors tightly regulate gene expression to control photomorphogenic responses. Although gene expression is modulated by photoreceptors at various levels, the regulatory mechanism at the pre-mRNA splicing step remains unclear. Alternative splicing, a widespread mechanism in eukaryotes that generates two or more mRNAs from the same pre-mRNA, is largely controlled by splicing regulators, which recruit spliceosomal components to initiate pre-mRNA splicing. The red/far-red light photoreceptor phytochrome participates in light-mediated splicing regulation, but the detailed mechanism remains unclear. Here, using protein-protein interaction analysis, we demonstrate that in the moss Physcomitrella patens, phytochrome4 physically interacts with the splicing regulator heterogeneous nuclear ribonucleoprotein H1 (PphnRNP-H1) in the nucleus, a process dependent on red light. We show that PphnRNP-H1 is involved in red light-mediated phototropic responses in P. patens and that it binds with higher affinity to the splicing factor pre-mRNA-processing factor39-1 (PpPRP39-1) in the presence of red light-activated phytochromes. Furthermore, PpPRP39-1 associates with the core component of U1 small nuclear RNP in P. patens Genome-wide analyses demonstrated the involvement of both PphnRNP-H1 and PpPRP39-1 in light-mediated splicing regulation. Our results suggest that phytochromes target the early step of spliceosome assembly via a cascade of protein-protein interactions to control pre-mRNA splicing and photomorphogenic responses.


Assuntos
Processamento Alternativo/efeitos da radiação , Bryopsida/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Fotorreceptores de Plantas/metabolismo , Fitocromo/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Processamento Alternativo/genética , Bryopsida/genética , Bryopsida/efeitos da radiação , Ontologia Genética , Estudo de Associação Genômica Ampla , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Luz , Fitocromo/efeitos da radiação , Ligação Proteica/efeitos da radiação , Mapeamento de Interação de Proteínas , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Spliceossomos/metabolismo
6.
FEBS J ; 286(21): 4261-4277, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31243889

RESUMO

Bacteriophytochrome proteins (BphPs) are molecular light switches that enable organisms to adapt to changing light conditions through the control of gene expression. Canonical type 1 BphPs have histidine kinase output domains, but type 3 RpBphP1, in the bacterium Rhodopseudomonas palustris (Rps. palustris), has a C terminal PAS9 domain and a two-helix output sensor (HOS) domain. Type 1 BphPs form head-to-head parallel dimers; however, the crystal structure of RpBphP1ΔHOS, which does not contain the HOS domain, revealed pseudo anti-parallel dimers. HOS domains are homologs of Dhp dimerization domains in type 1 BphPs. We show, by applying the small angle X-ray scattering (SAXS) technique on full-length RpBphP1, that HOS domains fulfill a similar role in the formation of parallel dimers. On illumination with far-red light, RpBphP1 forms a complex with gene repressor RpPpsR2 through light-induced structural changes in its HOS domains. An RpBphP1:RpPpsR2 complex is formed in the molecular ratio of 2 : 1 such that one RpBphP1 dimer binds one RpPpsR2 monomer. Molecular dimers have been modeled with Pfr and Pr SAXS data, suggesting that, in the Pfr state, stable dimeric four α-helix bundles are formed between HOS domains, rendering RpBphP1functionally inert. On illumination with light of 760 nm wavelength, four α-helix bundles formed by HOS dimers are disrupted, rendering helices available for binding with RpPpsR2.


Assuntos
Proteínas de Bactérias/química , Fitocromo/química , Rodopseudomonas/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Dimerização , Regulação Bacteriana da Expressão Gênica/genética , Luz , Fitocromo/genética , Fitocromo/efeitos da radiação , Rodopseudomonas/efeitos da radiação , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
Commun Biol ; 2: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30740537

RESUMO

Phytochromes are photoreceptor proteins that transmit a light signal from a photosensory region to an output domain. Photoconversion involves protein conformational changes whose nature is not fully understood. Here, we use time-resolved X-ray scattering and optical spectroscopy to study the kinetics of structural changes in a full-length cyanobacterial phytochrome and in a truncated form with no output domain. X-ray and spectroscopic signals on the µs/ms timescale are largely independent of the presence of the output domain. On longer time-scales, large differences between the full-length and truncated proteins indicate the timeframe during which the structural transition is transmitted from the photosensory region to the output domain and represent a large quaternary motion. The suggested independence of the photosensory-region dynamics on the µs/ms timescale defines a time window in which the photoreaction can be characterized (e.g. for optogenetic design) independently of the nature of the engineered output domain.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Luz , Fitocromo/química , Fitocromo/efeitos da radiação , Proteínas Quinases/química , Proteínas Quinases/efeitos da radiação , Espalhamento de Radiação , Synechocystis/química , Deinococcus/química , Cinética , Modelos Moleculares , Fotorreceptores Microbianos , Conformação Proteica/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Espectroscopia por Absorção de Raios X , Raios X
8.
Elife ; 72018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29869984

RESUMO

Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here, we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes.


Assuntos
Alteromonadaceae/enzimologia , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Fósforo-Oxigênio Liases/química , Células Fotorreceptoras/fisiologia , Fitocromo/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/efeitos da radiação , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/efeitos da radiação , Luz , Modelos Moleculares , Fósforo-Oxigênio Liases/metabolismo , Fósforo-Oxigênio Liases/efeitos da radiação , Células Fotorreceptoras/efeitos da radiação , Fitocromo/efeitos da radiação , Domínios Proteicos , Multimerização Proteica , Transdução de Sinais
9.
Annu Rev Phytopathol ; 56: 41-66, 2018 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-29768135

RESUMO

Plants collect, concentrate, and conduct light throughout their tissues, thus enhancing light availability to their resident microbes. This review explores the role of photosensing in the biology of plant-associated bacteria and fungi, including the molecular mechanisms of red-light sensing by phytochromes and blue-light sensing by LOV (light-oxygen-voltage) domain proteins in these microbes. Bacteriophytochromes function as major drivers of the bacterial transcriptome and mediate light-regulated suppression of virulence, motility, and conjugation in some phytopathogens and light-regulated induction of the photosynthetic apparatus in a stem-nodulating symbiont. Bacterial LOV proteins also influence light-mediated changes in both symbiotic and pathogenic phenotypes. Although red-light sensing by fungal phytopathogens is poorly understood, fungal LOV proteins contribute to blue-light regulation of traits, including asexual development and virulence. Collectively, these studies highlight that plant microbes have evolved to exploit light cues and that light sensing is often coupled with sensing other environmental signals.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Luz , Fitocromo/metabolismo , Plantas/microbiologia , Bactérias/efeitos da radiação , Fungos/efeitos da radiação , Fitocromo/efeitos da radiação
10.
Plant J ; 92(3): 426-436, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833729

RESUMO

Cryptochromes are blue light receptors that regulate various light responses in plants. Arabidopsis cryptochrome 1 (CRY1) and cryptochrome 2 (CRY2) mediate blue light inhibition of hypocotyl elongation and long-day (LD) promotion of floral initiation. It has been reported recently that two negative regulators of Arabidopsis cryptochromes, Blue light Inhibitors of Cryptochromes 1 and 2 (BIC1 and BIC2), inhibit cryptochrome function by blocking blue light-dependent cryptochrome dimerization. However, it remained unclear how cryptochromes regulate the BIC gene activity. Here we show that cryptochromes mediate light activation of transcription of the BIC genes, by suppressing the activity of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), resulting in activation of the transcription activator ELONGATED HYPOCOTYL 5 (HY5) that is associated with chromatins of the BIC promoters. These results demonstrate a CRY-BIC negative-feedback circuitry that regulates the activity of each other. Surprisingly, phytochromes also mediate light activation of BIC transcription, suggesting a novel photoreceptor co-action mechanism to sustain blue light sensitivity of plants under the broad spectra of solar radiation in nature.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Criptocromos/metabolismo , Retroalimentação Fisiológica/efeitos da radiação , Fotorreceptores de Plantas/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Criptocromos/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes Reporter , Luz , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fotorreceptores de Plantas/genética , Fitocromo/metabolismo , Fitocromo/efeitos da radiação , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Planta ; 244(2): 297-312, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27100111

RESUMO

MAIN CONCLUSION: In this review we focus on the role of SPA proteins in light signalling and discuss different aspects, including molecular mechanisms, specificity, and evolution. The ability of plants to perceive and respond to their environment is key to their survival under ever-changing conditions. The abiotic factor light is of particular importance for plants. Light provides plants energy for carbon fixation through photosynthesis, but also is a source of information for the adaptation of growth and development to the environment. Cryptochromes and phytochromes are major photoreceptors involved in control of developmental decisions in response to light cues, including seed germination, seedling de-etiolation, and induction of flowering. The SPA protein family acts in complex with the E3 ubiquitin ligase COP1 to target positive regulators of light responses for degradation by the 26S proteasome to suppress photomorphogenic development in darkness. Light-activated cryptochromes and phytochromes both repress the function of COP1, allowing accumulation of positive photomorphogenic factors in light. In this review, we highlight the role of the SPA proteins in this process and discuss recent advances in understanding how SPAs link light-activation of photoreceptors and downstream signaling.


Assuntos
Transdução de Sinal Luminoso , Fotorreceptores de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Criptocromos/metabolismo , Criptocromos/fisiologia , Criptocromos/efeitos da radiação , Evolução Molecular , Expressão Gênica , Modelos Biológicos , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Fitocromo/metabolismo , Fitocromo/fisiologia , Fitocromo/efeitos da radiação , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Plant Cell ; 28(3): 616-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26941092

RESUMO

The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared with other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum, and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs.


Assuntos
Diatomáceas/fisiologia , Transdução de Sinal Luminoso/efeitos da radiação , Fitocromo/efeitos da radiação , Plantas/efeitos da radiação , Adaptação Fisiológica , Clorofila/metabolismo , Diatomáceas/efeitos da radiação , Oceanos e Mares , Análise Espectral Raman , Luz Solar
15.
J Plant Res ; 129(2): 115-22, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26843269

RESUMO

Plant photoreceptors link environmental light cues with physiological responses, determining how individual plants complete their life cycles. Structural and functional evolution of photoreceptors has co-occurred as plants diversified and faced the challenge of new light environments, during the transition of plants to land and as substantial plant canopies evolved. Large-scale comparative sequencing projects allow us for the first time to document photoreceptor evolution in understudied clades, revealing some surprises. Here we review recent progress in evolutionary studies of three photoreceptor families: phytochromes, phototropins and neochromes.


Assuntos
Transdução de Sinal Luminoso , Fotorreceptores de Plantas/genética , Fototropinas/genética , Fitocromo/genética , Plantas/genética , Xantofilas/genética , Evolução Biológica , Meio Ambiente , Variação Genética , Luz , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/efeitos da radiação , Fototropinas/química , Fototropinas/efeitos da radiação , Fitocromo/química , Fitocromo/efeitos da radiação , Plantas/efeitos da radiação , Domínios Proteicos , Transcriptoma , Xantofilas/química , Xantofilas/efeitos da radiação
16.
J Plant Res ; 129(2): 123-35, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26818948

RESUMO

Phytochromes represent a diverse family of red/far-red-light absorbing chromoproteins which are widespread across plants, cyanobacteria, non-photosynthetic bacteria, and more. Phytochromes play key roles in regulating physiological activities in response to light, a critical element in the acclimatization to the environment. The discovery of prokaryotic phytochromes facilitated structural studies which deepened our understanding on the general mechanisms of phytochrome action. An extrapolation of this information to plant phytochromes is justified for universally conserved functional aspects, but it is also true that there are many aspects which are unique to plant phytochromes. Here I summarize some structural studies carried out to date on both prokaryotic and plant phytochromes. I also attempt to identify aspects which are common or unique to plant and prokaryotic phytochromes. Phytochrome themselves, as well as the downstream signaling pathway in plants are more complex than in their prokaryotic counterparts. Thus many structural and functional aspects of plant phytochrome remain unresolved.


Assuntos
Bactérias/química , Cianobactérias/química , Transdução de Sinal Luminoso , Fitocromo/química , Plantas/química , Bactérias/efeitos da radiação , Fenômenos Fisiológicos Bacterianos , Cianobactérias/fisiologia , Cianobactérias/efeitos da radiação , Luz , Modelos Moleculares , Fitocromo/metabolismo , Fitocromo/efeitos da radiação , Fenômenos Fisiológicos Vegetais , Plantas/efeitos da radiação , Conformação Proteica
17.
Chemphyschem ; 17(3): 369-74, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26630441

RESUMO

Phytochromes are protein-based photoreceptors harboring a bilin-based photoswitch in the active site. The timescale of photosignaling via C15 =C16 E-to-Z photoisomerization has been ambiguous in the far-red-absorbing Pfr state. Here we present a unified view of the structural events in phytochrome Cph1 post excitation with femtosecond precision, obtained via stimulated Raman and polarization-resolved transient IR spectroscopy. We demonstrate that photoproduct formation occurs within 700 fs, determined by a two-step partitioning process initiated by a planarization on the electronic excited state with a 300 fs time scale. The ultrafast isomerization timescale for Pfr -to-Pr conversion highlights the active role of the nonbonding methyl-methyl clash initiating the reaction in the excited state. We envision that our results will motivate the synthesis of new artificial photoswitches with precisely tuned non-bonded interactions for ultrafast response.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Pigmentos Biliares/química , Pigmentos Biliares/efeitos da radiação , Processos Fotoquímicos , Fitocromo/química , Fitocromo/efeitos da radiação , Proteínas Quinases/química , Proteínas Quinases/efeitos da radiação , Fotorreceptores Microbianos , Estereoisomerismo , Fatores de Tempo
18.
Proc Natl Acad Sci U S A ; 111(32): 11888-93, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071219

RESUMO

To incorporate the far-red light (FR) signal into a strategy for optimizing plant growth, FAR-RED ELONGATED HYPOCOTYL1 (FHY1) mediates the nuclear translocation of the FR photoreceptor phytochrome A (phyA) and facilitates the association of phyA with the promoters of numerous associated genes crucial for the response to environmental stimuli. However, whether FHY1 plays additional roles after FR irradiation remains elusive. Here, through the global identification of FHY1 chromatin association sites through ChIP-seq analysis and by the comparison of FHY1-associated sites with phyA-associated sites, we demonstrated that nuclear FHY1 can either act independently of phyA or act in association with phyA to activate the expression of distinct target genes. We also determined that phyA can act independently of FHY1 in regulating phyA-specific target genes. Furthermore, we determined that the independent FHY1 nuclear pathway is involved in crucial aspects of plant development, as in the case of inhibited seed germination under FR during salt stress. Notably, the differential presence of cis-elements and transcription factors in common and unique FHY1- and/or phyA-associated genes are indicative of the complexity of the independent and coordinated FHY1 and phyA pathways. Our study uncovers previously unidentified aspects of FHY1 function beyond its currently recognized role in phyA-dependent photomorphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fotorreceptores de Plantas/metabolismo , Fitocromo A/metabolismo , Fitocromo/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Germinação , Luz , Modelos Biológicos , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/efeitos da radiação , Fitocromo/genética , Fitocromo/efeitos da radiação , Fitocromo A/genética , Fitocromo A/efeitos da radiação , Plantas Geneticamente Modificadas , Tolerância ao Sal , Transdução de Sinais
19.
Nature ; 509(7499): 245-248, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24776794

RESUMO

Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light-sensing kinases that control diverse cellular functions in plants, bacteria and fungi. Bacterial phytochromes consist of a photosensory core and a carboxy-terminal regulatory domain. Structures of photosensory cores are reported in the resting state and conformational responses to light activation have been proposed in the vicinity of the chromophore. However, the structure of the signalling state and the mechanism of downstream signal relay through the photosensory core remain elusive. Here we report crystal and solution structures of the resting and activated states of the photosensory core of the bacteriophytochrome from Deinococcus radiodurans. The structures show an open and closed form of the dimeric protein for the activated and resting states, respectively. This nanometre-scale rearrangement is controlled by refolding of an evolutionarily conserved 'tongue', which is in contact with the chromophore. The findings reveal an unusual mechanism in which atomic-scale conformational changes around the chromophore are first amplified into an ångstrom-scale distance change in the tongue, and further grow into a nanometre-scale conformational signal. The structural mechanism is a blueprint for understanding how phytochromes connect to the cellular signalling network.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Deinococcus/química , Transdução de Sinal Luminoso , Proteínas de Bactérias/efeitos da radiação , Sítios de Ligação , Cristalografia por Raios X , Transdução de Sinal Luminoso/efeitos da radiação , Modelos Moleculares , Fitocromo/química , Fitocromo/metabolismo , Fitocromo/efeitos da radiação , Conformação Proteica/efeitos da radiação
20.
Biochemistry ; 53(17): 2818-26, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24742290

RESUMO

Phytochromes are widespread red/far-red photosensory proteins well known as critical regulators of photomorphogenesis in plants. It is often assumed that natural selection would have optimized the light sensing efficiency of phytochromes to minimize nonproductive photochemical deexcitation pathways. Surprisingly, the quantum efficiency for the forward Pr-to-Pfr photoconversion of phytochromes seldom exceeds 15%, a value very much lower than that of animal rhodopsins. Exploiting ultrafast excitation wavelength- and temperature-dependent transient absorption spectroscopy, we resolve multiple pathways within the ultrafast photodynamics of the N-terminal PAS-GAF-PHY photosensory core module of cyanobacterial phytochrome Cph1 (termed Cph1Δ) that are primarily responsible for the overall low quantum efficiency. This inhomogeneity primarily reflects a long-lived fluorescent subpopulation that exists in equilibrium with a spectrally distinct, photoactive subpopulation. The fluorescent subpopulation is favored at elevated temperatures, resulting in anomalous excited-state dynamics (slower kinetics at higher temperatures). The spectral and kinetic behavior of the fluorescent subpopulation strongly resembles that of the photochemically compromised and highly fluorescent Y176H variant of Cph1Δ. We present an integrated, heterogeneous model for Cph1Δ that is based on the observed transient and static spectroscopic signals. Understanding the molecular basis for this dynamic inhomogeneity holds potential for rational design of efficient phytochrome-based fluorescent and photoswitchable probes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fitocromo/química , Fitocromo/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/efeitos da radiação , Cinética , Luz , Fotoquímica , Fotorreceptores Microbianos , Fitocromo/genética , Fitocromo/efeitos da radiação , Proteínas Quinases/genética , Proteínas Quinases/efeitos da radiação , Espectrometria de Fluorescência , Análise Espectral , Synechocystis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA