Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.028
Filtrar
1.
CNS Neurosci Ther ; 30(5): e14740, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38715318

RESUMO

AIMS: γ-aminobutyric acid (GABA) from reactive astrocytes is critical for the dysregulation of neuronal activity in various neuroinflammatory conditions. While Scutellaria baicalensis Georgi (S. baicalensis) is known for its efficacy in addressing neurological symptoms, its potential to reduce GABA synthesis in reactive astrocytes and the associated neuronal suppression remains unclear. This study focuses on the inhibitory action of monoamine oxidase B (MAO-B), the key enzyme for astrocytic GABA synthesis. METHODS: Using a lipopolysaccharide (LPS)-induced neuroinflammation mouse model, we conducted immunohistochemistry to assess the effect of S. baicalensis on astrocyte reactivity and its GABA synthesis. High-performance liquid chromatography was performed to reveal the major compounds of S. baicalensis, the effects of which on MAO-B inhibition, astrocyte reactivity, and tonic inhibition in hippocampal neurons were validated by MAO-B activity assay, qRT-PCR, and whole-cell patch-clamp. RESULTS: The ethanolic extract of S. baicalensis ameliorated astrocyte reactivity and reduced excessive astrocytic GABA content in the CA1 hippocampus. Baicalin and baicalein exhibited significant MAO-B inhibition potential. These two compounds downregulate the mRNA levels of genes associated with reactive astrogliosis or astrocytic GABA synthesis. Additionally, LPS-induced aberrant tonic inhibition was reversed by both S. baicalensis extract and its key compounds. CONCLUSIONS: In summary, baicalin and baicalein isolated from S. baicalensis reduce astrocyte reactivity and alleviate aberrant tonic inhibition of hippocampal neurons during neuroinflammation.


Assuntos
Astrócitos , Flavanonas , Flavonoides , Lipopolissacarídeos , Neurônios , Extratos Vegetais , Scutellaria baicalensis , Ácido gama-Aminobutírico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Flavanonas/farmacologia , Scutellaria baicalensis/química , Camundongos , Ácido gama-Aminobutírico/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Masculino , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Monoaminoxidase/metabolismo , Inibição Neural/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
2.
Food Res Int ; 186: 114328, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729714

RESUMO

The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal ß-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.


Assuntos
Citrus sinensis , Fezes , Flavanonas , Sucos de Frutas e Vegetais , Microbioma Gastrointestinal , Humanos , Flavanonas/urina , Masculino , Adulto , Feminino , Fezes/microbiologia , Fezes/química , Hesperidina/urina , Espectrometria de Massas em Tandem , Pessoa de Meia-Idade , Adulto Jovem , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Hidroxibenzoatos/urina
3.
J Biochem Mol Toxicol ; 38(5): e23717, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742857

RESUMO

Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.


Assuntos
Cloreto de Alumínio , Flavanonas , Transtornos da Memória , Estresse Oxidativo , Animais , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Cloreto de Alumínio/toxicidade , Masculino , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
4.
Mol Biol Rep ; 51(1): 643, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727775

RESUMO

BACKGROUND: Baicalein is the main active flavonoid in Scutellariae Radix and is included in shosaikoto, a Kampo formula used for treating hepatitis and jaundice. However, little is known about its hepatoprotective effects against hepatic ischemia-reperfusion injury (HIRI), a severe clinical condition directly caused by interventional procedures. We aimed to investigate the hepatoprotective effects of baicalein against HIRI and partial hepatectomy (HIRI + PH) and its potential underlying mechanisms. METHODS AND RESULTS: Male Sprague-Dawley rats received either baicalein (5 mg/kg) or saline intraperitoneally and underwent a 70% hepatectomy 15 min after hepatic ischemia. After reperfusion, liver and blood samples were collected. Survival was monitored 30 min after hepatic ischemia and hepatectomy. In interleukin 1ß (IL-1ß)-treated primary cultured rat hepatocytes, the influence of baicalein on inflammatory mediator production and the associated signaling pathway was analyzed. Baicalein suppressed apoptosis and neutrophil infiltration, which are the features of HIRI + PH treatment-induced histological injury. Baicalein also reduced the mRNA expression of the proinflammatory cytokine tumor necrosis factor-α (TNF-α). In addition, HIRI + PH treatment induced liver enzyme deviations in the serum and hypertrophy of the remnant liver, which were suppressed by baicalein. In the lethal HIRI + PH treatment group, baicalein significantly reduced mortality. In IL-1ß-treated rat hepatocytes, baicalein suppressed TNF-α and chemokine mRNA expression as well as the activation of nuclear factor-kappa B (NF-κB) and Akt. CONCLUSIONS: Baicalein treatment attenuates HIRI + PH-induced liver injury and may promote survival. This potential hepatoprotection may be partly related to suppressing inflammatory gene induction through the inhibition of NF-κB activity and Akt signaling in hepatocytes.


Assuntos
Apoptose , Modelos Animais de Doenças , Flavanonas , Hepatectomia , Hepatócitos , Interleucina-1beta , Fígado , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Hepatectomia/métodos , Masculino , Ratos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Apoptose/efeitos dos fármacos , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Sci Rep ; 14(1): 10114, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698063

RESUMO

Wogonin is a natural flavone compound from the plant Scutellaria baicalensis, which has a variety of pharmacological activities such as anti-cancer, anti-virus, anti-inflammatory, and immune regulation. However, the potential mechanism of wogonin remains unknown. This study was to confirm the molecular mechanism of wogonin for acute monocytic leukemia treatment, known as AML-M5. The potential action targets between wogonin and acute monocytic leukemia were predicted from databases. The compound-target-pathway network and protein-protein interaction network (PPI) were constructed. The enrichment analysis of related targets and molecular docking were performed. The network pharmacological results of wogonin for AML-M5 treatment were verified using the THP-1 cell line. 71 target genes of wogonin associated with AML-M5 were found. The key genes TP53, SRC, AKT1, RELA, HSP90AA1, JUN, PIK3R1, and CCND1 were preliminarily found to be the potential central targets of wogonin for AML-M5 treatment. The PPI network analysis, GO analysis and KEGG pathway enrichment analysis demonstrated that the PI3K/AKT signaling pathway was the significant pathway in the wogonin for AML-M5 treatment. The antiproliferative effects of wogonin on THP-1 cells of AML-M5 presented a dose-dependent and time-dependent manner, inducing apoptosis, blocking the cell cycle at the G2/M phase, decreasing the expressions of CCND1, CDK2, and CyclinA2 mRNA, as well as AKT and p-AKT proteins. The mechanisms of wogonin on AML-M5 treatment may be associated with inhibiting cell proliferation and regulating the cell cycle via the PI3K/AKT signaling pathway.


Assuntos
Flavanonas , Leucemia Monocítica Aguda , Simulação de Acoplamento Molecular , Farmacologia em Rede , Mapas de Interação de Proteínas , Flavanonas/farmacologia , Humanos , Leucemia Monocítica Aguda/tratamento farmacológico , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células THP-1 , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos
6.
Nutrients ; 16(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732567

RESUMO

Imbalances in lipid uptake and efflux and inflammation are major contributors to foam cell formation, which is considered a therapeutic target to protect against atherosclerosis. Naringin, a citrus flavonoid abundant in citrus fruits, has been reported to exert an antiatherogenic function, but its pharmacological mechanism is unclear. Naringin treatment effectively inhibits foam cell formation in THP-1 and RAW264.7 macrophages. In this study, mechanically, naringin maintained lipid homeostasis within macrophages through downregulation of the key genes for lipid uptake (MSR1 and CD36) and the upregulation of ABCA1, ABCG1 and SR-B1, which are responsible for cholesterol efflux. Meanwhile, naringin significantly decreased the cholesterol synthesis-related genes and increased the genes involved in cholesterol metabolism. Subsequently, the results showed that ox-LDL-induced macrophage inflammatory responses were inhibited by naringin by reducing the proinflammatory cytokines IL-1ß, IL-6 and TNF-α, and increasing the anti- inflammatory cytokine IL-10, which was further verified by the downregulation of pro-inflammatory and chemokine-related genes. Additionally, we found that naringin reprogrammed the metabolic phenotypes of macrophages by suppressing glycolysis and promoting lipid oxidation metabolism to restore macrophage phenotypes and functions. These results suggest that naringin is a potential drug for the treatment of AS as it inhibits macrophage foam cell formation by regulating metabolic phenotypes and inflammation.


Assuntos
Flavanonas , Células Espumosas , Homeostase , Metabolismo dos Lipídeos , Fenótipo , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Flavanonas/farmacologia , Camundongos , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Humanos , Homeostase/efeitos dos fármacos , Células RAW 264.7 , Citocinas/metabolismo , Colesterol/metabolismo , Células THP-1 , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico
7.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732081

RESUMO

Flavonoid aglycones are secondary plant metabolites that exhibit a broad spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, and antiplatelet effects. However, the precise molecular mechanisms underlying their inhibitory effect on platelet activation remain poorly understood. In this study, we applied flow cytometry to analyze the effects of six flavonoid aglycones (luteolin, myricetin, quercetin, eriodictyol, kaempferol, and apigenin) on platelet activation, phosphatidylserine externalization, formation of reactive oxygen species, and intracellular esterase activity. We found that these compounds significantly inhibit thrombin-induced platelet activation and decrease formation of reactive oxygen species in activated platelets. The tested aglycones did not affect platelet viability, apoptosis induction, or procoagulant platelet formation. Notably, luteolin, myricetin, quercetin, and apigenin increased thrombin-induced thromboxane synthase activity, which was analyzed by a spectrofluorimetric method. Our results obtained from Western blot analysis and liquid chromatography-tandem mass spectrometry demonstrated that the antiplatelet properties of the studied phytochemicals are mediated by activation of cyclic nucleotide-dependent signaling pathways. Specifically, we established by using Förster resonance energy transfer that the molecular mechanisms are, at least partly, associated with the inhibition of phosphodiesterases 2 and/or 5. These findings underscore the therapeutic potential of flavonoid aglycones for clinical application as antiplatelet agents.


Assuntos
Plaquetas , Flavonoides , Ativação Plaquetária , Inibidores da Agregação Plaquetária , Espécies Reativas de Oxigênio , Flavonoides/farmacologia , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apigenina/farmacologia , Quercetina/farmacologia , Luteolina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quempferóis/farmacologia , Trombina/metabolismo , Flavanonas
8.
Eur J Pharmacol ; 973: 176566, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636801

RESUMO

Wogonoside (WG) is a natural flavonoid extracted from Scutellariae Radix, recognized for its established anti-inflammatory properties. However, the role of WG in the context of neuroinflammation after spinal cord injury (SCI) remains inadequately elucidated. This study employed in silico, in vitro, and in vivo methodologies to investigate the impact of WG on microglia-mediated neuroinflammation after SCI. In the in silico experiment, we identified 15 potential target genes of WG associated with SCI. These genes were linked to the regulation of inflammatory response and immune defense. Molecular docking maps revealed toll-like receptor 4 as a molecular target for WG, demonstrating binding through a hydrogen bond (Lys263, Ser120). In lipopolysaccharide-stimulated BV2 cells and SCI mice, WG significantly attenuated microglial activation and facilitated a phenotype shift from M1 to M2. This was evidenced by the reversal of the increased expressions of Iba1, GFAP, and iNOS, as well as the decreased expression of Arg1. WG also suppressed the production of pro-inflammatory mediators (NO, TNF-α, IL-6, IL-1α, IL-1ß, C1q). WG exerted these effects by suppressing the TLR4/MyD88/NF-κB signaling axis in microglia. Furthermore, by reducing levels of TNF-α, IL-1α, and C1q in supernatant of LPS-induced microglia, WG indirectly induced astrocytes change to A2 phenotype, evidenced by transcriptome sequencing result of primary mouse astrocytes. All these events above collectively created a favorable microenvironment, contributing to a significant alleviation of weight loss and neuronal damage at the lesion site of SCI mice. Our findings substantiate the efficacy of WG in mitigating neuroinflammation after SCI, thereby warranting further exploration.


Assuntos
Flavanonas , Glucosídeos , Microglia , Fator 88 de Diferenciação Mieloide , NF-kappa B , Doenças Neuroinflamatórias , Transdução de Sinais , Traumatismos da Medula Espinal , Receptor 4 Toll-Like , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Linhagem Celular , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Mediadores da Inflamação/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
9.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674060

RESUMO

Mandarin peel, a main by-product from the processing of citrus juice, has been highlighted for its various bioactivities and functional ingredients. Our previous study proved the inhibitory effects of Celluclast extract from mandarin peel (MPCE) on lipid accumulation and differentiation in 3T3-L1 adipocytes. Therefore, the current study aimed to evaluate the anti-obesity effect of MPCE in high-fat diet (HFD)-induced obese mice. The high-performance liquid chromatography (HPLC) analysis exhibited that narirutin and hesperidin are the main active components of MPCE. Our current results showed that MPCE supplementation decreased adiposity by reducing body and organ weights in HFD-induced obese mice. MPCE also reduced triglyceride (TG), alanine transaminase (ALT), aspartate transaminase (AST), and leptin contents in the serum of HFD-fed mice. Moreover, MPCE significantly inhibited hepatic lipid accumulation by regulating the expression levels of proteins associated with lipid metabolism, including sterol regulatory element-binding protein (SREBP1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). Furthermore, MPCE administration significantly inhibited both adipogenesis and lipogenesis, with modulation of energy metabolism by activating 5' adenosine monophosphate-activated protein kinase (AMPK) and lipolytic enzymes such as hormone-sensitive lipase (HSL) in the white adipose tissue (WAT). Altogether, our findings indicate that MPCE improves HFD-induced obesity and can be used as a curative agent in pharmaceuticals and nutraceuticals to alleviate obesity and related disorders.


Assuntos
Adipogenia , Citrus , Dieta Hiperlipídica , Dissacarídeos , Metabolismo Energético , Flavanonas , Camundongos Endogâmicos C57BL , Obesidade , Extratos Vegetais , Animais , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Citrus/química , Camundongos , Metabolismo Energético/efeitos dos fármacos , Extratos Vegetais/farmacologia , Masculino , Adipogenia/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Células 3T3-L1 , Fármacos Antiobesidade/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Triglicerídeos/metabolismo , Triglicerídeos/sangue
10.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612466

RESUMO

Type 2 diabetes mellitus (T2DM) is marked by persistent hyperglycemia, insulin resistance, and pancreatic ß-cell dysfunction, imposing substantial health burdens and elevating the risk of systemic complications and cardiovascular diseases. While the pathogenesis of diabetes remains elusive, a cyclical relationship between insulin resistance and inflammation is acknowledged, wherein inflammation exacerbates insulin resistance, perpetuating a deleterious cycle. Consequently, anti-inflammatory interventions offer a therapeutic avenue for T2DM management. In this study, a herb called Baikal skullcap, renowned for its repertoire of bioactive compounds with anti-inflammatory potential, is posited as a promising source for novel T2DM therapeutic strategies. Our study probed the anti-diabetic properties of compounds from Baikal skullcap via network pharmacology, molecular docking, and cellular assays, concentrating on their dual modulatory effects on diabetes through Protein Tyrosine Phosphatase 1B (PTP1B) enzyme inhibition and anti-inflammatory actions. We identified the major compounds in Baikal skullcap using liquid chromatography-mass spectrometry (LC-MS), highlighting six flavonoids, including the well-studied baicalein, as potent inhibitors of PTP1B. Furthermore, cellular experiments revealed that baicalin and baicalein exhibited enhanced anti-inflammatory responses compared to the active constituents of licorice, a known anti-inflammatory agent in TCM. Our findings confirmed that baicalin and baicalein mitigate diabetes via two distinct pathways: PTP1B inhibition and anti-inflammatory effects. Additionally, we have identified six flavonoid molecules with substantial potential for drug development, thereby augmenting the T2DM pharmacotherapeutic arsenal and promoting the integration of herb-derived treatments into modern pharmacology.


Assuntos
Diabetes Mellitus Tipo 2 , Flavanonas , Resistência à Insulina , Scutellaria baicalensis , Diabetes Mellitus Tipo 2/tratamento farmacológico , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Flavonoides/farmacologia , Inflamação , Anti-Inflamatórios/farmacologia
11.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612578

RESUMO

Ultraviolet radiation (UVR) has various effects on human cells and tissues, which can lead to a variety of skin diseases and cause inconvenience to people's lives. Among them, solar dermatitis is one of the important risk factors for malignant melanoma, so prevention and treatment of solar dermatitis is very necessary. Additionally, liquiritin (LQ) has anti-inflammatory effects. In this study, we aimed to evaluate the anti-inflammatory and pro-wound healing effects of liquiritin carbomer gel cold paste (LQ-CG-CP) in vitro and in vivo. The results of MTT experiments showed no cytotoxicity of LQ at concentrations of 40 µg/mL and below and cell damage at UVB irradiation doses above 60 mJ/cm2. Moreover, LQ can promote cell migration. ELISA results also showed that LQ inhibited the elevation of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) after UVB irradiation. In the mouse model of solar dermatitis, 2% LQ-CG-CP showed the best therapeutic efficacy for wound healing and relief of itching compared to MEIBAO moist burn moisturizer (MEBO). What is more, the results of skin histopathological examination show that LQ-CG-CP promotes re-epithelialization, shrinks wounds, and promotes collagen production, thus promoting wound healing. Simultaneously, LQ-CG-CP reduced TNF-α, IL-1ß, and IL-6 expression. In addition, LQ-CG-CP was not observed to cause histopathological changes and blood biochemical abnormalities in mice. Overall, LQ-CG-CP has great potential for the treatment of solar dermatitis.


Assuntos
Resinas Acrílicas , Dermatite , Flavanonas , Glucosídeos , Queimadura Solar , Animais , Camundongos , Humanos , Raios Ultravioleta , Interleucina-6 , Fator de Necrose Tumoral alfa , Cicatrização , Interleucina-1beta , Anti-Inflamatórios
12.
Nutrients ; 16(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38613124

RESUMO

Eriocitrin, a flavanone found in peppermint and citrus fruits, is known to possess many physiological activities. However, the anti-angiogenic effects of eriocitrin are yet to be fully elucidated. Therefore, the objective of this research was to explore the anti-angiogenic effects of eriocitrin both in vitro and in vivo as well as its underlying mechanism. Anti-angiogenic effects of eriocitrin were evaluated utilizing in vitro models of angiogenesis, including inhibition of tube formation, and induction of apoptosis in human umbilical vein endothelial cells (HUVECs). A chorioallantoic membrane (CAM) assay in chick embryos was also performed to evaluate the in vivo effects of eriocitrin on angiogenesis. Results showed significant eriocitrin effects on proliferation, tube formation, migration, and apoptosis in HUVECs. Furthermore, in vivo analysis revealed that eriocitrin significantly suppressed the formation of new blood vessels. In particular, it regulated MAPK/ERK signaling pathway and VEGFR2, inhibited the downstream PI3K/AKT/mTOR signaling pathway, and activated apoptosis signals such as caspase cascades. In HUVECs, the expression of matrix metalloproteinases (MMP-2 and MMP-9) exhibited an inhibitory effect on angiogenesis through the suppression of the signaling pathway. Therefore, eriocitrin presents potential for development into an antiangiogenic therapeutic agent.


Assuntos
Flavanonas , Fosfatidilinositol 3-Quinases , Embrião de Galinha , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt , Angiogênese , Células Endoteliais , Transdução de Sinais , Serina-Treonina Quinases TOR , Inibidores da Angiogênese/farmacologia
13.
Hum Exp Toxicol ; 43: 9603271241249990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38664950

RESUMO

The disruption of the immune system by viral attack is a major influencing factor in the lethality of COVID-19. Baicalein is one of the key effective compounds against COVID-19. The molecular mechanisms regarding the anti-inflammatory properties of Baicalein are still unclear. In this study, we established LPS-induced mice to elucidate the role of Baicalein in the treatment of acute lung injury (ALI) and its potential molecular mechanisms. In vivo experiments showed that Baicalein could significantly ameliorate LPS-induced acute lung injury and reduce proteinous edema in lung tissue. In addition, Baicalein inhibited M1 macrophage polarization, promote M2 macrophage polarization, and regulate inflammatory responses. Furthermore, Baicalein could inhibit the expression of protein molecules associated with pyroptosis and mitigate the lung tissue injury. In summary, we revealed the therapeutic effects of Baicalein in acute lung injury, providing the theoretical basis for its clinical application.


Assuntos
Lesão Pulmonar Aguda , Flavanonas , Lipopolissacarídeos , Macrófagos , Piroptose , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Animais , Piroptose/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Pneumonia/tratamento farmacológico , Pneumonia/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/patologia , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia
14.
Urologiia ; (1): 162-167, 2024 Mar.
Artigo em Russo | MEDLINE | ID: mdl-38650422

RESUMO

Currently, the significance of the chronic prostatitis (CP) is undoubted. Oxidative stress is considered as one of the standard mechanisms of cellular damage that is associated with inflammatory diseases such as CP. When choosing the combination therapy for this group of patients, a correction of oxidative stress is pathogenetically justified. Literature data about the pathogenetic feasibility and prospects of using a biologically active complex containing flavonoids and carotenoids quercetin, lycopene and naringin as part of the combination treatment of patients with CP are presented in the article. Considering the various effects of the biologically active complex Querceprost, containing quercetin, lycopene and naringin, among which antioxidant, anti-inflammatory, antimicrobial and immunomodulatory are of greatest importance, as well as taking into account the synergistic effect of flavonoids and carotenoids, we suggest that Querceprost is promising component of combination treatment of patients with CP.


Assuntos
Antioxidantes , Prostatite , Masculino , Humanos , Prostatite/tratamento farmacológico , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Doença Crônica , Quimioterapia Combinada , Quercetina/administração & dosagem , Quercetina/farmacologia , Quercetina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Carotenoides/administração & dosagem , Carotenoides/uso terapêutico , Licopeno/administração & dosagem , Licopeno/farmacologia , Licopeno/uso terapêutico , Flavanonas/administração & dosagem , Flavanonas/farmacologia , Flavanonas/uso terapêutico
15.
Endocr Res ; 49(2): 106-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597376

RESUMO

BACKGROUND: Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments. AIMS: To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17ß-estradiol (E2). METHODS: These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells. RESULTS: All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation. CONCLUSION: Natural estrogens were no less toxic than a synthetic one.


Assuntos
Proliferação de Células , Estradiol , Flavanonas , Tartrazina , Humanos , Animais , Ratos , Estradiol/farmacologia , Flavanonas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Tartrazina/farmacologia , Carcinoma Hepatocelular , Neoplasias Hepáticas/induzido quimicamente , Células Hep G2 , Estrogênios/farmacologia , Congêneres do Estradiol/farmacologia , Fitoestrógenos/farmacologia
16.
Eur J Pharmacol ; 971: 176525, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561101

RESUMO

Depression is a debilitating mental disease that negatively impacts individuals' lives and society. Novel hypotheses have been recently proposed to improve our understanding of depression pathogenesis. Impaired neuroplasticity and upregulated neuro-inflammation add-on to the disturbance in monoamine neurotransmitters and therefore require novel anti-depressants to target them simultaneously. Recent reports demonstrate the antidepressant effect of the anti-diabetic drug liraglutide. Similarly, the natural flavonoid naringenin has shown both anti-diabetic and anti-depressant effects. However, the neuro-pharmacological mechanisms underlying their actions remain understudied. The study aims to evaluate the antidepressant effects and neuroprotective mechanisms of liraglutide, naringenin or a combination of both. Depression was induced in mice by administering dexamethasone (32 mcg/kg) for seven consecutive days. Liraglutide (200 mcg/kg), naringenin (50 mg/kg) and a combination of both were administered either simultaneously or after induction of depression for twenty-eight days. Behavioral and molecular assays were used to assess the progression of depressive symptoms and biomarkers. Liraglutide and naringenin alone or in combination alleviated the depressive behavior in mice, manifested by decrease in anxiety, anhedonia, and despair. Mechanistically, liraglutide and naringenin improved neurogenesis, decreased neuroinflammation and comparably restored the monoamines levels to that of the reference drug escitalopram. The drugs protected mice from developing depression when given simultaneously with dexamethasone. Collectively, the results highlight the usability of liraglutide and naringenin in the treatment of depression in mice and emphasize the different pathways that contribute to the pathogenesis of depression.


Assuntos
Depressão , Flavanonas , Liraglutida , Camundongos , Animais , Depressão/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inflamação/tratamento farmacológico , Neurogênese , Dexametasona/farmacologia
17.
Food Chem ; 448: 139182, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569413

RESUMO

Amylosucrase (ASase) efficiently biosynthesizes α-glucoside using flavonoids as acceptor molecules and sucrose as a donor molecule. Here, ASase from Deinococcus wulumuqiensis (DwAS) biosynthesized more naringenin α-glucoside (NαG) with sucrose and naringenin as donor and acceptor molecules, respectively, than other ASases from Deinococcus sp. The biotransformation rate of DwAS to NαG was 21.3% compared to 7.1-16.2% for other ASases. Docking simulations showed that the active site of DwAS was more accessible to naringenin than those of others. The 217th valine in DwAS corresponded to the 221st isoleucine in Deinococcus geothermalis AS (DgAS), and the isoleucine possibly prevented naringenin from accessing the active site. The DwAS-V217I mutant had a significantly lower biosynthetic rate of NαG than DwAS. The kcat/Km value of DwAS with naringenin as the donor was significantly higher than that of DgAS and DwAS-V217I. In addition, NαG inhibited human intestinal α-glucosidase more efficiently than naringenin.


Assuntos
Proteínas de Bactérias , Biotransformação , Deinococcus , Flavanonas , Glucosídeos , Glucosiltransferases , Inibidores de Glicosídeo Hidrolases , Flavanonas/metabolismo , Flavanonas/química , Deinococcus/enzimologia , Deinococcus/metabolismo , Deinococcus/química , Deinococcus/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glucosídeos/metabolismo , Glucosídeos/química , Simulação de Acoplamento Molecular , Cinética , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química
18.
Neurotox Res ; 42(2): 23, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578482

RESUMO

Alzheimer's disease (AD) involves a neurodegenerative process that has not yet been prevented, reversed, or stopped. Continuing with the search for natural pharmacological treatments, flavonoids are a family of compounds with proven neuroprotective effects and multi-targeting behavior. The American genus Dalea L. (Fabaceae) is an important source of bioactive flavonoids. In this opportunity, we tested the neuroprotective potential of three prenylated flavanones isolated from Dalea species in a new in vitro pre-clinical AD model previously developed by us. Our approach consisted in exposing neural cells to conditioned media (3xTg-AD ACM) from neurotoxic astrocytes derived from hippocampi and cortices of old 3xTg-AD mice, mimicking a local neurodegenerative microenvironment. Flavanone 1 and 3 showed a neuroprotective effect against 3xTg-AD ACM, being 1 more active than 3. The structural requirements to afford neuroprotective activity in this model are a 5'-dimethylallyl and 4'-hydroxy at the B ring. In order to search the mechanistic performance of the most active flavanone, we focus on the flavonoid-mediated regulation of GSK-3ß-mediated tau phosphorylation previously reported. Flavanone 1 treatment decreased the rise of hyperphosphorylated tau protein neuronal levels induced after 3xTg-AD ACM exposure and inhibited the activity of GSK-3ß. Finally, direct exposure of these neurotoxic 3xTg-AD astrocytes to flavanone 1 resulted in toxicity to these cells and reduced the neurotoxicity of 3xTg-AD ACM as well. Our results allow us to present compound 1 as a natural prenylated flavanone that could be used as a precursor to development and design of future drug therapies for AD.


Assuntos
Doença de Alzheimer , Flavanonas , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Transgênicos , Proteínas tau/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Fosforilação , Peptídeos beta-Amiloides/metabolismo
19.
Exp Cell Res ; 437(2): 114028, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582338

RESUMO

Acute liver injury (ALI) refers to the damage to the liver cells of patients due to drugs, food, and diseases. In this work, we used a network pharmacology approach to analyze the relevant targets and pathways of the active ingredients in Citri Reticulatae Pericarpium (CRP) for the treatment of ALI and conducted systematic validation through in vivo and in vitro experiments. The network pharmacologic results predicted that naringenin (NIN) was the main active component of CRP in the treatment of ALI. GO functional annotation and KEGG pathway enrichment showed that its mechanism may be related to the regulation of PPARA signaling pathway, PPARG signaling pathway, AKT1 signaling pathway, MAPK3 signaling pathway and other signaling pathways. The results of in vivo experiments showed that (NIN) could reduce the liver lesions, liver adipose lesions, hepatocyte injury and apoptosis in mice with APAP-induced ALI, and reduce the oxidative stress damage of mouse liver cells and the inflammation-related factors to regulate ALI. In vitro experiments showed that NIN could inhibit the proliferation, oxidative stress and inflammation of APAP-induced LO2 cells, promote APAP-induced apoptosis of LO2 cells, and regulate the expression of apoptotic genes in acute liver injury. Further studies showed that NIN inhibited APAP-induced ALI mainly by regulating the PPARA-dependent signaling pathway. In conclusion, this study provides a preliminary theoretical basis for the screening of active compounds in CRP for the prevention and treatment of ALI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Flavanonas , Fígado , Humanos , Animais , Camundongos , Fígado/metabolismo , Transdução de Sinais , Hepatócitos/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
20.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673736

RESUMO

Abundant in citrus fruits, naringin (NAR) is a flavonoid that has a wide spectrum of beneficial health effects, including its anti-inflammatory activity. However, its use in the clinic is limited due to extensive phase I and II first-pass metabolism, which limits its bioavailability. Thus, lipid nanoparticles (LNPs) were used to protect and concentrate NAR in inflamed issues, to enhance its anti-inflammatory effects. To target LNPs to the CD44 receptor, overexpressed in activated macrophages, functionalization with hyaluronic acid (HA) was performed. The formulation with NAR and HA on the surface (NAR@NPsHA) has a size below 200 nm, a polydispersity around 0.245, a loading capacity of nearly 10%, and a zeta potential of about 10 mV. In vitro studies show the controlled release of NAR along the gastrointestinal tract, high cytocompatibility (L929 and THP-1 cell lines), and low hemolytic activity. It was also shown that the developed LNPs can regulate inflammatory mediators. In fact, NAR@NPsHA were able to decrease TNF-α and CCL-3 markers expression by 80 and 90% and manage to inhibit the effects of LPS by around 66% for IL-1ß and around 45% for IL-6. Overall, the developed LNPs may represent an efficient drug delivery system with an enhanced anti-inflammatory effect.


Assuntos
Anti-Inflamatórios , Flavanonas , Lipossomos , Nanopartículas , Flavanonas/farmacologia , Flavanonas/química , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Nanopartículas/química , Animais , Células THP-1 , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Camundongos , Linhagem Celular , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptores de Hialuronatos/metabolismo , Composição de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA