Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792204

RESUMO

Environmental pollution stands as one of the significant global challenges we face today. Polycyclic aromatic hydrocarbons (PAHs), a class of stubborn organic pollutants, have long been a focal point of bioremediation research. This study aims to explore the impact and mechanisms of graphene oxide (GO) on the phytoremediation effectiveness of PAHs. The results underscore the significant efficacy of GO in accelerating the degradation of PAHs. Additionally, the introduction of GO altered the diversity and community structure of endophytic bacteria within the roots, particularly those genera with potential for PAH degradation. Through LEfSe analysis and correlation studies, we identified specific symbiotic bacteria, such as Mycobacterium, Microbacterium, Flavobacterium, Sphingomonas, Devosia, Bacillus, and Streptomyces, which coexist and interact under the influence of GO, synergistically degrading PAHs. These bacteria may serve as key biological markers in the PAH degradation process. These findings provide new theoretical and practical foundations for the application of nanomaterials in plant-based remediation of polluted soils and showcase the immense potential of plant-microbe interactions in environmental restoration.


Assuntos
Bactérias , Biodegradação Ambiental , Grafite , Hidrocarbonetos Policíclicos Aromáticos , Microbiologia do Solo , Poluentes do Solo , Grafite/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Endófitos/metabolismo , Raízes de Plantas/microbiologia , Sphingomonas/metabolismo , Plantas/microbiologia , Plantas/metabolismo , Mycobacterium/efeitos dos fármacos , Mycobacterium/metabolismo , Flavobacterium/efeitos dos fármacos , Flavobacterium/metabolismo , Streptomyces/metabolismo , Microbacterium/metabolismo
2.
Microbiol Spectr ; 9(2): e0033021, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34523994

RESUMO

Flavobacterium psychrophilum, the etiological agent of bacterial coldwater disease (BCWD) and rainbow trout fry syndrome, causes great economic losses in salmonid aquaculture worldwide. Recent molecular studies have uncovered important epidemiological and ecological aspects of this pathogen; however, such data are lacking for F. psychrophilum populations affecting aquaculture in China. Herein, F. psychrophilum phenotype, genotype, and virulence were characterized for isolates recovered from epizootics in multiple salmonid aquaculture facilities across China. Thirty-one F. psychrophilum isolates, originating from four provinces and three host fish species, were predominantly homogeneous biochemically but represented 5 sequence types (STs) according to multilocus sequence typing (MLST) that belonged to clonal complex CC-ST10 or 3 newly recognized singleton STs. PCR-based serotyping classified 19 and 12 F. psychrophilum isolates into molecular serotypes 1 and 0, respectively, showing an obvious relationship with host species. Antimicrobial susceptibility analysis via broth microdilution revealed reduced susceptibility to enrofloxacin, flumequine, and oxolinic acid, moderate susceptibility to gentamicin, erythromycin, and florfenicol, and variable susceptibility to ampicillin and oxytetracycline. In vivo challenge experiments confirmed the ability of two representative Chinese F. psychrophilum isolates to induce typical signs of BCWD and mortality in 1-year-old rainbow trout (Oncorhynchus mykiss). Findings collectively demonstrate (i) that BCWD outbreaks in China studied thus far are caused by F. psychrophilum lineages that are common on other continents (e.g., CC-ST10) and others that have not been reported elsewhere (e.g., ST355, ST356, ST357), (ii) that F. psychrophilum molecular serotypes distinguish isolates from different host fish species, even within STs, and (iii) reduced F. psychrophilum antimicrobial susceptibility against compounds used for BCWD control in China. IMPORTANCE Flavobacterium psychrophilum causes substantial economic losses in salmonid aquaculture worldwide. Although this bacterium is also believed to be a disease source in China, published reports of its presence do not yet exist. Herein, F. psychrophilum was linked to multiple disease outbreaks in several salmonid aquaculture facilities within four Chinese provinces, and polyphasic characterization revealed that most isolates were genetically distinct from strains recovered on other continents. Analyses further revealed the predominating molecular serotypes, antimicrobial susceptibility profiles, and pathogenic potential of two representative recovered isolates. Collectively, the results presented here provide important data on the epidemiology and disease ecology of F. psychrophilum in China and pave the way for targeted prevention and control methods to be pursued in the future.


Assuntos
Flavobacterium/efeitos dos fármacos , Flavobacterium/genética , Oncorhynchus kisutch/microbiologia , Oncorhynchus mykiss/microbiologia , Osmeriformes/microbiologia , Animais , Antibacterianos/farmacologia , Aquicultura/economia , China , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Flavobacterium/isolamento & purificação , Flavobacterium/patogenicidade , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Fatores de Virulência/genética
3.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199128

RESUMO

Flavobacterium johnsoniae forms a thin spreading colony on nutrient-poor agar using gliding motility. As reported in the first paper, WT cells in the colony were sparsely embedded in self-produced extracellular polymeric matrix (EPM), while sprB cells were densely packed in immature biofilm with less matrix. The colony surface is critical for antibiotic resistance and cell survival. We have now developed the Grid Stamp-Peel method whereby the colony surface is attached to a TEM grid for negative-staining microscopy. The images showed that the top of the spreading convex WT colonies was covered by EPM with few interspersed cells. Cells exposed near the colony edge made head-to-tail and/or side-to-side contact and sometimes connected via thin filaments. Nonspreading sprB and gldG and gldK colonies had a more uniform upper surface covered by different EPMs including vesicles and filaments. The EPM of sprB, gldG, and WT colonies contained filaments ~2 nm and ~5 nm in diameter; gldK colonies did not include the latter. Every cell near the edge of WT colonies had one or two dark spots, while cells inside WT colonies and cells in SprB-, GldG-, or GldK-deficient colonies did not. Together, our results suggest that the colony surface structure depends on the capability to expand biofilm.


Assuntos
Adesinas Bacterianas/genética , Biofilmes/crescimento & desenvolvimento , Matriz Extracelular/metabolismo , Flavobacterium/fisiologia , Adesinas Bacterianas/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Flavobacterium/efeitos dos fármacos , Flavobacterium/ultraestrutura , Testes de Sensibilidade Microbiana , Mutação , Fenótipo
4.
Bioprocess Biosyst Eng ; 44(7): 1373-1382, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34008084

RESUMO

By comparing the survival rate and positive mutation rate of the primary mutagenic strain and progeny mutagenic strain under different radiation doses, the results showed that the tolerance of the mutagenic strain to radiation dose increased with the increase of the mutagenic generations. We adopted an improved gradient radiation breeding strategy to improve the breeding efficiency. The strains were treated with radiation in four stages. The first stage was low energy N+ ion implantation (ion energy 15 keV, dose 80 × 2.6 × 1013 cm-2). In the second stage, the energy and dose of N+ ion reached to 20 keV, 90 × 2.6 × 1013 cm-2. In the third stage, 60Co-γ radiation (dose of 1.56 kGy) was used. In the fourth stage, the radiation dose of 60Co-γ increased to 1.82 kGy. After each stage of radiation, the MK (Menaquinone) precursor 1, 4-dihydroxy-2-naphthalate (DHNA) was used as the stress factor to domesticate the mutant strains. By gradually increasing the concentration of DHNA in the culture medium, the substrate tolerance of Flavobacterium sp. was effectively improved. By measuring SOD (superoxide dismutase) activity and malondialdehyde, it showed that the cell damage caused by radiation mutagenesis to the offspring mutant was less than that of the primary mutant. Changes in membrane permeability and membrane potential of the mutant strains were reflected in changes in fluorescence intensity of luciferin diacetate and rhodamine 123, which could explain the enhanced substrate tolerance of strain F-2. After gradient radiation breeding and culture acclimation, the biomass of mutant Strain F-2 was 6.59 g/L, and the MK yield was 9.59 mg/L.


Assuntos
Biomassa , Flavobacterium/efeitos dos fármacos , Naftalenos/química , Superóxido Dismutase/química , Vitamina K 2/química , Acetatos/química , Biotecnologia/métodos , Membrana Celular/metabolismo , Radioisótopos de Cobalto , Flavobacterium/efeitos da radiação , Raios gama , Íons , Luciferinas/química , Malondialdeído/química , Potenciais da Membrana , Mutagênese , Mutação , Nitrogênio/química , Permeabilidade , Rodamina 123/química , Superóxido Dismutase/metabolismo
5.
Sci Rep ; 11(1): 7518, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824380

RESUMO

Rainbow trout fry syndrome (RTFS) and bacterial coldwater disease (BCWD) is a globally distributed freshwater fish disease caused by Flavobacterium psychrophilum. In spite of its importance, an effective vaccine is not still available. Manipulation of the microbiome of skin, which is a primary infection gate for pathogens, could be a novel countermeasure. For example, increasing the abundance of specific antagonistic bacteria against pathogens in fish skin might be effective to prevent fish disease. Here, we combined cultivation with 16S rRNA gene amplicon sequencing to obtain insight into the skin microbiome of the rainbow trout (Oncorhynchus mykiss) and searched for skin bacteria antagonistic to F. psychrophilum. By using multiple culture media, we obtained 174 isolates spanning 18 genera. Among them, Bosea sp. OX14 and Flavobacterium sp. GL7 respectively inhibited the growth of F. psychrophilum KU190628-78 and NCIMB 1947T, and produced antagonistic compounds of < 3 kDa in size. Sequences related to our isolates comprised 4.95% of skin microbial communities, and those related to strains OX14 and GL7 respectively comprised 1.60% and 0.17% of the skin microbiome. Comparisons with previously published microbiome data detected sequences related to strains OX14 and GL7 in skin of other rainbow trout and Atlantic salmon.


Assuntos
Doenças dos Peixes/terapia , Flavobacterium/efeitos dos fármacos , Oncorhynchus mykiss/microbiologia , Animais , Aquicultura/métodos , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/terapia , Flavobacterium/genética , Flavobacterium/patogenicidade , Oncorhynchus mykiss/genética , Pele/microbiologia
6.
Vet Res ; 52(1): 18, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579339

RESUMO

This study reports the comparative analyses of four Flavobacterium columnare isolates that have different virulence and antimicrobial resistance patterns. The main research goal was to reveal new insights into possible virulence genes by comparing the genomes of bacterial isolates that could induce tissue damage and mortality versus the genome of a non-virulent isolate. The results indicated that only the genomes of the virulent isolates possessed unique genes encoding amongst others a methyl-accepting chemotaxis protein possibly involved in the initial colonization of tissue, and several VgrG proteins engaged in interbacterial competition. Furthermore, comparisons of genes unique for the genomes of the highly virulent (HV) carp and trout isolates versus the, respectively, low and non-virulent carp and trout isolates were performed. An important part of the identified unique virulence genes of the HV-trout isolate was located in one particular gene region identified as a genomic island. This region contained araC and nodT genes, both linked to pathogenic and multidrug-resistance, and a luxR-gene, functional in bacterial cell-to-cell communication. Furthermore, the genome of the HV-trout isolate possessed unique sugar-transferases possibly important in bacterial adhesion. The second research goal was to obtain insights into the genetic basis of acquired antimicrobial resistance. Several point-mutations were discovered in gyrase-genes of an isolate showing phenotypic resistance towards first and second-generation quinolones, which were absent in isolates susceptible to quinolones. Tetracycline-resistance gene tetA was found in an isolate displaying acquired phenotypic resistance towards oxytetracycline. Although not localized on a prophage, several flanking genes were indicative of the gene's mobile character.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Flavobacterium/genética , Animais , Carpas/microbiologia , Flavobacterium/efeitos dos fármacos , Flavobacterium/patogenicidade , Genômica , Truta/microbiologia , Virulência
7.
Molecules ; 25(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668579

RESUMO

A new copper (I) complex, [Cu(NN1)2](ClO4), was synthesized, where NN1 was a imine ligand 6-((quinolin-2-ylmethylene)amino)-2H-chromen-2-one obtained by a derivatization of natural compound coumarin. The structural characterization in solution was done by NMR techniques, UV-Vis and cyclic voltammetry. The potential antibacterial effect of [Cu(NN1)2](ClO4), was assessed for F. psychrophilum isolated 10094. F. psychrophilum is a Gram-negative bacterium which causes diseases such as bacterial cold-water disease and rainbow trout fry syndrome, causing large economic losses in the freshwater salmonid aquaculture industry. This complex show to have antibacterial activity against F. psychrophilum 10094 at non-cytotoxic concentration in cell line derived from trout (F. psychrophilum 10094 IC50 16.0 ± 0.9; RT-GUT IC50 53.0 ± 3.1 µg/mL).


Assuntos
Antibacterianos/farmacologia , Cobre/farmacologia , Cumarínicos/farmacologia , Doenças dos Peixes/microbiologia , Flavobacterium/efeitos dos fármacos , Animais , Linhagem Celular , Oncorhynchus mykiss , Salmão
8.
Microbiology (Reading) ; 166(3): 239-252, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31935186

RESUMO

In the marine environment, most solid surfaces are covered by microbial biofilms, mainly composed of bacteria and diatoms. The negative effects of biofilms on materials and equipment are numerous and pose a major problem for industry and human activities. Since marine micro-organisms are an important source of bioactive metabolites, it is possible that they synthesize natural ecofriendly molecules that inhibit the adhesion of organisms. In this work, the antibiofilm potential of marine bacteria was investigated using Flavobacterium sp. II2003 as a target. This strain is potentially a pioneer strain of bacteria that was previously selected from marine biofilms for its strong biofilm-forming ability. The culture supernatants of 86 marine heterotrophic bacteria were tested for their ability to inhibit Flavobacterium sp. II2003 biofilm formation and the Pseudomonas sp. IV2006 strain was identified as producing a strong antibiofilm activity. The Pseudomonas sp. IV2006 culture supernatant (SNIV2006) inhibited Flavobacterium sp. II2003 adhesion without killing the bacteria or inhibiting its growth. Moreover, SNIV2006 had no effect on the Flavobacterium sp. II2003 cell surface hydrophilic/hydrophobic and general Lewis acid-base characteristics, but modified the surface properties of glass, making it on the whole more hydrophilic and more alkaline and significantly reducing bacterial cell adhesion. The glass-coating molecules produced by Pseudomonas sp. IV2006 were found to probably be polysaccharides, whereas the antibiofilm molecules contained in SNIV2006 and acting during the 2 h adhesion step on glass and polystyrene surfaces would be proteinaceous. Finally, SNIV2006 exhibited a broad spectrum of antibiofilm activity on other marine bacteria such as Flavobacterium species that are pathogenic for fish, and human pathogens in both the medical environment, such as Staphylococcus aureus and Pseudomonas aeruginosa, and in the food industry, such as Yersinia enterocolitica. Thus, a wide range of applications could be envisaged for the SNIV2006 compounds, both in aquaculture and human health.


Assuntos
Antibacterianos , Flavobacterium/efeitos dos fármacos , Pseudomonas/metabolismo , Animais , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Organismos Aquáticos/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Peixes/microbiologia , Flavobacterium/crescimento & desenvolvimento , Humanos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Yersinia enterocolitica/efeitos dos fármacos , Yersinia enterocolitica/crescimento & desenvolvimento
9.
J Aquat Anim Health ; 31(3): 225-238, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31216387

RESUMO

Flavobacterium psychrophilum produces biofilms under laboratory conditions, and it has been inconclusively suggested that F. psychrophilum biofilms can be a potential reservoir for transmission of the pathogen to a fish population under fish farming conditions. Therefore, there is a need for anti-biofilm compounds. The main aim of this study was to determine the anti-biofilm properties of certain compounds and bacteriophages on F. psychrophilum biofilms under static conditions using a standard 96-well microtiter plate biofilm assay in vitro. Eight compounds (A-type proanthocyanidins, D-leucine, EDTA, emodin, fucoidan, L-alliin, parthenolide, and 2-aminoimidazole) at three sub-minimum inhibitory concentrations (sub-MICs), four bacteriophages (Fpv-3, Fpv-9, Fpv-10, and Fpv-21), and a phage combination (Fpv-9 + Fpv-10) were tested for inhibition of biofilm formation and reduction of the biomass of mature biofilms formed by two smooth isolates (P7-9/10 and P1-10B/10) and two rough isolates (P7-9/2R/10 and P1-10B/2R/10) of F. psychrophilum. The crystal violet staining method was used to stain the biofilms. Most of the compounds at sub-MICs inhibited the biofilm formation of mainly smooth isolates, attaining up to 80% inhibition. Additionally, the same reduction trend was also observed for 2-aminoimidazole, emodin, parthenolide, and D-leucine on the biomass of mature biofilms in a concentration-dependent manner. The anti-biofilm properties of the compounds are believed to lie in their ability to disturb the cellular interactions during biofilm formation and probably to cause cell dispersal in already formed biofilms. Lytic bacteriophages efficiently inhibited biofilm formation of F. psychrophilum, while they partially reduced the biomass of mature biofilms. However, the phage combination (Fpv-9 + Fpv-10) showed a successful reduction in the biomass of F. psychrophilum mature biofilms. We conclude that inhibiting compounds together with bacteriophages may supplement the use of disinfectants against bacterial biofilms (e.g., F. psychrophilum biofilms), leading to a reduced occurrence of bacterial coldwater disease outbreaks at fish farms.


Assuntos
Antibacterianos/farmacologia , Bacteriófagos/fisiologia , Biofilmes/efeitos dos fármacos , Flavobacterium/efeitos dos fármacos , Flavobacterium/fisiologia , Infecções por Flavobacteriaceae/prevenção & controle , Infecções por Flavobacteriaceae/veterinária , Testes de Sensibilidade Microbiana/veterinária
10.
Vet Res ; 50(1): 24, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30971289

RESUMO

The impact of cortisol on Flavobacterium columnare biofilm formation was explored. Firstly, the dynamics of biofilm formation by one highly (HV) and one low virulent (LV) F. columnare isolate with and without the stress hormone cortisol under microfluidic flow conditions was characterized. This to confirm that F. columnare cells could form biofilm under cortisol supplementation, and to compare the temporal and structural differences between different treatment groups. One trial revealed that in both isolates cell aggregates resembling biofilms occurred within 7-h post-inoculation. Consequently, cell clusters were sloughed away, followed by a rebuilding of bacterial cell aggregates, suggestive for a high spreading capacity. While the HV isolate revealed cell aggregates formed upstream at all time-points, for the LV isolate this was only seen upon cortisol supplementation. Secondly, the transcriptional effect of genes (gldK, gldL, gldM, gldN, sprA, sprE, sprT, and porV) belonging to the Type IX secretion system involved in gliding motility was investigated in planktonic and biofilm cells of a HV and LV isolate to which no, a low (LD) or high (HD) dose of cortisol was added. Significantly lower expression of gliding genes gldK, gldL, gldM and gldN, and of protein secretion regulator porV was seen in the LV isolate planktonic cells supplemented with a HD-cortisol. The LV isolate biofilm cells treated with the HD-cortisol showed a significant upregulation of sprT, encoding mobile surface adhesion important in bacterial colonization. This is the first evidence for the co-regulatory effect of cortisol on biofilm formation and F. columnare gliding gene expression.


Assuntos
Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Flavobacterium/fisiologia , Expressão Gênica , Genes Bacterianos/fisiologia , Hidrocortisona/metabolismo , Animais , Biofilmes/efeitos dos fármacos , Carpas/microbiologia , Relação Dose-Resposta a Droga , Flavobacterium/efeitos dos fármacos , Flavobacterium/genética , Flavobacterium/patogenicidade , Hidrocortisona/administração & dosagem , Dispositivos Lab-On-A-Chip/veterinária , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento , Virulência
11.
Environ Pollut ; 248: 438-447, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30826606

RESUMO

The contamination with antibiotic resistance genes (ARGs) in raw drinking water source may pose a direct threat to human health. In this study, metagenomics sequencing and analysis were applied to investigate the ARG pattern in 12 drinking water sources in upper and middle reach of Huaihe River Basin, China. Based on the redundant analysis and multi-linear regression model, location, specific microbial taxa, number of livestock and health facilities significantly influenced the ARG profile in drinking water sources. Besides the cluster effect of ARG in samples from plain and bedrock mountain areas, the samples from fracture aquifer areas also showed a distinctive biogeographic pattern with that from porous aquifer areas. Putative ARGs host Opitutus and Flavobacterium were the enriched biomarkers in plain and fracture aquifer area respectively, which mainly carried bacitracin, multidrug, beta-lactam and tetracycline ARGs. This result illuminated that both natural background and anthropogenic activities in the watershed influenced the ARG profile in natural freshwater system significantly. The low MGEs abundance and absence of pathogen revealed a low ARG dissemination risk in sampled drinking water sources, while Polynucleobacter was an abundant ARGs host and was significantly related to the ARG profile, which indicated that specific bacteria was responsible for ARGs propagation and accumulation in surface freshwater system. Further researches are needed to assess human exposure to raw drinking water source and the potential risk, as well as the species interaction in microbial community and its impact on ARG propagation under oligotrophic condition.


Assuntos
Burkholderiaceae/genética , Água Potável/microbiologia , Resistência Microbiana a Medicamentos/genética , Flavobacterium/genética , Rios/microbiologia , Verrucomicrobia/genética , Antibacterianos/farmacologia , Bacitracina/farmacologia , Burkholderiaceae/efeitos dos fármacos , China , Flavobacterium/efeitos dos fármacos , Genes Bacterianos/genética , Humanos , Metagenômica , Microbiota/efeitos dos fármacos , Tetraciclinas/farmacologia , Verrucomicrobia/efeitos dos fármacos , beta-Lactamas/farmacologia
12.
J Org Chem ; 84(2): 666-678, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30550716

RESUMO

The phytotoxin diplopyrone is considered to be the main phytotoxin in a fungus that is responsible for cork oak decline. A carbohydrate-based synthesis of the enantiomer of the structure proposed for diplopyrone has been developed from a commercially available derivative of d-galactose. Key steps in the synthesis are a highly stereoselective pyranose chain-extension based on methyltitanium, preparation of a vinyl glycoside via Isobe C-alkynylation-rearrangement/reduction, and RCM-based pyranopyran construction. Crystallographic and NMR analysis confirms an earlier report that the structure originally proposed for diplopyrone may require revision. Structural analogues were prepared for biological evaluation, the most promising being a pyranopyran nitrile synthesized from tri- O-acetyl-d-galactal by Ferrier cyanoglycosidation, Wittig chain extension, and lactonization. Biological assays revealed potent antibacterial activity for the nitrile analogue against common bacterial pathogens Edwardsiella ictaluri and Flavobacterium columnare that cause enteric septicemia (ESC) and columnaris disease, respectively, in catfish. The IC50 value of 0.002 against E. ictaluri indicates approximately 100 times greater potency than the antibiotic florfenicol used commercially for this disease. Phytotoxic activity for all three target compounds against duckweed was also observed. The antibiotic and phytotoxic activities of the new pyranopyrans synthesized in this study demonstrate the potential of such compounds as antibiotics and herbicides.


Assuntos
Antibacterianos/farmacologia , Edwardsiella ictaluri/efeitos dos fármacos , Flavobacterium/efeitos dos fármacos , Piranos/farmacologia , Pironas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Conformação Molecular , Piranos/síntese química , Piranos/química , Pironas/química , Estereoisomerismo
13.
FEMS Microbiol Lett ; 365(22)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285236

RESUMO

Columnaris disease, caused by Flavobacterium columnare, severely impacts the production of freshwater finfish species. Therefore, efforts to better understand the biological processes of F. columnare, including the formation of biofilms and their contribution to disease, are ongoing. In this study, we incubated F. columnare cultures with channel catfish mucus and used high-throughput RNA sequencing to evaluate global changes in gene expression. Our data show that mucus activates in vitro biofilm formation. The analysis of F. columnare transcriptomes after the addition of mucus revealed significant differentially expressed genes (DEGs) between the planktonic and biofilm states. DEGs common among all biofilms were enriched for gene ontology groups including signal transduction, ligand binding and cellular homeostasis and are likely necessary for biofilm formation. Iron acquisition systems included TonB-dependent receptor and ferroxidase genes were expressed among all biofilms, while siderophore synthesis genes were only expressed in mucus-stimulated biofilms. The current analysis of F. columnare transcriptomes adds valuable information about the basic biological processes that occur during the planktonic and biofilm states. This work serves as a basis for future studies on understanding how biofilms are established and how they contribute to disease progression.


Assuntos
Biofilmes/efeitos dos fármacos , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/genética , Ferro/metabolismo , Muco/microbiologia , Transcriptoma/efeitos dos fármacos , Animais , Biofilmes/crescimento & desenvolvimento , Peixes-Gato , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/efeitos dos fármacos , Homeostase , Análise de Sequência de RNA/veterinária
14.
Molecules ; 23(11)2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366372

RESUMO

Enteric septicemia of catfish, columnaris disease and streptococcosis, caused by Edwardsiella ictaluri, Flavobacterium columnare and Streptococcus iniae, respectively, are the most common bacterial diseases of economic significance to the pond-raised channel catfish Ictalurus punctatus industry. Certain management practices are used by catfish farmers to prevent large financial losses from these diseases such as the use of commercial antibiotics. In order to discover environmentally benign alternatives, using a rapid bioassay, we evaluated a crude extract from the roots of muscadine Vitis rotundifolia against these fish pathogenic bacteria and determined that the extract was most active against F. columnare. Subsequently, several isolated compounds from the root extract were isolated. Among these isolated compounds, (+)-hopeaphenol (2) and (+)-vitisin A (3) were found to be the most active (bacteriostatic activity only) against F. columnare, with 24-h 50% inhibition concentrations of 4.0 ± 0.7 and 7.7 ± 0.6 mg/L, respectively, and minimum inhibitory concentrations of 9.1 ± 0 mg/L for each compound which were approximately 25X less active than the drug control florfenicol. Efficacy testing of 2 and 3 is necessary to further evaluate the potential for these compounds to be used as antibacterial agents for managing columnaris disease.


Assuntos
Antibacterianos/uso terapêutico , Extratos Vegetais/uso terapêutico , Raízes de Plantas/química , Vitis/química , Animais , Antibacterianos/química , Bioensaio , Peixes-Gato , Edwardsiella ictaluri/efeitos dos fármacos , Edwardsiella ictaluri/patogenicidade , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Flavobacterium/efeitos dos fármacos , Flavobacterium/patogenicidade , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Streptococcus iniae/efeitos dos fármacos , Streptococcus iniae/patogenicidade
15.
J Fish Dis ; 41(9): 1395-1402, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29893005

RESUMO

Flavobacterium columnare causes columnaris disease of farmed and wild freshwater fish. Skin mucus is an important factor in early stages of columnaris pathogenesis, albeit little studied. Our objectives were to (a) characterize the terminal glycosylation pattern (TGP) of catfish mucus, (b) determine the growth of F. columnare in formulated water (FW)-containing channel catfish (Ictalurus punctatus) or hybrid catfish (Ictalurus punctatus X Ictalurus furcatus) mucus and (c) examine extracellular protease activity of two F. columnare isolates differing in virulence. The TGP of catfish mucus by lectin binding was as follows: alpha-D-mannose/alpha-D-glucose >N-acetyl-beta-D-glucosamine >N-acetyl-beta-D-glucosamine/N-acetylneuraminic acid >N-acetyl-D-galactosamine >alpha-D-galactose/N-acetyl-alpha-D-galactosamine >beta-D-galactose = alpha-L-fucose. Virulence studies demonstrated isolate AL-02-36 was highly virulent in channel catfish fry (0.1 g) with cumulative mortality of 90%-100% versus 60% for isolate ALG-00-530 at equivalent doses (~3 × 106  CFU/ml); a similar result was observed in larger (0.7 g) catfish. In multiple experiments, F. columnare replicated (2-3 logs) and survived (28 days) in formulated water-containing catfish mucus. Highly virulent isolate AL-02-36 possessed at least 2.5- to fivefold higher protease activity following growth in mucus than the less virulent ALG-00-530. Flavobacterium columnare utilized catfish mucus as a nutrient source and mucus presence modulated extracellular protease production.


Assuntos
Peixes-Gato/microbiologia , Flavobacterium/enzimologia , Flavobacterium/crescimento & desenvolvimento , Muco/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Peixes-Gato/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/mortalidade , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/mortalidade , Flavobacterium/efeitos dos fármacos , Flavobacterium/patogenicidade , Galactose/metabolismo , Brânquias/microbiologia , Glicosilação , Lectinas/metabolismo , Muco/química , Peptídeo Hidrolases/biossíntese , Proteólise , Virulência
16.
Molecules ; 23(4)2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29671790

RESUMO

Cyclotides are circular peptides found in various plant families. A cyclized backbone, together with multiple disulfide bonds, confers the peptides' exceptional stability against protease digestion and thermal denaturation. In addition, the features of these antimicrobial molecules make them suitable for use in animal farming, such as aquaculture. Fmoc solid phase peptide synthesis on 2-chlorotrityl chlorine (CTC) resin using the "tea-bag" approach was conducted to generate the VarvA cyclotide identified previously from Viola arvensis. MALDI-TOF mass spectrometry determined the correct peptide amino acid sequence and the cyclization sites-critical in this multicyclic compound. The cyclotide showed antimicrobial activity against various Gram-negative bacteria, including recurrent pathogens present in Chilean aquaculture. The highest antimicrobial activity was found to be against Flavobacterium psychrophilum. In addition, membrane blebbing on the bacterial surface after exposure to the cyclotide was visualized by SEM microscopy and the Sytox Green permeabilization assay showed the ability to disrupt the bacterial membrane. We postulate that this compound can be proposed for the control of fish farming infections.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Ciclotídeos/química , Ciclotídeos/síntese química , Flavobacterium/efeitos dos fármacos , Bactérias Gram-Negativas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
J Aquat Anim Health ; 30(3): 179-184, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29635710

RESUMO

Bacterial diseases cause major financial damage to the producers of Channel Catfish Ictalurus punctatus in the southeastern USA. The two most common bacterial diseases among pond-raised Channel Catfish are enteric septicemia of catfish, caused by the gram-negative bacterium Edwardsiella ictaluri, and columnaris disease, caused by the rod-shaped, gram-negative bacterium Flavobacterium columnare. Streptococcosis is another, less-common bacterial disease in catfish and is caused by the gram-positive coccus Streptococcus iniae. Catfish farmers typically rely on commercial antibiotics and other chemicals to prevent the economic damage from these diseases. Environmentally benign and efficacious alternatives to the currently used antibiotics and chemicals will tremendously help the catfish aquaculture industry. As part of our ongoing efforts in the search for such novel compounds, we investigated ethyl acetate and methanol extracts of mangosteen Garcinia mangostana fruit pericarp via bioassay-guided fractionation. Gamma-mangostin (γ-mangostin) was isolated and identified as the most promising active metabolite against F. columnare. One of the constituents in the mangosteen fruit pericarp, alpha-mangostin (α-mangostin), is the major xanthone; α-mangostin was found to be 10-fold less active than γ-mangostin when minimum inhibitory concentration values were compared.


Assuntos
Antibacterianos/farmacologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/tratamento farmacológico , Infecções por Flavobacteriaceae/veterinária , Garcinia mangostana/química , Ictaluridae , Infecções Estreptocócicas/veterinária , Animais , Antibacterianos/química , Edwardsiella ictaluri/efeitos dos fármacos , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/tratamento farmacológico , Infecções por Flavobacteriaceae/microbiologia , Flavobacterium/efeitos dos fármacos , Frutas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Streptococcus iniae/efeitos dos fármacos
18.
Biol Lett ; 14(12): 20180663, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30958249

RESUMO

Leakage of medical residues into the environment can significantly impact natural communities. For example, antibiotic contamination from agriculture and aquaculture can directly influence targeted pathogens, but also other non-targeted taxa of commensals and parasites that regularly co-occur and co-infect the same host. Consequently, antibiotics could significantly alter interspecific interactions and epidemiology of the co-infecting parasite community. We studied how minor environmental concentrations of antibiotic affects the co-infection of two parasites, the bacterium Flavobacterium columnare and the fluke Diplostomum pseudospathaceum, in their fish host. We found that antibiotic in feed, and particularly the minute concentration in water, significantly decreased bacterial virulence and changed the infection success of the flukes. These effects depended on the level of antibiotic resistance of the bacterial strains. Antibiotic, however, did not compensate for the higher virulence of co-infections. Our results demonstrate that even very low environmental concentrations of antibiotic can influence ecology and epidemiology of diseases in co-infection with non-targeted parasites. Leakage of antibiotics into the environment may thus have more complex effects on disease ecology than previously anticipated.


Assuntos
Doenças dos Peixes/microbiologia , Doenças dos Peixes/parasitologia , Flavobacterium/efeitos dos fármacos , Poluição Química da Água/efeitos adversos , Animais , Antibacterianos , Aquicultura , Coinfecção/microbiologia , Coinfecção/parasitologia , Farmacorresistência Bacteriana , Infecções por Flavobacteriaceae , Flavobacterium/patogenicidade , Oncorhynchus mykiss/microbiologia , Oncorhynchus mykiss/parasitologia , Oxitetraciclina , Trematódeos , Infecções por Trematódeos , Virulência/efeitos dos fármacos
19.
Eur J Med Chem ; 143: 958-969, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29232586

RESUMO

Emergence of multidrug-resistant bacteria causes an urgent need for new generation of antibiotics, which may have a different mechanism of inhibition or killing action from the existing. Here, we report on the design, synthesis, and biological evaluation of thirty-nine coumarin derivatives in order to solve the antibacterial resistance by targeting at the inhibition of biosynthesis pathway of fatty acids. Their antibacterial activities against Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, and Flavobacterium cloumnare are tested and action mechanism against the key enzyme in bacterial fatty acid synthesis pathway are studied. The results show that compounds 13 and 18 have potent and broad spectrum antimicrobial activity. In addition, 9, 14 and 19 show eminent antimicrobial efficacy toward S. aureus, S. agalactiae, and F. cloumnare. Mechanistically, coumarin derivatives display the antibacterial activity via the control of FabI and FabK function. The structure-activity relationship analysis indicate that the length of linker and imidazole substitute group could significantly influence the antimicrobial activity, as well as the inhibitory activity against FabI and FabK. The structural optimization analysis of coumarin suggest that derivatives 9, 13, 14, 18 and 19 could be a viable way of preventing and controlling bacteria and considered as promising lead compounds for the development of commercial drugs.


Assuntos
Antibacterianos/farmacologia , Cumarínicos/farmacologia , Imidazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Flavobacterium/efeitos dos fármacos , Imidazóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Streptococcus agalactiae/efeitos dos fármacos , Relação Estrutura-Atividade
20.
J Fish Dis ; 41(2): 309-320, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29064104

RESUMO

Routine application of antimicrobials is the current treatment of choice for rainbow trout fry syndrome (RTFS) or bacterial coldwater disease (BCWD) caused by Flavobacterium psychrophilum. In this study, the antimicrobial susceptibilities of 133 F. psychrophilum isolates, 118 of which were from the UK, were evaluated by broth microdilution and disc diffusion methods following VET04-A2 and VET03-A guidelines of Clinical and Laboratory Standards Institute (CLSI), respectively. Isolates were categorized as wild type (fully susceptible, WT) or non-wild type (NWT) using normalized resistance interpretation (NRI)-determined cut-off values (COWT ). Broth microdilution testing showed that only 12% of UK isolates were WT to oxolinic acid (MIC COWT  ≤ 0.25 mg/L) and 42% were WT for oxytetracycline (MIC COWT  ≤ 0.25 mg/L). In contrast, all the isolates tested were WT (MIC COWT  ≤ 2 mg/L) for florfenicol, the main antimicrobial for RTFS control in the UK. Disc diffusion-based COWT values were ≥51 mm for 10 µg amoxicillin, ≥44 mm for 30 µg florfenicol, ≥30 mm for 2 µg oxolinic acid and ≥51 mm for 30 µg oxytetracycline. There was a high categorical agreement between the classifications of the isolates by two testing methods for florfenicol (100%), oxytetracycline (93%) and oxolinic acid (99%).


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Doenças dos Peixes/prevenção & controle , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/efeitos dos fármacos , Animais , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/prevenção & controle , Testes de Sensibilidade Microbiana/veterinária , Oncorhynchus kisutch , Oncorhynchus mykiss , Salmo salar , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA