Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.626
Filtrar
1.
Sci Rep ; 14(1): 10556, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719847

RESUMO

Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.


Assuntos
Fertilizantes , Glycine max , Níquel , Solo , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Fertilizantes/análise , Solo/química , Urease/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Agricultura/métodos
2.
PeerJ ; 12: e17378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726378

RESUMO

Many citrus species and cultivars are grown successfully in tropical and subtropical countries, as well as in arid and semi-arid regions with low levels of organic matter and low cation exchange, resulting in lower nutrient uptake by the plant. The essential nutrients needed for citrus flowering and fruit set are limited in winter due to a reduction in transpiration rate, negatively effecting vegetative growth, flowering, yield, and fruit quality. The present investigation was carried out to assess the nutritional status, fruit yield parameters, and fruit quality of Valencia orange trees after foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations in the 2020/2021 and 2021/2022 seasons. The treatments were arranged in a split-plot design (three levels spraying seaweed extract × four levels spraying calcium chloride and boric acid and their combinations × four replicates × one tree/replicate). The results indicated that all of the characteristics measured, including leaf chlorophyll, leaf mineral contents, fruit yield parameters, fruit physical properties, and fruit chemical properties, were significantly affected by the foliar spraying of seaweed extract (SW) combined with calcium chloride and boric acid and their combinations. Although all treatments increased the productivity and the physical and chemical properties of Valencia orange fruits compared to the control, a treatment of 10 g/L SW combined with 0.5 g/L boric acid and 1 g/L calcium chloride produced superior results. This ratio of SW, boric acid, and calcium chloride is therefore recommended to enhance productivity and improve the physico-chemical properties of Valencia orange for greater fruit yield.


Assuntos
Ácidos Bóricos , Cloreto de Cálcio , Citrus sinensis , Frutas , Alga Marinha , Ácidos Bóricos/farmacologia , Citrus sinensis/química , Frutas/química , Frutas/efeitos dos fármacos , Alga Marinha/química , Alga Marinha/metabolismo , Cloreto de Cálcio/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Clorofila/metabolismo
3.
BMC Plant Biol ; 24(1): 363, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724910

RESUMO

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.


Assuntos
Acetatos , Antioxidantes , Brassica napus , Ciclopentanos , Giberelinas , Oxilipinas , Reguladores de Crescimento de Plantas , Solo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Brassica napus/crescimento & desenvolvimento , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Acetatos/farmacologia , Solo/química , Clorofila/metabolismo , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Nutrientes/metabolismo
4.
Funct Plant Biol ; 512024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743838

RESUMO

Soil salinisation is an important abiotic stress faced in grape cultivating, leading to weakened plant vigour and reduced fruit quality. Melatonin as a novel hormone has shown positive exogenous application value. Therefore, this study used wine grape (Vitis vinifera ) 'Pinot Noir' as a test material to investigate the changes of foliar spraying with different concentrations of melatonin on the physiology and fruit quality of wine grapes in a field under simulated salt stress (200mmolL-1 NaCl). The results showed that foliar spraying of melatonin significantly increased the intercellular CO2 concentration, maximum photochemical quantum yield of PSII, relative chlorophyll and ascorbic acid content of the leaves, as well as the single spike weight, 100-grain weight, transverse and longitudinal diameters, malic acid, α-amino nitrogen and ammonia content of fruits, and decreased the initial fluorescence value of leaves, ascorbate peroxidase activity, glutathione content, fruit transverse to longitudinal ratio and tartaric acid content of plants under salt stress. Results of the comprehensive evaluation of the affiliation function indicated that 100µmolL-1 melatonin treatment had the best effect on reducing salt stress in grapes. In summary, melatonin application could enhance the salt tolerance of grapes by improving the photosynthetic capacity of grape plants under salt stress and promoting fruit development and quality formation, and these results provide new insights into the involvement of melatonin in the improvement of salt tolerance in crop, as well as some theoretical basis for the development and industrialisation of stress-resistant cultivation techniques for wine grapes.


Assuntos
Frutas , Melatonina , Fotossíntese , Folhas de Planta , Estresse Salino , Vitis , Vitis/efeitos dos fármacos , Vitis/fisiologia , Vitis/crescimento & desenvolvimento , Melatonina/farmacologia , Melatonina/administração & dosagem , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Ácido Ascórbico/farmacologia , Vinho
5.
Funct Plant Biol ; 512024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743837

RESUMO

Cassava (Manihot esculenta Crantz), an important tropical crop, is affected by extreme climatic events, including rising CO2 levels. We evaluated the short-term effect of elevated CO2 concentration (ECO2 ) (600, 800 and 1000ppm) on the photosynthetic efficiency of 14 cassava genotypes. ECO2 significantly altered gaseous exchange parameters (net photosynthetic rate (P n ), stomatal conductance (g s ), intercellular CO2 (C i ) and transpiration (E )) in cassava leaves. There were significant but varying interactive effects between ECO2 and varieties on these physiological characteristics. ECO2 at 600 and 800ppm increased the P n rate in the range of 13-24% in comparison to 400ppm (ambient CO2 ), followed by acclimation at the highest concentration of 1000ppm. A similar trend was observed in g s and E . Conversely, C i increased significantly and linearly across increasing CO2 concentration. Along with C i , a steady increase in water use efficiency [WUEintrinsic (P n /g s ) and WUEinstantaneous (P n /E )] across various CO2 concentrations corresponded with the central role of restricted stomatal activity, a common response under ECO2 . Furthermore, P n had a significant quadratic relationship with the ECO2 (R 2 =0.489) and a significant and linear relationship with C i (R 2 =0.227). Relative humidity and vapour pressure deficit during the time of measurements remained at 70-85% and ~0.9-1.31kPa, respectively, at 26±2°C leaf temperature. Notably, not a single variety exhibited constant performance for any of the parameters across CO2 concentrations. Our results indicate that the potential photosynthesis can be increased up to 800ppm cassava varieties with high sink capacity can be cultivated under protected cultivation to attain higher productivity.


Assuntos
Dióxido de Carbono , Manihot , Fotossíntese , Manihot/efeitos dos fármacos , Manihot/fisiologia , Fotossíntese/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Folhas de Planta/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Genótipo , Água
6.
Sci Rep ; 14(1): 10870, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740776

RESUMO

Pea, member of the plant family Leguminosae, play a pivotal role in global food security as essential legumes. However, their production faces challenges stemming from the detrimental impacts of abiotic stressors, leading to a concerning decline in output. Salinity stress is one of the major factors that limiting the growth and productivity of pea. However, biochar amendment in soil has a potential role in alleviating the oxidative damage caused by salinity stress. The purpose of the study was to evaluate the potential role of biochar amendment in soil that may mitigate the adverse effect of salinity stress on pea. The treatments of this study were, (a) Pea varieties; (i) V1 = Meteor and V2 = Green Grass, Salinity Stress, (b) Control (0 mM) and (ii) Salinity (80 mM) (c) Biochar applications; (i) Control, (ii) 8 g/kg soil (56 g) and (iii) 16 g/kg soil (112 g). Salinity stress demonstrated a considerable reduction in morphological parameters as Shoot and root length decreased by (29% and 47%), fresh weight and dry weight of shoot and root by (85, 63%) and (49, 68%), as well as area of leaf reduced by (71%) among both varieties. Photosynthetic pigments (chlorophyll a, b, and carotenoid contents decreased under 80 mM salinity up to (41, 63, 55 and 76%) in both varieties as compared to control. Exposure of pea plants to salinity stress increased the oxidative damage by enhancing hydrogen peroxide and malondialdehyde content by (79 and 89%), while amendment of biochar reduced their activities as, (56% and 59%) in both varieties. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were increased by biochar applications under salinity stress as, (49, 59, and 86%) as well as non-enzymatic antioxidants as, anthocyanin and flavonoids improved by (112 and 67%). Organic osmolytes such as total soluble proteins, sugars, and glycine betaine were increased up to (57, 83, and 140%) by biochar amendment. Among uptake of mineral ions, shoot and root Na+ uptake was greater (144 and 73%) in saline-stressed plants as compared to control, while shoot and root Ca2+ and K+ were greater up to (175, 119%) and (77, 146%) in biochar-treated plants. Overall findings revealed that 16 g/kg soil (112 g) biochar was found to be effective in reducing salinity toxicity by causing reduction in reactive oxygen species and root and shoot Na+ ions uptake and improving growth, physiological and anti-oxidative activities in pea plants (Fig. 1). Figure 1 A schematic diagram represents two different mechanisms of pea under salinity stress (control and 80 mM NaCl) with Biochar (8 and 16 g/kg soil).


Assuntos
Carvão Vegetal , Pisum sativum , Solo , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Solo/química , Fotossíntese/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Salinidade , Clorofila/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
7.
Physiol Plant ; 176(3): e14324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705866

RESUMO

Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.


Assuntos
Brassinosteroides , Helianthus , Orobanche , Sementes , Helianthus/efeitos dos fármacos , Helianthus/imunologia , Helianthus/fisiologia , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Orobanche/fisiologia , Orobanche/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/imunologia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/imunologia , Raízes de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Malondialdeído/metabolismo
8.
PeerJ ; 12: e17191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699184

RESUMO

Context: Exogenous use of potential organic compounds through different modes is a promising strategy for the induction of water stress tolerance in crop plants for better yield. Aims: The present study aimed to explore the potential role of alpha-lipoic acid (ALA) in inducing water stress tolerance in mungbean lines when applied exogenously through various modes. Methods: The experiment was conducted in a field with a split-plot arrangement, having three replicates for each treatment. Two irrigation regimes, including normal and reduced irrigation, were applied. The plants allocated to reduced irrigation were watered only at the reproductive stage. Three levels of ALA (0, 0.1, 0.15 mM) were applied through different modes (seed priming, foliar or priming+foliar). Key results: ALA treatment through different modes manifested higher growth under reduced irrigation (water stress) and normal irrigation. Compared to the other two modes, the application of ALA as seed priming was found more effective in ameliorating the adverse impacts of water stress on growth and yield associated with their better content of leaf photosynthetic pigments, maintenance of plant water relations, levels of non-enzymatic antioxidants, improved activities of enzymatic antioxidants, and decreased lipid peroxidation and H2O2 levels. The maximum increase in shoot fresh weight (29% and 28%), shoot dry weight (27% and 24%), 100-grain weight (24% and 23%) and total grain yield (20% and 21%) in water-stressed mungbean plants of line 16003 and 16004, respectively, was recorded due to ALA seed priming than other modes of applications. Conclusions: Conclusively, 0.1 and 0.15 mM levels of ALA as seed priming were found to reduce the adverse impact of water stress on mungbean yield that was associated with improved physio-biochemical mechanisms. Implications: The findings of the study will be helpful for the agriculturalists working in arid and semi-arid regions to obtain a better yield of mungbean that will be helpful to fulfill the food demand in those areas to some extent.


Assuntos
Antioxidantes , Secas , Fotossíntese , Ácido Tióctico , Vigna , Vigna/crescimento & desenvolvimento , Vigna/efeitos dos fármacos , Vigna/metabolismo , Ácido Tióctico/farmacologia , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Desidratação , Clorofila/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos
9.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735908

RESUMO

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Assuntos
Cádmio , Catharanthus , Regulação da Expressão Gênica de Plantas , Melatonina , Óxido Nítrico , Estresse Oxidativo , Folhas de Planta , Vimblastina , Catharanthus/metabolismo , Catharanthus/genética , Catharanthus/efeitos dos fármacos , Óxido Nítrico/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Vimblastina/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
10.
Proc Natl Acad Sci U S A ; 121(19): e2316371121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38701118

RESUMO

Strigolactones are a class of phytohormones with various functions in plant development, stress responses, and in the interaction with (micro)organisms in the rhizosphere. While their effects on vegetative development are well studied, little is known about their role in reproduction. We investigated the effects of genetic and chemical modification of strigolactone levels on the timing and intensity of flowering in tomato (Solanum lycopersicum L.) and the molecular mechanisms underlying such effects. Results showed that strigolactone levels in the shoot, whether endogenous or exogenous, correlate inversely with the time of anthesis and directly with the number of flowers and the transcript levels of the florigen-encoding gene SINGLE FLOWER TRUSS (SFT) in the leaves. Transcript quantifications coupled with metabolite analyses demonstrated that strigolactones promote flowering in tomato by inducing the activation of the microRNA319-LANCEOLATE module in leaves. This, in turn, decreases gibberellin content and increases the transcription of SFT. Several other floral markers and morpho-anatomical features of developmental progression are induced in the apical meristems upon treatment with strigolactones, affecting floral transition and, more markedly, flower development. Thus, strigolactones promote meristem maturation and flower development via the induction of SFT both before and after floral transition, and their effects are blocked in plants expressing a miR319-resistant version of LANCEOLATE. Our study positions strigolactones in the context of the flowering regulation network in a model crop species.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Lactonas , MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Lactonas/metabolismo , Lactonas/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Flores/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Giberelinas/metabolismo , Giberelinas/farmacologia
11.
J Hazard Mater ; 471: 134243, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657506

RESUMO

Iron-magnetic nanoparticles (Fe-NMPs) are widely used in environmental remediation, while porphyrin-based hybrid materials anchored to silica-coated Fe3O4-nanoparticles (Fe3O4-NPs) have been used for water disinfection purposes. To assess their safety on plants, especially concerning potential environmental release, it was investigated for the first time, the impact on plants of a silica-coated Fe3O4-NPs bearing a porphyrinic formulation (FORM) - FORM@NMP. Additionally, FORM alone and the magnetic nanoparticles without FORM anchored (NH2@NMP) were used for comparison. Wheat (Triticum aestivum L.) was chosen as a model species and was subjected to three environmentally relevant doses during germination and tiller development through root application. Morphological, physiological, and metabolic parameters were assessed. Despite a modest biomass decrease and alterations in membrane properties, no major impairments in germination or seedling development were observed. During tiller phase, both Fe3O4-NPs increased leaf length, and photosynthesis exhibited varied impacts: both Fe3O4-NPs and FORM alone increased pigments; only Fe3O4-NPs promoted gas exchange; all treatments improved the photochemical phase. Regarding oxidative stress, lipid peroxidation decreased in FORM and FORM@NMP, yet with increased O2-• in FORM@NMP; total flavonoids decreased in NH2@NMP and antioxidant enzymes declined across all materials. Phenolic profiling revealed a generalized trend towards a decrease in flavones. In conclusion, these nanoparticles can modulate wheat physiology/metabolism without apparently inducing phytotoxicity at low doses and during short-time exposure. ENVIRONMENTAL IMPLICATION: Iron-magnetic nanoparticles are widely used in environmental remediation and fertilization, besides of new applications continuously being developed, making them emerging contaminants. Soil is a major sink for these nanoparticles and their fate and potential environmental risks in ecosystems must be addressed to achieve more sustainable environmental applications. Furthermore, as the reuse of treated wastewater for agricultural irrigation is being claimed, it is of major importance to disclose the impact on crops of the nanoparticles used for wastewater decontamination, such as those proposed in this work.


Assuntos
Germinação , Porfirinas , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Germinação/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Nanopartículas de Magnetita/toxicidade , Nanopartículas de Magnetita/química , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Dióxido de Silício/toxicidade , Dióxido de Silício/química , Estresse Oxidativo/efeitos dos fármacos
12.
Plant Physiol Biochem ; 210: 108616, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615444

RESUMO

This study aims to examine the effect of foliar magnetic iron oxide (Fe3O4) nanoparticles (IONP) application on the physiology, photosynthetic parameters, magnetic character, and mineral element distribution of cherry tomatoes (Solanum lycopersicum var. cerasiforme). The IONP suspension (500 mg L-1) was sprayed once (S1), twice (S2), thrice (S3), and four times (S4) a week on seedlings. Upon 21 days of the treatments, photosynthetic parameters (chlorophyll, carotenoids, photosynthetic yield, electron transport rate) were elucidated. Inductively-coupled plasma-optical emission spectrometer (ICP-OES) and vibrating sample magnetometer (VSM) were used to determine the mineral elements and abundance of magnetic power in the seedlings. In addition, the RT-qPCR method was performed to quantify the expressions of photosystem-related (PsaC, PsbP6, and PsbQ) and ferritin-coding (Fer-1 and Fer-2) genes. Results revealed that the physiological and photosynthetic indices were improved upon S1 treatment. The optimal dosage of IONP spraying enhances chlorophyll, carotenoid, electron transport rate (ETR), and effective photochemical quantum yield of photosystem II (Y(II)) but substantially diminishes non-photochemical quenching (NPQ). However, frequent IONP applications (S2, S3, and S4) caused growth retardation and suppressed the photosynthetic parameters, suggesting a toxic effect of IONP in recurrent treatments. Fer-1 and Fer-2 expressions were strikingly increased by IONP applications, suggesting an attempt to neutralize the excess amount of Fe ions by ferritin. Nevertheless, frequent IONP treatment fluctuated the mineral distribution and caused growth inhibition. Although low-repeat foliar applications of IONP (S1 in this study) may help improve plant growth, consecutive applications (S2, S3, and S4) should be avoided.


Assuntos
Fotossíntese , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro , Clorofila/metabolismo , Minerais/metabolismo , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Compostos Férricos
13.
Ecotoxicol Environ Saf ; 276: 116290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599154

RESUMO

Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.


Assuntos
Arabidopsis , Estresse Oxidativo , Tálio , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Tálio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Poluentes do Solo/toxicidade
14.
Plant Signal Behav ; 19(1): 2334511, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650457

RESUMO

Saline and alkaline stress is one of the major abiotic stresses facing agricultural production, which severely inhibits the growth and yield of plant. The application of plant growth regulators can effectively prevent crop yield reduction caused by saline and alkaline stress. Exogenous melatonin (MT) can act as a signaling molecule involved in the regulation of a variety of physiological processes in plants, has been found to play a key role in enhancing the improvement of plant tolerance to abiotic stresses. However, the effects of exogenous MT on saline and alkaline tolerance of table grape seedlings and its mechanism have not been clarified. The aim of this study was to investigate the role of exogenous MT on morphological and physiological growth of table grape seedlings (Vitis vinifera L.) under saline and alkaline stress. The results showed that saline and alkaline stress resulted in yellowing and wilting of grape leaves and a decrease in chlorophyll content, whereas the application of exogenous MT alleviated the degradation of chlorophyll in grape seedling leaves caused by saline and alkaline stress and promoted the accumulation of soluble sugars and proline content. In addition, exogenous MT increased the activity of antioxidant enzymes, which resulted in the scavenging of reactive oxygen species (ROS) generated by saline and alkaline stress. In conclusion, exogenous MT was involved in the tolerance of grape seedlings to saline and alkaline stress, and enhanced the saline and alkaline resistance of grape seedlings to promote the growth and development of the grape industry in saline and alkaline areas.


Assuntos
Melatonina , Folhas de Planta , Plântula , Estresse Fisiológico , Vitis , Vitis/efeitos dos fármacos , Vitis/metabolismo , Vitis/fisiologia , Melatonina/farmacologia , Melatonina/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Senescência Vegetal/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Clorofila/metabolismo , Álcalis , Antioxidantes/metabolismo , Prolina/metabolismo
15.
J Hazard Mater ; 470: 134234, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608584

RESUMO

Agricultural waste management poses a significant challenge in circular economy strategies. Olive mill wastes (OMW) contain valuable biomolecules, especially phenolic compounds, with significant agricultural potential. Our study evaluate the effects of phenolic extract (PE) derived from olive mill solid wastes (OMSW) on pomegranate agro-physiological and biochemical responses, as well as soil-related attributes. Pomegranate plants were treated with PE at doses of 100 ppm and 200 ppm via foliar spray (L100 and L200) and soil application (S100 and S200). Results showed increased biomass with PE treatments, especially with soil application (S100 and S200). Proline and soluble sugar accumulation in leaves suggested plant adaptation to PE with low-level stress. Additionally, PE application reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents. Higher doses of PE (S200) significantly improved net photosynthesis (Pn), transpiration rate (E), water use efficiency (WUEi), and photosynthetic efficiency (fv/fm and PIabs). Furthermore, PE treatments enhanced levels of chlorophylls, carotenoids, polyphenols, flavonoids, and antioxidant activity. Soil application of PE also increased soil enzyme activities and microbial population. Our findings suggest the beneficial impact of PE application on pomegranate agro-physiological responses, laying the groundwork for further research across various plant species and soil types to introduce nutrient-enriched PE as an eco-friendly biostimulant.


Assuntos
Olea , Fenóis , Punica granatum , Punica granatum/química , Fenóis/análise , Olea/química , Solo/química , Resíduos Industriais , Resíduos Sólidos , Rizosfera , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Microbiologia do Solo , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/química , Agricultura
16.
Physiol Plant ; 176(3): e14313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666351

RESUMO

Bipolaris setariae is known to cause brown stripe disease in sugarcane, resulting in significant yield losses. Silicon (Si) has the potential to enhance plant growth and biotic resistance. In this study, the impact of Si on brown stripe disease was investigated across susceptible and resistant sugarcane varieties, utilizing four Si concentrations (0, 15, 30, and 45 g per barrel of Na2SiO3·5H2O). Si significantly reduced the incidence of brown stripe disease (7.41-59.23%) and alleviated damage to sugarcane growth parameters, photosynthetic parameters, and photosynthetic pigments. Submicroscopic observations revealed that Si induced the accumulation of silicified cells in leaves, reduced spore accumulation, decreased stomatal size, and protected organelles from B. setariae damage. In addition, Si increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase), reduced reactive oxygen species production (malondialdehyde and hydrogen peroxide) and modulated the expression of genes associated with hormone signalling (PR1, TGA, AOS, AOC, LOX, PYL8, and SnRK2), leading to the accumulation of abscisic acid and jasmonic acid and inhibiting SA synthesis. Si also activated the activity of metabolism-related enzymes (polyphenol oxidase and phenylalanine ammonia lyase) and the gene expression of PAL-dependent genes (PAL, C4H, and 4CL), regulating the accumulation of metabolites, such as chlorogenic acid and lignin. The antifungal test showed that chlorogenic acid (15ug µL-1) had a significant inhibitory effect on the growth of B. setariae. This study is the first to demonstrate the inhibitory effect of Si on B. setariae in sugarcane, highlighting Si as a promising and environmentally friendly strategy for managing brown stripe disease.


Assuntos
Doenças das Plantas , Reguladores de Crescimento de Plantas , Espécies Reativas de Oxigênio , Saccharum , Silício , Saccharum/efeitos dos fármacos , Saccharum/metabolismo , Saccharum/microbiologia , Saccharum/genética , Saccharum/crescimento & desenvolvimento , Silício/farmacologia , Silício/metabolismo , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Folhas de Planta/genética , Ascomicetos/fisiologia , Ascomicetos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Sequestradores de Radicais Livres/metabolismo
17.
Ying Yong Sheng Tai Xue Bao ; 35(3): 721-730, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646760

RESUMO

Metal nanoparticles could be accumulated in soils, which threatens the ecological stability of crops. Investigating the effects of cuprous oxide nanoparticles (Cu2O-NPs) on photosystem Ⅱ (PSⅡ) of wheat seedling leaves holds considerable importance in comprehending the implications of Cu2O-NPs on crop photosynthesis. Following the hydroponic method, we investigated the effects of 0, 10, 50, 100, and 200 mg·L-1 Cu2O-NPs on chlorophyll fluorescence induction kinetics and photosynthetic-related genes in wheat seedlings of "Zhoumai 18". The results showed that, with the increases of Cu2O-NPs concentrations, chlorophyll contents in wheat leaves decreased, and the standardization of the OJIP curve showed a clearly K-phase (ΔK>0). Cu2O-NPs stress increased the parameters of active PSⅡ reaction centers, including the absorption flux per active RC (ABS/RC), the trapping flux per active RC (TRo/RC), the electron transport flux per active RC (ETo/RC), and the dissipation flux per active RC (DIo/RC). Cu2O-NPs stress decreased the parameters of PSⅡ energy distribution ratio including the maximum quantum yield of PSⅡ (φPo), the quantum yield of electron transport from QA (φEo), and the probability that a trapped exciton moved an electron further than QA (Ψo), while increased the quantum ratio for heat dissipation (φDo). Moreover, there was a decrease in photosynthetic quantum yield Y(Ⅱ), photochemical quenching coefficient (qP), net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) of leaves with the increases of Cu2O-NPs concentration. Under Cu2O-NPs stress, the expression levels of genes which included PSⅡ genes (PsbD, PsbP, Lhcb1), Rubisco large subunit genes (RbcL), cytochrome b6/f complex genes (PetD, Rieske), and ATP synthase genes (AtpA, AtpB, AtpE, AtpI) were downregulated. These results indicated that Cu2O-NPs stress altered the activity and structure of PSⅡ in wheat seedlings, affected the activity of PSⅡ reaction centers, performance parameters of PSⅡ donor and acceptor sides. PSⅡ related genes were downregulated and exhibited significant concentration effects.


Assuntos
Clorofila , Cobre , Nanopartículas Metálicas , Fotossíntese , Complexo de Proteína do Fotossistema II , Plântula , Triticum , Triticum/metabolismo , Triticum/genética , Cobre/toxicidade , Clorofila/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/efeitos dos fármacos , Fluorescência , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Cinética
18.
J Hazard Mater ; 470: 134148, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565012

RESUMO

There is increasing global concern regarding the pervasive issue of plastic pollution. We investigated the response of Populus × euramericana cv. '74/76' to nanoplastic toxicity via phenotypic, microanatomical, physiological, transcriptomic, and metabolomic approaches. Polystyrene nanoplastics (PS-NPs) were distributed throughout the test plants after the application of PS-NPs. Nanoplastics principally accumulated in the roots; minimal fractions were translocated to the leaves. In leaves, however, PS-NPs easily penetrated membranes and became concentrated in chloroplasts, causing thylakoid disintegration and chlorophyll degradation. Finally, oxidant damage from the influx of PS-NPs led to diminished photosynthesis, stunted growth, and etiolation and/or wilting. By integrating dual-omics data, we found that plants could counteract mild PS-NP-induced oxidative stress through the antioxidant enzyme system without initiating secondary metabolic defense mechanisms. In contrast, severe PS-NP treatments promoted a shift in metabolic pattern from primary metabolism to secondary metabolic defense mechanisms, an effect that was particularly pronounced during the upregulation of flavonoid biosynthesis. Our findings provide a useful framework from which to further clarify the roles of key biochemical pathways in plant responses to nanoplastic toxicity. Our work also supports the development of effective strategies to mitigate the environmental risks of nanoplastics by biologically immobilizing them in contaminated lands.


Assuntos
Populus , Populus/efeitos dos fármacos , Populus/metabolismo , Populus/crescimento & desenvolvimento , Populus/genética , Poliestirenos/toxicidade , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Metabolômica , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Nanopartículas/toxicidade , Multiômica
19.
PeerJ ; 12: e17219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650645

RESUMO

Abiotic stress caused by soil salinization remains a major global challenge that threatens and severely impacts crop growth, causing yield reduction worldwide. In this study, we aim to investigate the damage of salt stress on the leaf physiology of two varieties of rice (Huanghuazhan, HHZ, and Xiangliangyou900, XLY900) and the regulatory mechanism of Hemin to maintain seedling growth under the imposed stress. Rice leaves were sprayed with 5.0 µmol·L-1 Hemin or 25.0 µmol·L-1 ZnPP (Zinc protoporphyrin IX) at the three leaf and one heart stage, followed by an imposed salt stress treatment regime (50.0 mmol·L-1 sodium chloride (NaCl)). The findings revealed that NaCl stress increased antioxidant enzymes activities and decreased the content of nonenzymatic antioxidants such as ascorbate (AsA) and glutathione (GSH). Furthermore, the content of osmoregulatory substances like soluble proteins and proline was raised. Moreover, salt stress increased reactive oxygen species (ROS) content in the leaves of the two varieties. However, spraying with Hemin increased the activities of antioxidants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) and accelerated AsA-GSH cycling to remove excess ROS. In summary, Hemin reduced the effect of salt stress on the physiological characteristics of rice leaves due to improved antioxidant defense mechanisms that impeded lipid peroxidation. Thus, Hemin was demonstrated to lessen the damage caused by salt stress.


Assuntos
Antioxidantes , Glutationa , Hemina , Oryza , Estresse Salino , Oryza/efeitos dos fármacos , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Hemina/farmacologia , Antioxidantes/metabolismo , Estresse Salino/efeitos dos fármacos , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Ascórbico/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Cloreto de Sódio/farmacologia , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
20.
BMC Plant Biol ; 24(1): 317, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654169

RESUMO

BACKGROUND: Fennel essential oils are fragrance compounds used in food and pharmaceutical sectors. One of the major impediments to expansion of fennel farming in Egypt's reclamation areas is saline water. Titanium dioxide (TiO2) or TiO2 nano particles (TiO2NP) can be utilized to boost the yield of aromatic plants cultivated under saline irrigation water. Saline water, particularly which contains sodium chloride can harm fennel plant; consequently, it was predicted that fennel production would fail in Egypt's reclaimed area, where the primary source of irrigation is groundwater consisting sodium chloride. This study sought to help fennel respond to sodium chloride by applying Ti forms to their leaves in order to reduce the detrimental effects of sodium chloride on them for expanding their production in the newly reclamation areas as a natural source of essential oil. Ti forms were applied as foliar application at 0, 0.1, 0.2 TiO2, 0.1 TiO2NP, and 0.2 TiO2NP, mM under irrigation with fresh water (0.4 dS m-1), or saline water (51.3 mM or 4.7 dS m-1). RESULTS: Plants exposed to 0.1 mM TiO2NP under fresh water resulted in the maximum values of morphological characters, estragole, oxygenated monoterpenes and photosynthetic pigments; while those subjected to 0.1 mM TiO2NP under saline water gave the greatest values of essential oil, proline, antioxidant enzymes and phenols. The greatest amounts of soluble sugars were recorded with 0.2 mM TiO2NP irrigated with saline water. Plants subjected to 0 mM TiO2 under saline water produced the greatest values of flavonoids, hydrogen peroxide and malondialdehyde. CONCLUSION: To mitigate the negative effects of salty irrigation water on fennel plant production, TiO2NP application is suggested as a potential strategy.


Assuntos
Irrigação Agrícola , Foeniculum , Folhas de Planta , Titânio , Irrigação Agrícola/métodos , Folhas de Planta/efeitos dos fármacos , Foeniculum/química , Nanopartículas , Águas Salinas , Óleos Voláteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA