Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.951
Filtrar
1.
J Integr Neurosci ; 23(3): 63, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38538232

RESUMO

BACKGROUND: Rats with a loss-of-function mutation in the contactin-associated protein-like 2 (Cntnap2) gene have been validated as an animal model of autism spectrum disorder (ASD). Similar to many autistic individuals, Cntnap2 knock-out rats (Cntnap2-⁣/-) are hyperreactive to sound as measured through the acoustic startle response. The brainstem region that mediates the acoustic startle response is the caudal pontine reticular nucleus (PnC), specifically giant neurons in the PnC. We previously reported a sex-dependent genotypic effect in the sound-evoked neuronal activity recorded from the PnC, whereby female Cntnap2-⁣/- rats had a dramatic increase in sound-evoked responses compared with wildtype counterparts, but male Cntnap2-⁣/- rats showed only a modest increase in PnC activity that cannot fully explain the largely increased startle in male Cntnap2-⁣/- rats. The present study therefore investigates activation and histological properties of PnC giant neurons in Cntnap2-⁣/- rats and wildtype littermates. METHODS: The acoustic startle response was elicited by presenting rats with 95 dB startle pulses before rats were euthanized. PnC brain sections were stained and analyzed for the total number of PnC giant neurons and the percentage of giant neurons that expressed phosphorylated cAMP response element binding protein (pCREB) in response to startle stimuli. Additionally, in vitro electrophysiology was conducted to assess the resting state activity and intrinsic properties of PnC giant neurons. RESULTS: Wildtype and Cntnap2-⁣/- rats had similar total numbers of PnC giant neurons and similar levels of baseline pCREB expression, as well as similar numbers of giant neurons that were firing at rest. Increased startle magnitudes in Cntnap2-⁣/- rats were associated with increased percentages of pCREB-expressing PnC giant neurons in response to startle stimuli. Male rats had increased pCREB-expressing PnC giant neurons compared with female rats, and the recruited giant neurons in males were also larger in soma size. CONCLUSIONS: Recruitment and size of PnC giant neurons are important factors for regulating the magnitude of the acoustic startle response in Cntnap2-⁣/- rats, particularly in males. These findings allow for a better understanding of increased reactivity to sound in Cntnap2-⁣/- rats and in CNTNAP2-associated disorders such as ASD.


Assuntos
Transtorno do Espectro Autista , Reflexo de Sobressalto , Animais , Feminino , Masculino , Ratos , Estimulação Acústica , Neurônios/fisiologia , Reflexo de Sobressalto/genética , Reflexo de Sobressalto/fisiologia , Formação Reticular/fisiologia , Modelos Animais de Doenças
2.
Exp Brain Res ; 241(8): 2145-2162, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37474798

RESUMO

Physiological studies indicate that the central mesencephalic reticular formation (cMRF) plays a role in gaze changes, including control of disjunctive saccades. Neuroanatomical studies have demonstrated strong interconnections with the superior colliculus, along with projections to extraocular motor nuclei, the preganglionic nucleus of Edinger-Westphal, the paramedian pontine reticular formation, nucleus raphe interpositus, medullary reticular formation and cervical spinal cord, as might be expected for a structure that is intimately involved in gaze control. However, the sources of input to this midbrain structure have not been described in detail. In the present study, the brainstem cells of origin supplying the cMRF were labeled by retrograde transport of tracer (wheat germ agglutinin conjugated horseradish peroxidase) in macaque monkeys. Within the diencephalon, labeled neurons were noted in the ventromedial nucleus of the hypothalamus, pregeniculate nucleus and habenula. In the midbrain, labeled cells were found in the substantia nigra pars reticulata, medial pretectal nucleus, superior colliculus, tectal longitudinal column, periaqueductal gray, supraoculomotor area, and contralateral cMRF. In the pons they were located in the paralemniscal zone, parabrachial nucleus, locus coeruleus, nucleus prepositus hypoglossi and the paramedian pontine reticular formation. Finally, in the medulla they were observed in the medullary reticular formation. The fact that this list of input sources is very similar to those of the superior colliculus supports the view that the cMRF represents an important gaze control center.


Assuntos
Macaca , Formação Reticular Mesencefálica , Animais , Tronco Encefálico , Mesencéfalo , Formação Reticular/fisiologia , Peroxidase do Rábano Silvestre
3.
J Neurosci ; 43(14): 2469-2481, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36859307

RESUMO

Most current methods for neuromodulation target the cortex. Approaches for inducing plasticity in subcortical motor pathways, such as the reticulospinal tract, could help to boost recovery after damage (e.g., stroke). In this study, we paired loud acoustic stimulation (LAS) with transcranial magnetic stimulation (TMS) over the motor cortex in male and female healthy humans. LAS activates the reticular formation; TMS activates descending systems, including corticoreticular fibers. Two hundred paired stimuli were used, with 50 ms interstimulus interval at which LAS suppresses TMS responses. Before and after stimulus pairing, responses in the contralateral biceps muscle to TMS alone were measured. Ten, 20, and 30 min after stimulus pairing ended, TMS responses were enhanced, indicating the induction of LTP. No long-term changes were seen in control experiments which used 200 unpaired TMS or LAS, indicating the importance of associative stimulation. Following paired stimulation, no changes were seen in responses to direct corticospinal stimulation at the level of the medulla, or in the extent of reaction time shortening by a loud sound (StartReact effect), suggesting that plasticity did not occur in corticospinal or reticulospinal synapses. Direct measurements in female monkeys undergoing a similar paired protocol revealed no enhancement of corticospinal volleys after paired stimulation, suggesting no changes occurred in intracortical connections. The most likely substrate for the plastic changes, consistent with all our measurements, is an increase in the efficacy of corticoreticular connections. This new protocol may find utility, as it seems to target different motor circuits compared with other available paradigms.SIGNIFICANCE STATEMENT Induction of plasticity by neurostimulation protocols may be promising to enhance functional recovery after damage such as following stroke, but current protocols mainly target cortical circuits. In this study, we developed a novel paradigm which may generate long-term changes in connections between cortex and brainstem. This could provide an additional tool to modulate and improve recovery.


Assuntos
Plasticidade Neuronal , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Estimulação Magnética Transcraniana/métodos , Plasticidade Neuronal/fisiologia , Músculo Esquelético/fisiologia , Vias Eferentes , Formação Reticular/fisiologia , Potencial Evocado Motor/fisiologia
4.
J Physiol ; 600(24): 5311-5332, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36271640

RESUMO

The ability to discriminate competing external stimuli and initiate contextually appropriate behaviours is a key brain function. Neurons in the deep superior colliculus (dSC) integrate multisensory inputs and activate descending projections to premotor pathways responsible for orienting, attention and defence, behaviours which involve adjustments to respiratory and cardiovascular parameters. However, the neural pathways that subserve the physiological components of orienting are poorly understood. We report that orienting responses to optogenetic dSC stimulation are accompanied by short-latency autonomic, respiratory and electroencephalographic effects in awake rats, closely mimicking those evoked by naturalistic alerting stimuli. Physiological responses were not accompanied by detectable aversion or fear, and persisted under urethane anaesthesia, indicating independence from emotional stress. Anterograde and trans-synaptic viral tracing identified a monosynaptic pathway that links the dSC to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA), a key hub for the coordination of orienting and locomotor behaviours. In urethane-anaesthetized animals, sympathoexcitatory and cardiovascular, but not respiratory, responses to dSC stimulation were replicated by optogenetic stimulation of the dSC-GiA terminals, suggesting a likely role for this pathway in mediating the autonomic components of dSC-mediated responses. Similarly, extracellular recordings from putative GiA sympathetic premotor neurons confirmed short-latency excitatory inputs from the dSC. This pathway represents a likely substrate for autonomic components of orienting responses that are mediated by dSC neurons and suggests a mechanism through which physiological and motor components of orienting behaviours may be integrated without the involvement of higher centres that mediate affective components of defensive responses. KEY POINTS: Neurons in the deep superior colliculus (dSC) integrate multimodal sensory signals to elicit context-dependent innate behaviours that are accompanied by stereotypical cardiovascular and respiratory activities. The pathways responsible for mediating the physiological components of colliculus-mediated orienting behaviours are unknown. We show that optogenetic dSC stimulation evokes transient orienting, respiratory and autonomic effects in awake rats which persist under urethane anaesthesia. Anterograde tracing from the dSC identified projections to spinally projecting neurons in the medullary gigantocellular reticular nucleus (GiA). Stimulation of this pathway recapitulated autonomic effects evoked by stimulation of dSC neurons. Electrophysiological recordings from putative GiA sympathetic premotor neurons confirmed short latency excitatory input from dSC neurons. This disynaptic dSC-GiA-spinal sympathoexcitatory pathway may underlie autonomic adjustments to salient environmental cues independent of input from higher centres.


Assuntos
Formação Reticular , Colículos Superiores , Animais , Ratos , Colículos Superiores/fisiologia , Formação Reticular/fisiologia , Sistema Nervoso Autônomo/fisiologia , Neurônios/fisiologia , Vias Neurais/fisiologia , Uretana/farmacologia
5.
Arch Ital Biol ; 160(1-2): 54-80, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913389

RESUMO

The occurrence of pure light exerts a variety of effects in the human body, which span from behavioral alterations, such as light-driven automatic motor activity, cognition and mood to more archaic vegetative functions, which encompass most organs of the body with remarkable effects on the cardiovascular system. Although empirical evidence clearly indicates occurrence of these widespread effects, the anatomical correlates and long-lasting changes within putatively specific neuronal circuitries remain largely unexplored. A specific role is supposed to take place for catecholamine containing neurons in the core of the brainstem reticular formation, which produces a widespread release of noradrenaline in the forebrain while controlling the vegetative nervous system. An indirect as well as a direct (mono-synaptic) retino-brainstem pathway is hypothesized to rise from a subtype of intrinsically photosensitive retinal ganglion cells (iPRGCs), subtype M1, which do stain for Brn3b, and project to the pre-tectal region (including the olivary pre-tectal nucleus). This pathway provides profuse axon collaterals, which spread to the periacqueductal gray and dorsal raphe nuclei. According to this evidence, a retino-reticular monosynaptic system occurs, which powerfully modulate the noradrenergic hub of reticular nuclei in the lateral column of the brainstem reticular formation. These nuclei, which are evidenced in the present study, provide the anatomical basis to induce behavioral and cardiovascular modulation. The occurrence of a highly interconnected network within these nuclei is responsible for light driven plastic effects, which may alter persistently behavior and vegetative functions as the consequence of long-lasting alterations in the environmental light stimulation of the retina. These changes, which occur within the core of an archaic circuitry such as the noradrenaline-containing neurons of the reticular formation, recapitulate, within the CNS, ancestral effects of light-driven changes, which can be detected already within the retina itself at the level of multipotent photic cells.


Assuntos
Sistema Cardiovascular , Formação Reticular , Tronco Encefálico , Humanos , Norepinefrina , Formação Reticular/fisiologia , Células Ganglionares da Retina/fisiologia
6.
J Neurosci ; 42(15): 3150-3164, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35241490

RESUMO

The control of contraction strength is a key part of movement control. In primates, both corticospinal and reticulospinal cells provide input to motoneurons. Corticospinal discharge is known to correlate with force, but there are no previous reports of how reticular formation (RF) activity modulates with different contractions. Here we trained two female macaque monkeys (body weight, 5.9-6.9 kg) to pull a handle that could be loaded with 0.5-6 kg weights and recorded from identified pyramidal tract neurons (PTNs) in primary motor cortex and RF cells during task performance. Population-averaged firing rate increased monotonically with higher force for the RF, but showed a complex profile with little net modulation for PTNs. This reflected a more heterogeneous profile of rate modulation across the PTN population, leading to cancellation in the average. Linear discriminant analysis classified the force based on the time course of rate modulation equally well for PTNs and RF cells. Peak firing rate had significant linear correlation with force for 43 of 92 PTNs (46.7%) and 21 of 46 RF cells (43.5%). For almost all RF cells (20 of 21), the correlation coefficient was positive; similar numbers of PTNs (22 vs 21) had positive versus negative coefficients. Considering the timing of force representation, similar fractions (PTNs: 61.2%; RF cells: 55.5%) commenced coding before the onset of muscle activity. We conclude that both corticospinal and reticulospinal tracts contribute to the control of contraction force; the reticulospinal tract seems to specify an overall signal simply related to force, whereas corticospinal cell activity would be better suited for fine-scale adjustments.SIGNIFICANCE STATEMENT For the first time, we compare the coding of force for corticospinal and reticular formation cells in awake behaving monkeys, over a wide range of contraction strengths likely to come close to maximum voluntary contraction. Both cortical and brainstem systems coded similarly well for force, but whereas reticular formation cells carried a simple uniform signal, corticospinal neurons were more heterogeneous. This may reflect a role in the gross specification of a coordinated movement, versus more fine-grained adjustments around individual joints.


Assuntos
Córtex Motor , Animais , Feminino , Macaca , Córtex Motor/fisiologia , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Tratos Piramidais/fisiologia , Formação Reticular/fisiologia
7.
Prog Brain Res ; 267(1): 355-378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35074062

RESUMO

This chapter discusses the neurophysiology and function of subcortical circuits and cortical areas involved in saccade generation. While cells within the different nuclei of the brainstem reticular formation shape the temporal details of ipsiversive horizontal and vertical/cyclotorsional saccade components, the cerebellar flocculus, vermis and fastigial nucleus are thought to modulate these saccadic waveforms. Burst neurons in the deep layers of the superior colliculus encode the saccade vector in the contralateral field by a localized population in a motor-error map. The complexity of the saccadic system is evident in the different subclasses of SC cells, ranging from purely visual, to visual-motor, purely motor, and quasi-visual cells. Movement-related activity in all SC cells is dissociated from the retinotopic visual activity. The chapter further discusses neurophysiological findings obtained from the substantia nigra (pars reticulata), the medial thalamus, the frontal eye fields, the supplementary motor area and the parietal lobes, discussing the ever more complex response patterns of their neurons in relation to saccades.


Assuntos
Formação Reticular , Movimentos Sacádicos , Tronco Encefálico , Humanos , Neurônios/fisiologia , Formação Reticular/fisiologia , Colículos Superiores/fisiologia
8.
J Neurophysiol ; 125(4): 993-1005, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566745

RESUMO

Swallow is a primitive behavior regulated by medullary networks, responsible for movement of food/liquid from the oral cavity to the esophagus. To investigate how functionally heterogeneous networks along the medullary intermediate reticular formation (IRt) and ventral respiratory column (VRC) control swallow, we electrically stimulated the nucleus tractus solitarius to induce fictive swallow between inspiratory bursts, with concurrent optical recordings using a synthetic Ca2+ indicator in the neonatal sagittally sectioned rat hindbrain (SSRH) preparation. Simultaneous recordings from hypoglossal nerve rootlet (XIIn) and ventral cervical spinal root C1-C2 enabled identification of the system-level correlates of 1) swallow (identified as activation of the XIIn but not the cervical root) and 2) Breuer-Hering expiratory reflex (BHE; lengthened expiration in response to stimuli during expiration). Optical recording revealed reconfiguration of respiration-modulated networks in the ventrolateral medulla during swallow and the BHE reflex. Recordings identified novel spatially compact networks in the IRt near the facial nucleus (VIIn) that were active during fictive swallow, suggesting that the swallow network is not restricted to the caudal medulla. These findings also establish the utility of using this in vitro preparation to investigate how functionally heterogeneous medullary networks interact and reconfigure to enable a repertoire of orofacial behaviors.NEW & NOTEWORTHY For the first time, medullary networks that control breathing and swallow are recorded optically. Episodic swallows are induced via electrical stimulation along the dorsal medulla, in and near the NTS, during spontaneously occurring fictive respiration. These findings establish that networks regulating both orofacial behaviors and breathing are accessible for optical recording at the surface of the sagittally sectioned rodent hindbrain preparation.


Assuntos
Geradores de Padrão Central/fisiologia , Deglutição/fisiologia , Respiração , Formação Reticular/fisiologia , Rombencéfalo/fisiologia , Animais , Animais Recém-Nascidos , Estimulação Elétrica , Bulbo/fisiologia , Imagem Óptica , Ratos , Ratos Sprague-Dawley
9.
Front Neural Circuits ; 15: 681706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153677

RESUMO

Learning declines with age. Recent evidence indicates that the brainstem may play an important role in learning and motor skill acquisition. Our objective was to determine if delays in the reticular formation, measured via the startle reflex, correspond to age-related deficits in learning and retention. We hypothesized that delays in the startle reflex would be linearly correlated to learning and retention deficits in older adults. To determine if associations were unique to the reticulospinal system, we also evaluated corticospinal contributions with transcranial magnetic stimulation. Our results showed a linear relationship between startle onset latency and percent learning and retention but no relationship between active or passive motor-evoked potential onsets or peak-to-peak amplitude. These results lay the foundation for further study to evaluate if (1) the reticular formation is a subcortical facilitator of skill acquisition and (2) processing delays in the reticular formation contribute to age-related learning deficits.


Assuntos
Potencial Evocado Motor , Estimulação Magnética Transcraniana , Potencial Evocado Motor/fisiologia , Aprendizagem/fisiologia , Reflexo de Sobressalto/fisiologia , Formação Reticular/fisiologia
10.
J Neurosci ; 41(5): 1005-1018, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33268548

RESUMO

Early evolution of the motor cortex included development of connections to brainstem reticulospinal neurons; these projections persist in primates. In this study, we examined the organization of corticoreticular connections in five macaque monkeys (one male) using both intracellular and extracellular recordings from reticular formation neurons, including identified reticulospinal cells. Synaptic responses to stimulation of different parts of primary motor cortex (M1) and supplementary motor area (SMA) bilaterally were assessed. Widespread short latency excitation, compatible with monosynaptic transmission over fast-conducting pathways, was observed, as well as longer latency responses likely reflecting a mixture of slower monosynaptic and oligosynaptic pathways. There was a high degree of convergence: 56% of reticulospinal cells with input from M1 received projections from M1 in both hemispheres; for SMA, the equivalent figure was even higher (70%). Of reticulospinal neurons with input from the cortex, 78% received projections from both M1 and SMA (regardless of hemisphere); 83% of reticulospinal cells with input from M1 received projections from more than one of the tested M1 sites. This convergence at the single cell level allows reticulospinal neurons to integrate information from across the motor areas of the cortex, taking account of the bilateral motor context. Reticulospinal connections are known to strengthen following damage to the corticospinal tract, such as after stroke, partially contributing to functional recovery. Extensive corticoreticular convergence provides redundancy of control, which may allow the cortex to continue to exploit this descending pathway even after damage to one area.SIGNIFICANCE STATEMENT The reticulospinal tract (RST) provides a parallel pathway for motor control in primates, alongside the more sophisticated corticospinal system. We found extensive convergent inputs to primate reticulospinal cells from primary and supplementary motor cortex bilaterally. These redundant connections could maintain transmission of voluntary commands to the spinal cord after damage (e.g., after stroke or spinal cord injury), possibly assisting recovery of function.


Assuntos
Córtex Motor/fisiologia , Neurônios/fisiologia , Tratos Piramidais/fisiologia , Formação Reticular/fisiologia , Medula Espinal/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Macaca mulatta , Masculino , Potenciais da Membrana/fisiologia , Vias Neurais/fisiologia
11.
Curr Biol ; 30(23): 4665-4681.e6, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33007251

RESUMO

Spatial orientation requires the execution of lateralized movements and a change in the animal's heading in response to multiple sensory modalities. While much research has focused on the circuits for sensory integration, chiefly to the midbrain superior colliculus (SC), the downstream cells and circuits that engage adequate motor actions have remained elusive. Furthermore, the mechanisms supporting trajectory changes are still speculative. Here, using transneuronal viral tracings in mice, we show that brainstem V2a neurons, a genetically defined subtype of glutamatergic neurons of the reticular formation, receive putative synaptic inputs from the contralateral SC. This makes them a candidate relay of lateralized orienting commands. We next show that unilateral optogenetic activations of brainstem V2a neurons in vivo evoked ipsilateral orienting-like responses of the head and the nose tip on stationary mice. When animals are walking, similar stimulations impose a transient locomotor arrest followed by a change of trajectory. Third, we reveal that these distinct motor actions are controlled by dedicated V2a subsets each projecting to a specific spinal cord segment, with at least (1) a lumbar-projecting subset whose unilateral activation specifically controls locomotor speed but neither impacts trajectory nor evokes orienting movements, and (2) a cervical-projecting subset dedicated to head orientation, but not to locomotor speed. Activating the latter subset suffices to steer the animals' directional heading, placing the head orientation as the prime driver of locomotor trajectory. V2a neurons and their modular organization may therefore underlie the orchestration of multiple motor actions during multi-faceted orienting behaviors.


Assuntos
Locomoção/fisiologia , Neurônios/fisiologia , Orientação Espacial/fisiologia , Formação Reticular/fisiologia , Colículos Superiores/fisiologia , Animais , Vértebras Cervicais , Feminino , Ácido Glutâmico/metabolismo , Proteínas de Homeodomínio/genética , Vértebras Lombares , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Vias Neurais/fisiologia , Optogenética , Formação Reticular/citologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Colículos Superiores/citologia , Fatores de Transcrição/genética
12.
J Neurosci ; 40(44): 8478-8490, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998974

RESUMO

Meso-diencephalic dopaminergic neurons are known to modulate locomotor behaviors through their ascending projections to the basal ganglia, which in turn project to the mesencephalic locomotor region, known to control locomotion in vertebrates. In addition to their ascending projections, dopaminergic neurons were found to increase locomotor movements through direct descending projections to the mesencephalic locomotor region and spinal cord. Intriguingly, fibers expressing tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine synthesis, were also observed around reticulospinal neurons of lampreys. We now examined the origin and the role of this innervation. Using immunofluorescence and tracing experiments, we found that fibers positive for dopamine innervate reticulospinal neurons in the four reticular nuclei of lampreys. We identified the dopaminergic source using tracer injections in reticular nuclei, which retrogradely labeled dopaminergic neurons in a caudal diencephalic nucleus (posterior tuberculum [PT]). Using voltammetry in brain preparations isolated in vitro, we found that PT stimulation evoked dopamine release in all four reticular nuclei, but not in the spinal cord. In semi-intact preparations where the brain is accessible and the body moves, PT stimulation evoked swimming, and injection of a D1 receptor antagonist within the middle rhombencephalic reticular nucleus was sufficient to decrease reticulospinal activity and PT-evoked swimming. Our study reveals that dopaminergic neurons have access to command neurons that integrate sensory and descending inputs to activate spinal locomotor neurons. As such, our findings strengthen the idea that dopamine can modulate locomotor behavior both via ascending projections to the basal ganglia and through descending projections to brainstem motor circuits.SIGNIFICANCE STATEMENT Meso-diencephalic dopaminergic neurons play a key role in modulating locomotion by releasing dopamine in the basal ganglia, spinal networks, and the mesencephalic locomotor region, a brainstem region that controls locomotion in a graded fashion. Here, we report in lampreys that dopaminergic neurons release dopamine in the four reticular nuclei where reticulospinal neurons are located. Reticulospinal neurons integrate sensory and descending suprareticular inputs to control spinal interneurons and motoneurons. By directly modulating the activity of reticulospinal neurons, meso-diencephalic dopaminergic neurons control the very last instructions sent by the brain to spinal locomotor circuits. Our study reports on a new direct descending dopaminergic projection to reticulospinal neurons that modulates locomotor behavior.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Locomoção/fisiologia , Formação Reticular/fisiologia , Medula Espinal/fisiologia , Animais , Fenômenos Biomecânicos , Antagonistas de Dopamina/farmacologia , Estimulação Elétrica , Fenômenos Eletrofisiológicos , Lampreias , Fibras Nervosas/fisiologia , Receptores de Dopamina D1/antagonistas & inibidores , Natação , Tirosina 3-Mono-Oxigenase/fisiologia
13.
Neurosci Lett ; 738: 135400, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979458

RESUMO

The interneuronal system in the brainstem reticular formation plays an important role in elaborate muscle coordination during various orofacial motor behaviors. In this study, we examined the distribution in the brainstem reticular formation of the sites that induce monosynaptic motor activity in the mylohyoid (jaw-opening) and hypoglossal nerves using an arterially perfused rat preparation. Electrical stimulation applied to 286 and 247 of the 309 sites in the brainstem evoked neural activity in the mylohyoid and hypoglossal nerves, respectively. The mean latency of the first component in the mylohyoid nerve response was significantly shorter than that in the hypoglossal nerve response. Moreover, the latency histogram of the first component in the hypoglossal nerve responses was bimodal, which was separated by 4.0 ms. The sites that induced short-latency (<4.0 ms) motor activity in the mylohyoid nerve and the hypoglossal nerve were frequently distributed in the rostral portion and the caudal portion of the brainstem reticular formation, respectively. Such difference in distributions of short-latency sites for mylohyoid and hypoglossal nerve responses likely corresponds to the distribution of excitatory premotor neurons targeting mylohyoid and hypoglossal motoneurons.


Assuntos
Tronco Encefálico/fisiologia , Estimulação Elétrica , Nervo Hipoglosso/patologia , Nervo Hipoglosso/fisiologia , Formação Reticular/fisiologia , Animais , Tronco Encefálico/patologia , Estimulação Elétrica/métodos , Eletromiografia/métodos , Neurônios Motores/fisiologia , Ratos , Formação Reticular/patologia , Núcleos do Trigêmeo/patologia , Núcleos do Trigêmeo/fisiologia
14.
J Neurosci ; 40(37): 7091-7104, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32801149

RESUMO

Skilled forelimb movements are initiated by feedforward motor commands conveyed by supraspinal motor pathways. The accuracy of reaching and grasping relies on internal feedback pathways that update ongoing motor commands. In mice lacking the axon guidance molecule EphA4, axonal misrouting of the corticospinal tract and spinal interneurons is manifested, leading to a hopping gait in hindlimbs. Moreover, mice with a conditional forebrain deletion of EphA4, display forelimb hopping in adaptive locomotion and exploratory reaching movements. However, it remains unclear how loss of EphA4 signaling disrupts function of forelimb motor circuit and skilled reaching and grasping movements. Here we investigated how neural circuits controlling skilled reaching were affected by the loss of EphA4. Both male and female C57BL/6 wild-type, heterozygous EphA4+/-, and homozygous EphA4-/- mice were used in behavioral and in vivo electrophysiological investigations. We found that EphA4 knock-out (-/-) mice displayed impaired goal-directed reaching movements. In vivo intracellular recordings from forelimb motor neurons demonstrated increased corticoreticulospinal excitation, decreased direct reticulospinal excitation, and reduced direct propriospinal excitation in EphA4 knock-out mice. Cerebellar surface recordings showed a functional perturbation of the lateral reticular nucleus-cerebellum internal feedback pathway in EphA4 knock-out mice. Together, our findings provide in vivo evidence at the circuit level that loss of EphA4 disrupts the function of both feedforward and feedback motor pathways, resulting in deficits in skilled reaching.SIGNIFICANCE STATEMENT The central advances of this study are the demonstration that null mutation in the axon guidance molecule EphA4 gene impairs the ability of mice to perform skilled reaching, and identification of how these behavioral deficits correlates with discrete neurophysiological changes in central motor pathways involved in the control of reaching. Our findings provide in vivo evidence at the circuit level that loss of EphA4 disrupts both feedforward and feedback motor pathways, resulting in deficits in skilled reaching. This analysis of motor circuit function may help to understand the pathophysiological mechanisms underlying movement disorders in humans.


Assuntos
Força da Mão , Destreza Motora , Tratos Piramidais/metabolismo , Receptor EphA4/metabolismo , Formação Reticular/metabolismo , Animais , Cerebelo/metabolismo , Cerebelo/fisiologia , Retroalimentação Fisiológica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Tratos Piramidais/fisiologia , Receptor EphA4/genética , Formação Reticular/fisiologia
15.
J Neurosci ; 39(49): 9757-9766, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31666354

RESUMO

Breathing results from sequential recruitment of muscles in the expiratory, inspiratory, and postinspiratory (post-I) phases of the respiratory cycle. Here we investigate whether neurons in the medullary intermediate reticular nucleus (IRt) are components of a central pattern generator (CPG) that generates post-I activity in laryngeal adductors and vasomotor sympathetic nerves and interacts with other members of the central respiratory network to terminate inspiration. We first identified the region of the (male) rat IRt that contains the highest density of lightly cholinergic neurons, many of which are glutamatergic, which aligns well with the putative postinspiratory complex in the mouse (Anderson et al., 2016). Acute bilateral inhibition of this region reduced the amplitudes of post-I vagal and sympathetic nerve activities. However, although associated with reduced expiratory duration and increased respiratory frequency, IRt inhibition did not affect inspiratory duration or abolish the recruitment of post-I activity during acute hypoxemia as predicted. Rather than representing an independent CPG for post-I activity, we hypothesized that IRt neurons may instead function as a relay that distributes post-I activity generated elsewhere, and wondered whether they could be a site of integration for para-respiratory CPGs that drive the same outputs. Consistent with this idea, IRt inhibition blocked rhythmic motor and autonomic components of fictive swallow but not swallow-related apnea. Our data support a role for IRt neurons in the transmission of post-I and swallowing activity to motor and sympathetic outputs, but suggest that other mechanisms also contribute to the generation of post-I activity.SIGNIFICANCE STATEMENT Interactions between multiple coupled oscillators underlie a three-part respiratory cycle composed from inspiratory, postinspiratory (post-I), and late-expiratory phases. Central post-I activity terminates inspiration and activates laryngeal motoneurons. We investigate whether neurons in the intermediate reticular nucleus (IRt) form the central pattern generator (CPG) responsible for post-I activity. We confirm that IRt activity contributes to post-I motor and autonomic outputs, and find that IRt neurons are necessary for activation of the same outputs during swallow, but that they are not required for termination of inspiration or recruitment of post-I activity during hypoxemia. We conclude that this population may not represent a distinct CPG, but instead may function as a premotor relay that integrates activity generated by diverse respiratory and nonrespiratory CPGs.


Assuntos
Geradores de Padrão Central/fisiologia , Deglutição/fisiologia , Neurônios/fisiologia , Mecânica Respiratória/fisiologia , Formação Reticular/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Apneia/fisiopatologia , Colina O-Acetiltransferase/fisiologia , Feminino , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Laringe/fisiologia , Masculino , Camundongos , Rede Nervosa/fisiologia , Ratos , Nervo Vago/fisiologia
16.
J Neurophysiol ; 122(6): 2601-2613, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31664872

RESUMO

Activation of contralateral muscles by supraspinal neurons, or crossed activation, is critical for bilateral coordination. Studies in mammals have focused on the neural circuits that mediate cross activation of limb muscles, but the neural circuits involved in crossed activation of trunk muscles are still poorly understood. In this study, we characterized functional connections between reticulospinal (RS) neurons in the medial and lateral regions of the medullary reticular formation (medMRF and latMRF) and contralateral trunk motoneurons (MNs) in the thoracic cord (T7 and T10 segments). To do this, we combined electrical microstimulation of the medMRF and latMRF and calcium imaging from single cells in an ex vivo brain stem-spinal cord preparation of neonatal mice. Our findings substantiate two spatially distinct RS pathways to contralateral trunk MNs. Both pathways originate in the latMRF and are midline crossing, one at the level of the spinal cord via excitatory descending commissural interneurons (reticulo-commissural pathway) and the other at the level of the brain stem (crossed RS pathway). Activation of these RS pathways may enable different patterns of bilateral trunk coordination. Possible implications for recovery of trunk function after stroke or spinal cord injury are discussed.NEW & NOTEWORTHY We identify two spatially distinct reticulospinal pathways for crossed activation of trunk motoneurons. Both pathways cross the midline, one at the level of the brain stem and the other at the level of the spinal cord via excitatory commissural interneurons. Jointly, these pathways provide new opportunities for repair interventions aimed at recovering trunk functions after stroke or spinal cord injury.


Assuntos
Tronco Encefálico/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/fisiologia , Tronco/fisiologia , Animais , Animais Recém-Nascidos , Bulbo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Formação Reticular/fisiologia
17.
J Neurophysiol ; 122(5): 1894-1908, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509474

RESUMO

The reticulospinal tract plays an important role in primate upper limb function, but methods for assessing its activity are limited. One promising approach is to measure rapid visual responses (RVRs) in arm muscle activity during a visually cued reaching task; these may arise from a tecto-reticulospinal pathway. We investigated whether changes in reticulospinal excitability can be assessed noninvasively using RVRs, by pairing the visual stimuli of the reaching task with electrical stimulation of the median nerve, galvanic vestibular stimulation, or loud sounds, all of which are known to activate the reticular formation. Surface electromyogram (EMG) recordings were made from the right deltoid of healthy human subjects as they performed fast reaching movements toward visual targets. Stimuli were delivered up to 200 ms before target appearance, and RVR was quantified as the EMG amplitude in a window 75-125 ms after visual target onset. Median nerve, vestibular, and auditory stimuli all consistently facilitated the RVRs, as well as reducing the latency of responses. We propose that this facilitation reflects modulation of tecto-reticulospinal excitability, which is consistent with the idea that the amplitude of RVRs can be used to assess changes in brain stem excitability noninvasively in humans.NEW & NOTEWORTHY Short-latency responses in arm muscles evoked during a visually driven reaching task have previously been proposed to be tecto-reticulospinal in origin. We demonstrate that these responses can be facilitated by pairing the appearance of a visual target with stimuli that activate the reticular formation: median nerve, vestibular, and auditory stimuli. We propose that this reflects noninvasive measurement and modulation of reticulospinal excitability.


Assuntos
Músculo Deltoide/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Atividade Motora/fisiologia , Formação Reticular/fisiologia , Medula Espinal/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adolescente , Adulto , Sinais (Psicologia) , Estimulação Elétrica , Eletromiografia , Feminino , Humanos , Masculino , Nervo Mediano/fisiologia , Vestíbulo do Labirinto/fisiologia , Adulto Jovem
18.
IEEE Int Conf Rehabil Robot ; 2019: 1247-1253, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374800

RESUMO

Increased reticulospinal (RS) function has been observed to cause both positive and negative outcomes in the recovery of motor function after corticospinal lesions such as stroke. Current knowledge of RS function is limited by the lack of accurate, noninvasive methods for measuring RS function. Recent studies suggest that the RS tract may be involved in processing and generating Long Latency Responses (LLRs). As such, LLRs, elicited by applying precisely controlled perturbations, can thus act as a reliable stimulus to measure brainstem function using fMRI with high signal-to-noise ratio.In this paper, we present StretchfMRI, a novel technique that enables simultaneous recording of neural and muscular activity during motor responses conditioned by robotic perturbations, which allows direct investigation of the neural correlates of LLRs.Via preliminary validation experiments, we demonstrate that our technique can reliably elicit and identify LLRs in two wrist muscles-Flexor Carpi Radialis and Extensor Carpi Ulnaris. Moreover, via a single-subject pilot experiment, we show that the occurrence of an LLR in a flexor and extensor muscles modulates neural activity in distinct regions of the brainstem. The observed somatotopic organization is in agreement with the double reciprocal model of RS function observed in animal models, in which the right medullary and left pontine reticular formation are responsible for control of the motor activity in flexors and extensors, respectively.


Assuntos
Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/fisiologia , Eletromiografia , Antebraço/fisiologia , Humanos , Formação Reticular/fisiologia , Articulação do Punho/fisiologia
19.
Neuron ; 103(1): 118-132.e7, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31147153

RESUMO

Animals use global image motion cues to actively stabilize their position by compensatory movements. Neurons in the zebrafish pretectum distinguish different optic flow patterns, e.g., rotation and translation, to drive appropriate behaviors. Combining functional imaging and morphological reconstruction of single cells, we revealed critical neuroanatomical features of this sensorimotor transformation. Terminals of direction-selective retinal ganglion cells (DS-RGCs) are located within the pretectal retinal arborization field 5 (AF5), where they meet dendrites of pretectal neurons with simple tuning to monocular optic flow. Translation-selective neurons, which respond selectively to optic flow in the same direction for both eyes, are intermingled with these simple cells but do not receive inputs from DS-RGCs. Mutually exclusive populations of pretectal projection neurons innervate either the reticular formation or the cerebellum, which in turn control motor responses. We posit that local computations in a defined pretectal circuit transform optic flow signals into neural commands driving optomotor behavior. VIDEO ABSTRACT.


Assuntos
Fluxo Óptico/fisiologia , Vias Visuais/citologia , Animais , Cerebelo/citologia , Cerebelo/fisiologia , Dendritos/fisiologia , Neurópilo/fisiologia , Neurópilo/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Formação Reticular/citologia , Formação Reticular/fisiologia , Células Ganglionares da Retina/fisiologia , Colículos Superiores/citologia , Colículos Superiores/fisiologia , Visão Binocular/fisiologia , Visão Monocular/fisiologia , Vias Visuais/anatomia & histologia , Peixe-Zebra/fisiologia
20.
Eur J Neurosci ; 50(6): 2988-3013, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31012519

RESUMO

The posterior parietal cortex (PPC) serves as a sensorimotor interface by integrating multisensory signals with motor related information for generating and updating body representations and movement plans. Using retrograde transneuronal transfer of rabies virus combined with a conventional tracer, we identified direct and polysynaptic pathways to two PPC areas, the rostral medial intraparietal area (MIP) and the ventral part of the lateral intraparietal area (LIPv) in macaque monkeys. We found that rostral MIP and LIPv receive ascending vestibular pathways, and putative efference copy inputs disynaptically from the medullary medial reticular formation (MRF) where reticulospinal pathways to neck and arm motoneurons originate. LIPv receives minor disynaptic vestibular inputs, and substantial projections from the head movement-related rostral MRF, consistent with head gain modulation of LIPv activity and a role in planning gaze shifts. Rostral MIP is the target of prominent disynaptic pathways from reaching- and head movement-related MRF domains, and major ascending vestibular pathways trisynaptically from both labyrinths, explaining prominent vestibular responses and discrimination between active and passive movements demonstrated in rostral MIP and in the neighboring ventral intraparietal area, which are heavily interconnected. The findings that rostral MIP (belonging to the 'parietal reach region'), receives vestibular inputs as directly as classical vestibular areas, via a parallel channel, and efference copy signals pathways from MRF reticulospinal domains that belong to reach and head movement networks have important implications for the understanding of the role of the PPC in updating body representations and internal models for online guidance of movement.


Assuntos
Neurônios/fisiologia , Lobo Parietal/fisiologia , Formação Reticular/fisiologia , Animais , Imagem Corporal , Movimentos da Cabeça/fisiologia , Macaca fascicularis , Macaca mulatta , Neurônios Motores/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA