Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Immunol ; 15: 1316228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370409

RESUMO

Background: It is well established that females are more susceptible to the toxic effects of alcohol, although the exact mechanisms are still poorly understood. Previous studies noted that alcohol reduces the expression of mitogen-activated protein kinase phosphatase 1 (MKP1), a negative regulator of mitogen-activated protein kinases (MAPK) in the liver. However, the role of hepatocyte- specific MKP1 in the pathogenesis of alcohol-associated liver disease (ALD) remains uncharacterized. This study aimed to evaluate the role of hepatocyte-specific MKP1 in the susceptibility and sexual dimorphism in alcohol-induced liver injury. Methods: C57Bl/6 mice were used in an intragastric ethanol feeding model of alcohol-associated steatohepatitis (ASH). Hepatocyte-specific Mkp1-/- knockout and (Mkp1+/+ "f/f" male and female mice were subjected to the NIAAA chronic plus binge model. Primary mouse hepatocytes were used for in vitro studies. Liver RNA sequencing was performed on an Illumina NextSeq 500. Liver injury was evaluated by plasma alanine transaminase (ALT), hepatic ER stress and inflammation markers. Statistical analysis was carried out using ANOVA and the unpaired Student's t-test. Results: ASH was associated with the severe injury accompanied by increased endoplasmic reticulum (ER) stress and significant downregulation of Dusp1 mRNA expression. In vitro, ethanol treatment resulted in a time-dependent decrease in Dusp1 mRNA and protein expression in primary hepatocytes in both males and females; however, this effect was significantly more pronounced in hepatocytes from females. In vivo, female mice developed more liver injury in a chronic plus binge model which was accompanied by a significant decrease in liver Dusp1 mRNA expression. In comparison, liver Dusp1 was not changed in male mice, while they developed milder injury to alcohol. Mkp1 deletion in hepatocytes led to increased alcohol induced liver injury, ER stress and inflammation in both sexes. Conclusion: Hepatocyte Mkp1 plays a significant role in alcohol induced liver injury. Alcohol downregulates Mkp1 expression in hepatocytes in a sex dependent manner and could play a role in sexual dimorphism in increased female susceptibility to alcohol.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fígado Gorduroso Alcoólico , Hepatopatias Alcoólicas , Masculino , Feminino , Camundongos , Animais , Caracteres Sexuais , Hepatócitos/metabolismo , Etanol/toxicidade , Fígado Gorduroso Alcoólico/genética , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/farmacologia
2.
Phytomedicine ; 114: 154802, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37054486

RESUMO

BACKGROUND: A tri-herb formulation comprising Ganoderma (the dried fruiting body of Ganoderma lucidum), Puerariae Thomsonii Radix (the dried root of Pueraria thomsonii) and Hoveniae Semen (the dried mature seed of Hovenia acerba) -GPH for short- has been using for treating liver injury; however, the pharmacological basis of this application of GPH is unknown. This study aimed to investigate the liver protective effects and mechanisms of action of an ethanolic extract of GPH (GPHE) in mice. METHODS: To control the quality of GPHE, the contents of ganodermanontriol, puerarin and kaempferol in the extract were quantified by ultra-performance liquid chromatography. An ethanol (6 ml/kg, i.g.)-induced liver injury ICR mouse model was employed to investigate the hepatoprotective effects of GPHE. RNA-sequencing analysis and bioassays were performed to reveal the mechanisms of action of GPHE. RESULTS: The contents of ganodermanontriol, puerarin and kaempferol in GPHE were 0.0632%, 3.627% and 0.0149%, respectively. Daily i.g. administration of 0.25, 0.5 or 1 g/kg of GPHE for 15 consecutive days suppressed ethanol (6 ml/kg, i.g., at day 15)-induced upregulation of serum AST and ALT levels and improved histological conditions in mouse livers, indicating that GPHE protects mice from ethanol-induced liver injury. Mechanistically, GPHE downregulated the mRNA level of Dusp1 (encoding MKP1 protein, an inhibitor of the mitogen-activated protein kinases JNK, p38 and ERK), and upregulated expression and phosphorylation of JNK, p38 and ERK, which are involved in cell survival in mouse liver tissues. Also, GPHE increased PCNA (a cell proliferation marker) expression and reduced TUNEL-positive (apoptotic) cells in mouse livers. CONCLUSION: GPHE protects against ethanol-induced liver injury, and this effect of GPHE is associated with regulation of the MKP1/MAPK pathway. This study provides pharmacological justifications for the use of GPH in treating liver injury, and suggests that GPHE has potential to be developed into a modern medication for managing liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Etanol , Camundongos , Animais , Etanol/farmacologia , Quempferóis/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Camundongos Endogâmicos ICR , Fígado , Fosfatases da Proteína Quinase Ativada por Mitógeno/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno
3.
J Am Heart Assoc ; 10(4): e014311, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33522247

RESUMO

Background Heart pathological hypertrophy has been recognized as a predisposing risk factor for heart failure and arrhythmia. DUSP (dual-specificity phosphatase) 26 is a member of the DUSP family of proteins, which has a significant effect on nonalcoholic fatty liver disease, neuroblastoma, glioma, and so on. However, the involvement of DUSP26 in cardiac hypertrophy remains unclear. Methods and Results Our study showed that DUSP26 expression was significantly increased in mouse hearts in response to pressure overload as well as in angiotensin II-treated cardiomyocytes. Cardiac-specific overexpression of DUSP26 mice showed attenuated cardiac hypertrophy and fibrosis, while deficiency of DUSP26 in mouse hearts resulted in increased cardiac hypertrophy and deteriorated cardiac function. Similar effects were also observed in cellular hypertrophy induced by angiotensin II. Importantly, we showed that DUSP26 bound to transforming growth factor-ß activated kinase 1 and inhibited transforming growth factor-ß activated kinase 1 phosphorylation, which led to suppression of the mitogen-activated protein kinase signaling pathway. In addition, transforming growth factor-ß activated kinase 1-specific inhibitor inhibited cardiomyocyte hypertrophy induced by angiotensin II and attenuated the exaggerated hypertrophic response in DUSP26 conditional knockout mice. Conclusions Taken together, DUSP26 was induced in cardiac hypertrophy and protected against pressure overload induced cardiac hypertrophy by modulating transforming growth factor-ß activated kinase 1-p38/ c-Jun N-terminal kinase-signaling axis. Therefore, DUSP26 may provide a therapeutic target for treatment of cardiac hypertrophy and heart failure.


Assuntos
Cardiomegalia/tratamento farmacológico , Fosfatases de Especificidade Dupla/farmacologia , Regulação da Expressão Gênica , MAP Quinase Quinase Quinases/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/farmacologia , Miócitos Cardíacos/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Ecocardiografia , MAP Quinase Quinase Quinases/biossíntese , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , RNA/genética , Transdução de Sinais
4.
J Neurochem ; 137(5): 770-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26924229

RESUMO

Amyloid beta peptide (Aß) is a pathological hallmark of Alzheimer's disease (AD) and is generated through the sequential cleavage of amyloid precursor protein (APP) by ß- and γ-secretases. Hypoxia is a known risk factor for AD and stimulates Aß generation by γ-secretase; however, the underlying mechanisms remain unclear. In this study, we showed that dual-specificity phosphatase 26 (DUSP26) regulates Aß generation through changes in subcellular localization of the γ-secretase complex and its substrate C99 under hypoxic conditions. DUSP26 was identified as a novel γ-secretase regulator from a genome-wide functional screen using a cDNA expression library. The phosphatase activity of DUSP26 was required for the increase in Aß42 generation through γ-secretase, but this regulation did not affect the amount of the γ-secretase complex. Interestingly, DUSP26 induced the accumulation of C99 in the axons by stimulating anterograde transport of C99-positive vesicles. Additionally, DUSP26 induced c-Jun N-terminal kinase (JNK) activation for APP processing and axonal transport of C99. Under hypoxic conditions, DUSP26 expression levels were elevated together with JNK activation, and treatment with JNK inhibitor SP600125, or the DUSP26 inhibitor NSC-87877, reduced hypoxia-induced Aß generation by diminishing vesicle trafficking of C99 to the axons. Finally, we observed enhanced DUSP26 expression and JNK activation in the hippocampus of AD patients. Our results suggest that DUSP26 mediates hypoxia-induced Aß generation through JNK activation, revealing a new regulator of γ-secretase-mediated APP processing under hypoxic conditions. We propose the role of phosphatase dual-specificity phosphatase 26 (DUSP26) in the selective regulation of Aß42 production in neuronal cells under hypoxic stress. Induction of DUSP26 causes JNK-dependent shift in the subcellular localization of γ-secretase and C99 from the cell body to axons for Aß42 generation. These findings provide a new strategy for developing new therapeutic targets to arrest AD progression.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiologia , Fosfatases de Especificidade Dupla/biossíntese , Fosfatases de Especificidade Dupla/farmacologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/biossíntese , Fosfatases da Proteína Quinase Ativada por Mitógeno/farmacologia , Fragmentos de Peptídeos/biossíntese , Doença de Alzheimer/metabolismo , Transporte Axonal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Técnicas de Cultura de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA