RESUMO
Phosphatidylethanolamine N-methyltransferase (PmtA) catalyzes the biosynthesis of phosphatidylcholine (PC) from phosphatidylethanolamine (PE). Although PC is one of the major phospholipids constituting bilayer membranes in eukaryotes, certain bacterial species encode PmtA, a membrane-associated methyltransferase, to produce PC, which is correlated with cellular stress responses, adaptability to environmental changes, and symbiosis or virulence with eukaryotic hosts. Depending on the organism, multiple PmtAs may be required for producing monomethyl- and dimethyl-PE derivatives along with PC, whereas in organisms such as Rubellimicrobium thermophilum, a single enzyme is sufficient to direct all three methylation steps. In this study, we present the x-ray crystal structures of PmtA from R. thermophilum in complex with dimethyl-PE and S-adenosyl-l-homocysteine, as well as in its lipid-free form. Moreover, we demonstrate that the enzyme associates with the cellular membrane via electrostatic interactions facilitated by a group of critical basic residues and can successively methylate PE and its methylated derivatives, culminating in the production of PC.
Assuntos
Proteínas de Bactérias , Fosfatidilcolinas , Fosfatidiletanolamina N-Metiltransferase , Fosfatidilcolinas/biossíntese , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Modelos Moleculares , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/biossíntese , Cristalografia por Raios X , Metilação , Membrana Celular/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosil-Homocisteína/química , Conformação Proteica , Ligação Proteica , Metiltransferases/metabolismo , Metiltransferases/química , Sequência de AminoácidosRESUMO
Ambient temperature significantly affects developmental timing in animals. The temperature sensitivity of embryogenesis is generally believed to be a consequence of the thermal dependency of cellular metabolism. However, the adaptive molecular mechanisms that respond to variations in temperature remain unclear. Here, we report species-specific thermal sensitivity of Notch signaling in the developing amniote brain. Transient hypothermic conditions increase canonical Notch activity and reduce neurogenesis in chick neural progenitors. Increased biosynthesis of phosphatidylethanolamine, a major glycerophospholipid components of the plasma membrane, mediates hypothermia-induced Notch activation. Furthermore, the species-specific thermal dependency of Notch signaling is associated with developmental robustness to altered Notch signaling. Our results reveal unique regulatory mechanisms for temperature-dependent neurogenic potentials that underlie developmental and evolutionary adaptations to a range of ambient temperatures in amniotes.
Assuntos
Temperatura Corporal/genética , Desenvolvimento Embrionário/genética , Neocórtex/metabolismo , Neurônios/metabolismo , Receptor Notch1/genética , Transdução de Sinais/genética , Animais , Membrana Celular/metabolismo , Embrião de Galinha , Galinhas , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Neurônios/citologia , Fosfatidiletanolaminas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor Notch1/metabolismo , Especificidade da Espécie , Temperatura , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , TartarugasRESUMO
Most phospholipids are synthesised in the endoplasmic reticulum and distributed to other cellular membranes. Although the vesicle transport contributes to the phospholipid distribution among the endomembrane system, exactly how phospholipids are transported to, from and between mitochondrial membranes remains unclear. To gain insights into phospholipid transport routes into mitochondria, we expressed the Escherichia coli phosphatidylserine (PS) synthase PssA in various membrane compartments with distinct membrane topologies in yeast cells lacking a sole PS synthase (Cho1). Interestingly, PssA could complement loss of Cho1 when targeted to the endoplasmic reticulum (ER), peroxisome, or lipid droplet membranes. Synthesised PS could be converted to phosphatidylethanolamine (PE) by Psd1, the mitochondrial PS decarboxylase, suggesting that phospholipids synthesised in the peroxisomes and low doses (LDs) can efficiently reach mitochondria. Furthermore, we found that PssA which has been integrated into the mitochondrial inner membrane (MIM) from the matrix side could partially complement the loss of Cho1. The PS synthesised in the MIM was also converted to PE, indicating that PS flops across the MIM to become PE. These findings expand our understanding of the intracellular phospholipid transport routes via mitochondria.
Assuntos
Proteínas de Bactérias/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Escherichia coli/genética , Membranas Intracelulares/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/deficiência , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Retículo Endoplasmático/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Teste de Complementação Genética , Cinética , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peroxissomos/metabolismo , Fosfatidiletanolaminas/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , TransgenesRESUMO
Enzymatic control of lipid homeostasis in the cell is a vital element in the complex organization of life. Phosphatidylserine (PS) is an essential anionic phospholipid of cell membranes, and conducts numerous roles for their structural and functional integrity. In mammalian cells, two distinct enzymes phosphatidylserine synthases-1 (PSS1) and -2 (PSS2) in the mitochondria-associated membrane (MAM) in the ER perform de novo synthesis of PS. It is based on base-exchange reactions of the preexisting dominant phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). While PSS2 specifically catalyzes the reaction "PE â PS," whether or not PSS1 is responsible for the same reaction along with the reaction "PC â PS" remains unsettled despite its fundamental impact on the major stoichiometry. We propose here that a key but the only report that appeared to have put scientists on hold for decades in answering to this issue may be viewed consistently with other available research reports; PSS1 utilizes the two dominant phospholipid classes at a similar intrinsic rate. In this review, we discuss the issue in view of the current information for the enzyme machineries, membrane structure and dynamics, intracellular network of lipid transport, and PS synthesis in health and disease. Resolution of the pending issue is thus critical in advancing our understanding of roles of the essential anionic lipid in biology, health, and disease.
Assuntos
Homeostase , Metabolismo dos Lipídeos , Fosfatidiletanolaminas/biossíntese , Fosfatidilserinas/biossíntese , Animais , Humanos , Membranas Mitocondriais/metabolismo , Transferases de Grupos Nitrogenados/metabolismoRESUMO
Glycerophospholipids are major components of cell membranes. Phosphatidylethanolamine (PE) is a glycerophospholipid that is involved in multiple cellular processes, such as membrane fusion, the cell cycle, autophagy, and apoptosis. In this study, we investigated the role of PE biosynthesis in herpes simplex virus 1 (HSV-1) infection by knocking out the host cell gene encoding phosphate cytidylyltransferase 2, ethanolamine (Pcyt2), which is a key rate-limiting enzyme in one of the two major pathways for PE biosynthesis. Pcyt2 knockout reduced HSV-1 replication and caused an accumulation of unenveloped and partially enveloped nucleocapsids in the cytoplasm of an HSV-1-infected cell culture. A similar phenotype was observed when infected cells were treated with meclizine, which is an inhibitor of Pcyt2. In addition, treatment of HSV-1-infected mice with meclizine significantly reduced HSV-1 replication in the mouse brains and improved their survival rates. These results indicated that PE biosynthesis mediated by Pcyt2 was required for efficient HSV-1 envelopment in the cytoplasm of infected cells and for viral replication and pathogenicity in vivo The results also identified the PE biosynthetic pathway as a possible novel target for antiviral therapy of HSV-associated diseases and raised an interesting possibility for meclizine repositioning for treatment of these diseases, since it is an over-the-counter drug that has been used for decades against nausea and vertigo in motion sickness.IMPORTANCE Glycerophospholipids in cell membranes and virus envelopes often affect viral entry and budding. However, the role of glycerophospholipids in membrane-associated events in viral replication in herpesvirus-infected cells has not been reported to date. In this study, we have presented data showing that cellular PE biosynthesis mediated by Pcyt2 is important for HSV-1 envelopment in the cytoplasm, as well as for viral replication and pathogenicity in vivo This is the first report showing the importance of PE biosynthesis in herpesvirus infections. Our results showed that inhibition of Pcyt2, a key cell enzyme for PE synthesis, significantly inhibited HSV-1 replication and pathogenicity in mice. This suggested that the PE biosynthetic pathway, as well as the HSV-1 virion maturation pathway, can be a target for the development of novel anti-HSV drugs.
Assuntos
Citoplasma/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Morfogênese/fisiologia , Fosfatidiletanolaminas/biossíntese , Fosfatidiletanolaminas/fisiologia , Animais , Chlorocebus aethiops , Citoplasma/metabolismo , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos ICR , Nucleocapsídeo/metabolismo , RNA Nucleotidiltransferases/genética , Células Vero , Vírion/fisiologia , Virulência , Internalização do Vírus , Liberação de Vírus , Replicação Viral/fisiologiaRESUMO
Sphingosine-1-phosphate is a signaling molecule involved in the control of cell migration, differentiation, survival and other physiological processes. This sphingolipid metabolite can be degraded by the action of sphingosine-1-phosphate lyase (SPL) to form hexadecenal and ethanolamine phosphate. The importance of SPL-mediated ethanolamine phosphate formation has been characterized in only few cell types. We show that in the protozoan parasite Trypanosoma brucei, expression of TbSpl is essential for cell survival. Ablation of TbSpl expression increased sphingosine-1-phosphate levels and reduced de novo formation and steady-state levels of the glycerophospholipid phosphatidylethanolamine (PE). Growth of TbSpl-depleted parasites could be in part rescued by ethanolamine supplementation to the growth medium, indicating that the main function of TbSpl is to provide ethanolamine phosphate for PE synthesis. In contrast to most cell types analyzed, where SPL localizes to the endoplasmic reticulum, we found by high-resolution microscopy that TbSpl is a mitochondrial protein. In spite of its mitochondrial localization, TbSpl depletion had no apparent effect on mitochondrial morphology but resulted in aggregation of acidocalcisomes. Our results link mitochondria to sphingolipid metabolism and suggest possible roles for PE in acidocalcisome function.
Assuntos
Aldeído Liases/metabolismo , Mitocôndrias/enzimologia , Fosfatidiletanolaminas/biossíntese , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Aldeído Liases/química , Aldeído Liases/genética , Sequência de Aminoácidos , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Lisofosfolipídeos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Alinhamento de Sequência , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismoRESUMO
In both prokaryotes and eukaryotes, phosphatidylethanolamine (PE), one of the most abundant membrane phospholipids, plays important roles in various membrane functions and is synthesized through the decarboxylation of phosphatidylserine (PS) by PS decarboxylases (PSDs). However, the catalysis and substrate recognition mechanisms of PSDs remain unclear. In this study, we focused on the PSD from Escherichia coli (EcPsd) and determined the crystal structures of EcPsd in the apo form and PE-bound form at resolutions of 2.6 and 3.6 Å, respectively. EcPsd forms a homodimer, and each protomer has a positively charged substrate binding pocket at the active site. Structure-based mutational analyses revealed that conserved residues in the pocket are involved in PS decarboxylation. EcPsd has an N-terminal hydrophobic helical region that is important for membrane binding, thereby achieving efficient PS recognition. These results provide a structural basis for understanding the mechanism of PE biosynthesis by PSDs.
Assuntos
Carboxiliases/química , Proteínas de Escherichia coli/química , Fosfatidiletanolaminas/biossíntese , Sítios de Ligação , Carboxiliases/genética , Carboxiliases/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Sequência Conservada , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação ProteicaRESUMO
Mitochondria and their associated membranes actively participate in biosynthesis, trafficking, and degradation of cellular phospholipids. Two crucial lipid biosynthetic activities of mitochondria include (i) the decarboxylation of phosphatidylserine to phosphatidylethanolamine and (ii) the de novo synthesis of cardiolipin. Here we describe protocols to measure these two activities, applying isotope-labeled or exogenous substrates in combination with thin-layer chromatography or mass spectrometry.
Assuntos
Mitocôndrias/metabolismo , Fosfolipídeos/biossíntese , Animais , Cardiolipinas/biossíntese , Células Cultivadas , Drosophila melanogaster/metabolismo , Fosfatidiletanolaminas/biossíntese , Fosfatidilserinas/biossínteseRESUMO
An early exposure to lipid biochemistry in the laboratory of Konrad Bloch resulted in a fascination with the biosynthesis, structures, and functions of bacterial lipids. The discovery of plasmalogens (1-alk-1'-enyl, 2-acyl phospholipids) in anaerobic Gram-positive bacteria led to studies on the physical chemistry of these lipids and the cellular regulation of membrane lipid polymorphism in bacteria. Later studies in several laboratories showed that the formation of the alk-1-enyl ether bond involves an aerobic process in animal cells and thus is fundamentally different from that in anaerobic organisms. Our work provides evidence for an anaerobic process in which plasmalogens are formed from their corresponding diacyl lipids. Studies on the roles of phospholipases in Listeria monocytogenes revealed distinctions between its phospholipases and those previously discovered in other bacteria and showed how the Listeria enzymes are uniquely fitted to the intracellular lifestyle of this significant human pathogen.
Assuntos
Anaerobiose/genética , Lipídeos/genética , Plasmalogênios/metabolismo , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Lipídeos/biossíntese , Lipídeos/química , Fosfatidiletanolaminas/biossíntese , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Plasmalogênios/química , Plasmalogênios/genéticaRESUMO
BACKGROUND & AIMS: Since human induced pluripotent stem cells (iPSCs) develop into hepatic organoids through stages that resemble human embryonic liver development, they can be used to study developmental processes and disease pathology. Therefore, we examined the early stages of hepatic organoid formation to identify key pathways affecting early liver development. METHODS: Single-cell RNA-sequencing and metabolomic analysis was performed on developing organoid cultures at the iPSC, hepatoblast (day 9) and mature organoid stage. The importance of the phosphatidylethanolamine biosynthesis pathway to early liver development was examined in developing organoid cultures using iPSC with a CRISPR-mediated gene knockout and an over the counter medication (meclizine) that inhibits the rate-limiting enzyme in this pathway. Meclizine's effect on the growth of a human hepatocarcinoma cell line in a xenotransplantation model and on the growth of acute myeloid leukemia cells in vitro was also examined. RESULTS: Transcriptomic and metabolomic analysis of organoid development indicated that the phosphatidylethanolamine biosynthesis pathway is essential for early liver development. Unexpectedly, early hepatoblasts were selectively sensitive to the cytotoxic effect of meclizine. We demonstrate that meclizine could be repurposed for use in a new synergistic combination therapy for primary liver cancer: a glycolysis inhibitor reprograms cancer cell metabolism to make it susceptible to the cytotoxic effect of meclizine. This combination inhibited the growth of a human liver carcinoma cell line in vitro and in a xenotransplantation model, without causing significant side effects. This drug combination was also highly active against acute myeloid leukemia cells. CONCLUSION: Our data indicate that phosphatidylethanolamine biosynthesis is a targetable pathway for cancer; meclizine may have clinical efficacy as a repurposed anti-cancer drug when used as part of a new combination therapy. LAY SUMMARY: The early stages of human liver development were modeled using human hepatic organoids. We identified a pathway that was essential for early liver development. Based upon this finding, a novel combination drug therapy was identified that could be used to treat primary liver cancer and possibly other types of cancer.
Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Leucemia Mieloide Aguda/sangue , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Meclizina/administração & dosagem , Fosfatidiletanolaminas/antagonistas & inibidores , Fosfatidiletanolaminas/biossíntese , Piridinas/administração & dosagem , Quinolinas/administração & dosagem , Adulto , Idoso , Animais , Carcinoma Hepatocelular/patologia , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Combinada/métodos , Feminino , Técnicas de Inativação de Genes , Glicólise/efeitos dos fármacos , Células Hep G2 , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Organogênese/efeitos dos fármacos , Organogênese/genética , Organoides/efeitos dos fármacos , Organoides/metabolismo , RNA Nucleotidiltransferases/deficiência , RNA Nucleotidiltransferases/genética , Estudos Retrospectivos , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Members of the Bacteroidetes phylum, represented by Alistipes finegoldii, are prominent anerobic, Gram-negative inhabitants of the gut microbiome. The lipid biosynthetic pathways were analyzed using bioinformatic analyses, lipidomics, metabolic labeling and biochemistry to characterize exogenous fatty acid metabolism. A. finegoldii only produced the saturated fatty acids. The most abundant lipids were phosphatidylethanolamine (PE) and sulfonolipid (SL). Neither phosphatidylglycerol nor cardiolipin are present. PE synthesis is initiated by the PlsX/PlsY/PlsC pathway, whereas the SL pathway is related to sphingolipid biosynthesis. A. finegoldii incorporated medium-chain fatty acids (≤14 carbons) into PE and SL after their elongation, whereas long-chain fatty acids (≥16 carbons) were not elongated. Fatty acids >16 carbons were primarily incorporated into the 2-position of phosphatidylethanolamine at the PlsC step, the only biosynthetic enzyme that utilizes long-chain acyl-ACP. The ability to assimilate a broad-spectrum of fatty acid chain lengths present in the gut environment is due to the expression of two acyl-acyl carrier protein (ACP) synthetases. Acyl-ACP synthetase 1 had a substrate preference for medium-chain fatty acids and synthetase 2 had a substrate preference for long-chain fatty acids. This unique combination of synthetases allows A. finegoldii to utilize both the medium- and long-chain fatty acid nutrients available in the gut environment to assemble its membrane lipids.
Assuntos
Bacteroidetes/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Enxofre Ligases/metabolismo , Humanos , Lipídeos/biossíntese , Fosfatidiletanolaminas/biossínteseRESUMO
CTP:phosphoethanolamine cytidylyltransferase (ET), encoded by PCYT2, is the rate-limiting enzyme for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. Phosphatidylethanolamine is one of the most abundant membrane lipids and is particularly enriched in the brain. We identified five individuals with biallelic PCYT2 variants clinically characterized by global developmental delay with regression, spastic para- or tetraparesis, epilepsy and progressive cerebral and cerebellar atrophy. Using patient fibroblasts we demonstrated that these variants are hypomorphic, result in altered but residual ET protein levels and concomitant reduced enzyme activity without affecting mRNA levels. The significantly better survival of hypomorphic CRISPR-Cas9 generated pcyt2 zebrafish knockout compared to a complete knockout, in conjunction with previously described data on the Pcyt2 mouse model, indicates that complete loss of ET function may be incompatible with life in vertebrates. Lipidomic analysis revealed profound lipid abnormalities in patient fibroblasts impacting both neutral etherlipid and etherphospholipid metabolism. Plasma lipidomics studies also identified changes in etherlipids that have the potential to be used as biomarkers for ET deficiency. In conclusion, our data establish PCYT2 as a disease gene for a new complex hereditary spastic paraplegia and confirm that etherlipid homeostasis is important for the development and function of the brain.
Assuntos
Fosfatidiletanolaminas/biossíntese , RNA Nucleotidiltransferases/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Alelos , Animais , Atrofia , Encéfalo/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Feminino , Técnicas de Inativação de Genes , Variação Genética , Humanos , Lipidômica , Masculino , Camundongos , RNA Nucleotidiltransferases/deficiência , Adulto Jovem , Peixe-ZebraRESUMO
Duration of gene silencing due to the short-term silencing effects induced by exogenous siRNA have limited the therapeutic applications of RNAi and the development of RNAi-based therapeutics. We here generated Eg5 shRNA-expressing plasmids using the inverted terminal repeats (ITRs) sequences to produce Eg5 hairpin RNA under the control of U6 promoter. Using PEGylated DC-Chol/DOPE cationic liposomes, we demonstrated that a single systemic administration of Eg5 shRNA-expressing plasmid/liposome lipoplexes induced the long-term Eg5 silencing in the tumor sites of tumor-bearing mice, and ultimately lead to more sustained anticancer effects than standard synthetic siEg5/liposome lipoplexes. This non-viral Eg5 shRNA expression system had no risk of immunogenicity anticipated in the use of viral vectors, and could reduce the potential of off-target effects by scaling down the administration dose of RNAi therapeutics in patient. Therefore, the sustainable shRNA expression properties in the tumor sites suggest an efficient strategy to overcome the limitations caused by chemically synthesized siRNA methods such as short-term silencing effects and off-target effects. Herein, this study provides a non-viral silencing strategy for inducing long-term Eg5 silencing in vivo and suggests the great potential of Eg5 shRNA-expressing lipoplexes as a DNA-based RNAi therapeutics for cancer treatment.
Assuntos
Colesterol/análogos & derivados , Inativação Gênica/fisiologia , Cinesinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Plasmídeos/biossíntese , RNA Interferente Pequeno/biossíntese , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Colesterol/administração & dosagem , Colesterol/biossíntese , Colesterol/genética , Feminino , Expressão Gênica , Inativação Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Humanos , Cinesinas/administração & dosagem , Cinesinas/genética , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosfatidiletanolaminas/administração & dosagem , Fosfatidiletanolaminas/genética , Plasmídeos/administração & dosagem , Plasmídeos/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
Large hydrophobic molecules, such as carotenoids, cannot be effectively excreted from cells by natural transportation systems. These products accumulate inside the cells and affect normal cellular physiological functions, which hinders further improvement of carotenoid production by microbial cell factories. In this study, we proposed to construct a novel artificial transport system utilizing membrane lipids to carry and transport hydrophobic molecules. Membrane lipids allow the physiological mechanism of membrane dispersion to be reconstructed and amplified to establish a novel artificial membrane vesicle transport system (AMVTS). Specifically, a few proteins in E. coli were reported or proposed to be related to the formation mechanism of outer membrane vesicles, and were individually knocked out or overexpressed to test their physiological functions. The effects on tolR and nlpI were the most significant. Knocking out both tolR and nlpI resulted in a 13.7% increase of secreted ß-carotene with a 35.6% increase of specific production. To supplement the loss of membrane components of the cells due to the increased membrane vesicle dispersion, the synthesis pathway of phosphatidylethanolamine was engineered. While overexpression of AccABCD and PlsBC in TW-013 led to 15% and 17% increases of secreted ß-carotene, respectively, the overexpression of both had a synergistic effect and caused a 53-fold increase of secreted ß-carotene, from 0.2 to 10.7 mg/g dry cell weight (DCW). At the same time, the specific production of ß-carotene increased from 6.9 to 21.9 mg/g DCW, a 3.2-fold increase. The AMVTS was also applied to a ß-carotene hyperproducing strain, CAR025, which led to a 24-fold increase of secreted ß-carotene, from 0.5 to 12.7 mg/g DCW, and a 61% increase of the specific production, from 27.7 to 44.8 mg/g DCW in shake flask fermentation. The AMVTS built in this study establishes a novel artificial transport mechanism different from natural protein-based cellular transport systems, which has great potential to be applied to various cell factories for the excretion of a wide range of hydrophobic compounds.
Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica/métodos , beta Caroteno/metabolismo , Acetil-CoA Carboxilase/genética , Proteínas de Bactérias/genética , Corynebacterium/metabolismo , Proteínas de Escherichia coli/genética , Ácido Graxo Sintases/genética , Edição de Genes , Lipoproteínas/deficiência , Lipoproteínas/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Membranas Artificiais , Fosfatidiletanolaminas/biossíntese , Plasmídeos/genética , Plasmídeos/metabolismoRESUMO
Obesity increases the risk for cardiometabolic diseases. N-acyl phosphatidylethanolamines (NAPEs) are precursors of N-acylethanolamides, which are endogenous lipid satiety factors. Incorporating engineered bacteria expressing NAPEs into the gut microbiota retards development of diet induced obesity in wild-type mice. Because NAPEs can also exert anti-inflammatory effects, we hypothesized that administering NAPE-expressing bacteria to low-density lipoprotein receptor (Ldlr)-/- mice fed a Western diet would improve various indices of cardiometabolic disease manifested by these mice. NAPE-expressing E. coli Nissle 1917 (pNAPE-EcN), control Nissle 1917 (pEcN), or vehicle (veh) were given via drinking water to Ldlr-/- mice for 12 weeks. Compared to pEcN or veh treatment, pNAPE-EcN significantly reduced body weight and adiposity, hepatic triglycerides, fatty acid synthesis genes, and increased expression of fatty acid oxidation genes. pNAPE-EcN also significantly reduced markers for hepatic inflammation and early signs of fibrotic development. Serum cholesterol was reduced with pNAPE-EcN, but atherosclerotic lesion size showed only a non-significant trend for reduction. However, pNAPE-EcN treatment reduced lesion necrosis by 69% indicating an effect on preventing macrophage inflammatory death. Our results suggest that incorporation of NAPE expressing bacteria into the gut microbiota can potentially serve as an adjuvant therapy to retard development of cardiometabolic disease.
Assuntos
Doenças Cardiovasculares , Escherichia coli/crescimento & desenvolvimento , Microbioma Gastrointestinal , Cirrose Hepática , Fígado/metabolismo , Fosfatidiletanolaminas/biossíntese , Receptores de LDL/deficiência , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/microbiologia , Doenças Cardiovasculares/prevenção & controle , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/microbiologia , Cirrose Hepática/prevenção & controle , Camundongos , Triglicerídeos/genética , Triglicerídeos/metabolismoRESUMO
N-Acyl-phosphatidylethanolamines (NAPEs) represent a class of glycerophospholipids and serve as the precursors of bioactive N-acylethanolamines, including arachidonoylethanolamide (anandamide), palmitoylethanolamide and oleoylethanolamide. NAPEs are produced in mammals by N-acyltransferases, the enzymes which transfer an acyl chain of glycerophospholipids to the amino group of phosphatidylethanolamine. Recently, the É isoform of cytosolic phospholipase A2 (cPLA2É, also called PLA2G4E) was identified as Ca2+-dependent N-acyltransferase. We showed that the activity is remarkably stimulated by phosphatidylserine (PS) in vitro. In the present study, we investigated whether or not endogenous PS regulates the function of cPLA2É in living cells. When PS synthesis was suppressed by the knockdown of PS synthases in cPLA2É-expressing cells, the cPLA2É level and its N-acyltransferase activity were significantly reduced. Mutagenesis studies revealed that all of C2, lipase and polybasic domains of cPLA2É were required for its proper localization as well as the enzyme activity. Liposome-based assays showed that several anionic glycerophospholipids, including PS, phosphatidic acid and phosphatidylinositol 4,5-bisphosphate, enhance the Ca2+-dependent binding of purified cPLA2É to liposome membrane and stimulate its N-acyltransferase activity. Altogether, these results suggested that endogenous PS and other anionic phospholipids affect the localization and enzyme activity of cPLA2É.
Assuntos
Cálcio/metabolismo , Fosfolipases A2 do Grupo IV , Fosfolipases A2 do Grupo IV/química , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Células HEK293 , Humanos , Fosfatidiletanolaminas/biossíntese , Fosfatidiletanolaminas/químicaRESUMO
Mitochondrial synthesis of cardiolipin (CL) and phosphatidylethanolamine requires the transport of their precursors, phosphatidic acid and phosphatidylserine, respectively, to the mitochondrial inner membrane. In yeast, the Ups1-Mdm35 and Ups2-Mdm35 complexes transfer phosphatidic acid and phosphatidylserine, respectively, between the mitochondrial outer and inner membranes. Moreover, a Ups1-independent CL accumulation pathway requires several mitochondrial proteins with unknown functions including Mdm31. Here, we identified a mitochondrial porin, Por1, as a protein that interacts with both Mdm31 and Mdm35 in budding yeast (Saccharomyces cerevisiae). Depletion of the porins Por1 and Por2 destabilized Ups1 and Ups2, decreased CL levels by â¼90%, and caused loss of Ups2-dependent phosphatidylethanolamine synthesis, but did not affect Ups2-independent phosphatidylethanolamine synthesis in mitochondria. Por1 mutations that affected its interactions with Mdm31 and Mdm35, but not respiratory growth, also decreased CL levels. Using HeLa cells, we show that mammalian porins also function in mitochondrial CL metabolism. We conclude that yeast porins have specific and critical functions in mitochondrial phospholipid metabolism and that porin-mediated regulation of CL metabolism appears to be evolutionarily conserved.
Assuntos
Cardiolipinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cardiolipinas/genética , Células HeLa , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfatidiletanolaminas/genética , Porinas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
A Gram-stain negative, aerobic, oxidase and catalase positive, non-flagellated, pink coloured bacterium with gliding motility, designated as strain UDD1T was isolated from soil. The bacterium lacked flexirubin-type pigments. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain UDD1T formed a lineage within the family Cytophagaceae of the phylum Bacteroidetes, and forms a distinct clade with type strains of the closely related genus Pontibacter with similarities of 91.36-93.62%. Strain UDD1T contained MK-7 as the predominant menaquinone and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B) and iso-C15:0 as the major fatty acids. The major polar lipids were phosphatidylethanolamine and an unidentified glycolipid. The DNA G+C content of strain UDD1T was 49 mol%. On the basis of phenotypic, genotypic and phylogenetic analyses, the strain UDD1T represents a novel species of a new genus in the family Cytophagaceae, for which the name Edaphorhabdus rosea gen. nov., sp. nov., is proposed. The type strain of Edaphorhabdus rosea is UDD1T (= KCTC 62117T = JCM 32366T). The Digital Protologue Database Taxon number for strain UDD1T is GA00058.
Assuntos
Aerobiose/genética , Cytophagaceae/classificação , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Cytophagaceae/genética , Cytophagaceae/isolamento & purificação , Ácidos Graxos/biossíntese , Glicolipídeos/biossíntese , Fosfatidiletanolaminas/biossíntese , Filogeografia , República da Coreia , Microbiologia do Solo , Vitamina K 2/metabolismoRESUMO
A Gram-stain negative, non-motile, rod-shaped bacterial strain, designated 2-56T, was isolated from water and characterized taxonomically using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain 2-56T belongs to the family Flavobacteriaceae in the phylum Bacteroidetes and is closely related to Flavobacterium paronense KNUS1T (98.4%) and Flavobacterium collinsense 4-T-2T (96.7%). The G + C content of the genomic DNA of strain 2-56T was 33.4 mol%. The isolate contained MK-6 as the predominant respiratory quinone, and iso-C15:1 G (15.9%), iso-C15:0 (15.8%), iso-C17:0 3-OH (10.7%), and iso-C15:0 3-OH (9.6%) were the major fatty acids. The major polar lipids were phosphatidylethanolamine and an unidentified lipid. The phenotypic and chemotaxonomic data support the affiliation of strain 2-56T with the genus Flavobacterium. However, the DNA-DNA relatedness between the isolate and F. paronense and F. collinsense were 35.7 and 21.5%, respectively, clearly showing that strain 2-56T is not related to them at the species level. Strain 2-56T could be clearly differentiated from its close neighbours on the basis of its phenotypic, genotypic and chemotaxonomic features. Therefore, strain 2-56T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium knui sp. nov. is proposed. The type strain is 2-56T (= KCTC 62061T = JCM 32247T).
Assuntos
DNA Bacteriano/genética , Flavobacterium/classificação , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/biossíntese , Flavobacterium/química , Flavobacterium/genética , Flavobacterium/isolamento & purificação , Genótipo , Fenótipo , Fosfatidiletanolaminas/biossíntese , República da Coreia , Microbiologia da ÁguaRESUMO
This article provides a historical account of the discovery, chemistry, and biochemistry of two ubiquitous phosphoglycerolipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), including the ether lipids. In addition, the article describes the biosynthetic pathways for these phospholipids and how these pathways were elucidated. Several unique functions of PS and PE in mammalian cells in addition to their ability to define physical properties of membranes are discussed. For example, the translocation of PS from the inner to the outer leaflet of the plasma membrane of cells occurs during apoptosis and during some other specific physiological processes, and this translocation is responsible for profound life-or-death events. Moreover, mitochondrial function is severely impaired when the PE content of mitochondria is reduced below a threshold level. The discovery and implications of the existence of membrane contact sites between the endoplasmic reticulum and mitochondria and their relevance for PS and PE metabolism, as well as for mitochondrial function, are also discussed. Many of the recent advances in these fields are due to the use of isotope labeling for tracing biochemical pathways. In addition, techniques for disruption of specific genes in mice are now widely used and have provided major breakthroughs in understanding the roles and metabolism of PS and PE in vivo.