Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Gastroenterol ; 29(40): 5543-5556, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37970476

RESUMO

BACKGROUND: Phosphatidylinositol-3-kinases (PI3K) is a well-known route in inflammation-related cancer. Recent discovery on PI3K-related genes revealed a potential variant that links ulcerative colitis (UC) and colorectal cancer (CRC) with colitis-associated cancer (CAC). PI3K/AKT pathway has been recommended as a potential additional therapeutic option for CRC due to its substantial role in modifying cellular processes. Buparlisib is a pan-class I PI3K inhibitor previously shown to reduce tumor growth. AIM: To investigate the regulation of rs10889677 and the role of buparlisib in the PI3K signaling pathway in CAC pathogenesis. METHODS: Genomic DNA from 32 colonic samples, including CAC (n = 7), UC (n = 10) and CRC (n = 15), was sequenced for the rs10889677 mutation. The mutant and wildtype fragments were amplified and cloned in the pmirGLO vector. The luciferase activity of cloned vectors was assessed after transfection into the HT29 cell line. CAC mice were induced by a mixture of a single azoxymethane injection and three cycles of dextran sulphate sodium, then buparlisib was administered after 14 d. The excised colon was subjected to immunohistochemistry for Ki67 and Cleaved-caspase-3 markers and quantitative real-time polymerase chain reaction analysis for Pdk1 and Sgk2. RESULTS: Luciferase activity decreased by 2.07-fold in the rs10889677 mutant, confirming the hypothesis that the variant disrupted miRNA binding sites, which led to an increase in IL23R expression and the activation of the PI3K signaling pathway. Furthermore, CAC-induced mice had a significantly higher disease activity index (P < 0.05). Buparlisib treatment significantly decreased mean weight loss in CAC-induced mice (P < 0.05), reduced the percentage of proliferating cells by 5%, and increased the number of apoptotic cells. The treatment also caused a downward trend of Pdk1 expression and significantly decreased Sgk2 expression. CONCLUSION: Our findings suggested that the rs10889677 variant as a critical initiator of the PI3K signaling pathway, and buparlisib had the ability to prevent PI3K-non-AKT activation in the pathophysiology of CAC.


Assuntos
Aminopiridinas , Colite Ulcerativa , Neoplasias Associadas a Colite , Colite , Neoplasias do Colo , Morfolinas , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Associadas a Colite/complicações , Transdução de Sinais/genética , Inflamação/complicações , Colite Ulcerativa/complicações , Neoplasias do Colo/patologia , Fosfatidilinositóis/efeitos adversos , Luciferases , Colite/induzido quimicamente , Colite/complicações , Colite/tratamento farmacológico
2.
Pharmacogenet Genomics ; 33(5): 101-110, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261937

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by deficits in social communication and restrictive behaviors. Mouse nerve growth factor (mNGF), a neurotrophic factor, is critical for neuronal growth and survival, and the mNGF treatment is considered a promising therapy for neurodegeneration. In light of this, we aimed to evaluate the effect of mNGF on neurological function in ASD. METHODS: An ASD rat model was established by intraperitoneal injection of valproic acid (VPA). Social behavior, learning, and memory of the rats were measured. TdT-mediated dUTP Nick-end labeling and Nissl assays were performed to detect neuronal apoptosis and survival in the hippocampus and prefrontal cortex. Apoptosis-related proteins and oxidative stress markers were detected. RESULTS: mNGF improved locomotor activity, exploratory behavior, social interaction, and spatial learning and memory in VPA-induced ASD rats. In the hippocampus and prefrontal cortex, mNGF suppressed neuronal apoptosis, increased the number of neurons, superoxide dismutase, and glutathione levels, and decreased reactive oxygen species, nitric oxide, TNF-α, and IL-1ß levels compared with the VPA group. In addition, mNGF increased the levels of Bcl-2, p-phosphoinositide-3-kinase (PI3K), and p-serine/threonine kinase (Akt), and decreased the levels of Bax and cleaved caspase-3, while the PI3K inhibitor LY294002 reversed these effects. CONCLUSION: These data suggest that mNGF suppressed neuronal apoptosis and ameliorated the abnormal behaviors in VPA-induced ASD rats, in part, by activating the PI3K/Akt signaling pathway.


Assuntos
Transtorno do Espectro Autista , Ácido Valproico , Ratos , Animais , Camundongos , Humanos , Ácido Valproico/efeitos adversos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Proteínas Serina-Treonina Quinases/efeitos adversos , Proteínas Serina-Treonina Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Transdução de Sinais , Apoptose , Fosfatidilinositóis/efeitos adversos , Serina/efeitos adversos , Modelos Animais de Doenças
3.
Immunol Invest ; 52(5): 567-582, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37139806

RESUMO

Acute lung injury (ALI) progresses rapidly, is difficult to treat, and has a high fatality rate. The excessive inflammatory response is an important pathological mechanism of ALI. NLRC3 (NLR family CARD domain-containing 3), a non-inflammasome member of the NLR family, has been found that it could negatively regulates various biological pathways associated with inflammatory response, such as NF-κB (nuclear factor kappa B), PI3K (Phosphatidylinositol 3'-kinase)-Akt (protein kinase B)-mTOR (mammalian target of the rapamycin), and STING (stimulator of interferon genes) pathways, which are responsible for the progression of pulmonary inflammation and participate in regulating the pathological progression of ALI. However, the effects of NLRC3 in sepsis-induced pathological injury of lung tissue remain unclear. In this study, we aimed to investigate the potential effects of NLRC3 in the sepsis-induced ALI. To investigate whether NLRC3 participates in inhibiting the pulmonary inflammatory response of sepsis-induced ALI. Sepsis-induced ALI mice models were established by intrabronchial injection of lipopolysaccharide (LPS) or cecum ligation and puncture (CLP). The lentivirus with overexpression of NLRC3 (LV-NLRC3) and downregulation of NLRC3 (LV-NLRC3-RNAi) were transfected to LPS-induced ALI mice. The expression of NLRC3 was upregulated or downregulated in the lung tissue of sepsis-induced ALI mice. Transfection with NLRC3-overexpression lentivirus significantly decreased inflammatory response in the lung of LPS-induced ALI mice in contrast to the control group. By transfection with NLRC3-silencing lentivirus, the inflammatory response in LPS-induced ALI mice was aggravated. Our study provides evidence of the protective effect of NLRC3 in sepsis-induced ALI by inhibiting excessive inflammatory response of the lung tissue.AbbreviationsAcute lung injury: ALI; intensive care units: ICU; lipopolysaccharide: LPS; acute respiratory distress syndrome: ARDS; bronchoalveolar lavage fluid: BALF; nucleotide-binding oligomerization domain-like receptors: NLRs; NLR family CARD domain containing 3: NLRC3; nuclear factor kappa B: NF-κB; tumor necrosis factor receptor-associated factor 6: TRAF6; Phosphatidylinositol 3'-kinase: PI3K; protein kinase B: Akt; mammalian target of the rapamycin: mTOR; stimulator of interferon genes: STING; TANK-binding kinase 1: TBK1; type I interferon: IFN-I; toll-like receptors: TLRs; tumor necrosis factor: TNF; interleukin: IL; NOD-like receptor protein 3: NLRP3; enhanced green fluorescent protein: EGFP; lentivirus: LV; phosphate-buffered saline: PBS; intrabronchial: i.t.; cecum ligation and puncture: CLP; wet/dry: W/D; Real time polymerase chain reaction: RT-PCR; enzyme-linked immunosorbent assay: ELISA; hematoxylin and eosin: H&E; radio immunoprecipitation assay: RIPA; sodium dodecyl sulfate polyacrylamide gel electrophoresis: SDS-PAGE; polyvinylidene fluoride: PVDF; glyceraldehyde 3-phosphate dehydrogenase: GAPDH; bovine serum albumin: BSA; Tris buffered saline containing Tween 20: TBST; standard deviation: SD; one-way analysis of variance: ANOVA; janus kinase 2: JAK2; activators of transcription 3: STAT3; pathogen associated molecular patterns: PAMPs; danger associated molecular patterns: DAMPs.


Assuntos
Lesão Pulmonar Aguda , Sepse , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/efeitos adversos , Pulmão/patologia , Lesão Pulmonar Aguda/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fosfatidilinositol 3-Quinase , Interferons , Sepse/complicações , Sepse/metabolismo , Fosfatidilinositóis/efeitos adversos , Fosfatidilinositóis/metabolismo , Mamíferos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular
4.
Cells ; 9(4)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252387

RESUMO

Phosphatidylinositol and its phosphorylated derivatives, the phosphoinositides, play many important roles in all eukaryotic cells. These include modulation of physical properties of membranes, activation or inhibition of membrane-associated proteins, recruitment of peripheral membrane proteins that act as effectors, and control of membrane trafficking. They also serve as precursors for important second messengers, inositol (1,4,5) trisphosphate and diacylglycerol. Animal models and human diseases involving defects in phosphoinositide regulatory pathways have revealed their importance for function in the mammalian retina and retinal pigmented epithelium. New technologies for localizing, measuring and genetically manipulating them are revealing new information about their importance for the function and health of the vertebrate retina.


Assuntos
Fosfatidilinositóis/efeitos adversos , Transporte Proteico/fisiologia , Retina/patologia , Doenças Retinianas/fisiopatologia , Humanos , Fosforilação , Transdução de Sinais
5.
J Control Release ; 160(2): 394-400, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22210161

RESUMO

A panel of in vitro tests intended for evaluation of the nano-sized drug delivery systems' compliance with human blood was applied to liposomal formulations of anticancer lipophilic prodrugs incorporated into the lipid bilayer. Liposomes on the basis of natural phosphatidylcholine (PC) and phosphatidylinositol (PI), 8:1 (mol) were loaded with 10 mol% of either methotrexate or melphalan 1,2-dioleoylglyceride esters (MTX-DOG and Mlph-DOG respectively) and either decorated with 2 mol% of sialyl Lewis X/A (SiaLe(X/A)) tetrasaccharide ligand or not. Hemolysis rate, red blood cells and platelets integrity and size distribution, complement (C) activation, and coagulation cascade functioning were analyzed upon the material incubation with whole blood. Both formulations were negatively charged with the zeta potential value being higher in the case of MTX-DOG liposomes, which also were larger than Mlph-DOG liposomes and more prone to aggregation. Accordingly, in hemocompatibility tests Mlph-DOG liposomes did not provoke any undesirable effects, while MTX-DOG liposomes induced significant C activation and abnormal coagulation times in a concentration-dependent manner. Reactivity of the liposome surface was not affected by the presence of SiaLe(X/A) or PI. Decrease in liposome loading with MTX-DOG from 10 to 2.5% resulted in lower surface charge density, smaller liposome size and considerably reduced impact on C activation and coagulation cascades.


Assuntos
Bicamadas Lipídicas , Lipossomos , Melfalan/administração & dosagem , Metotrexato/administração & dosagem , Pró-Fármacos/administração & dosagem , Animais , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Ativação do Complemento/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Técnicas In Vitro , Bicamadas Lipídicas/efeitos adversos , Bicamadas Lipídicas/sangue , Bicamadas Lipídicas/química , Lipossomos/efeitos adversos , Lipossomos/sangue , Lipossomos/química , Nanopartículas/química , Tamanho da Partícula , Fosfatidilcolinas/efeitos adversos , Fosfatidilcolinas/sangue , Fosfatidilcolinas/química , Fosfatidilinositóis/efeitos adversos , Fosfatidilinositóis/sangue , Fosfatidilinositóis/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA