Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(17): 5995-6005, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37086192

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PIP2) is an important molecule located at the inner leaflet of cell membrane, where it serves as anchoring sites for a cohort of membrane-associated molecules and as a broad-reaching signaling intermediate. The lipid raft is thought as the major platform recruiting proteins for signal transduction and also known to mediate PIP2 accumulation across the membrane. While the significance of this cross-membrane coupling is increasingly appreciated, it remains unclear whether and how PIP2 senses the dynamic change of the ordered lipid domains over the packed hydrophobic core of the bilayer. Herein, by means of molecular dynamic simulation, we reveal that inner PIP2 molecules can sense the outer lipid domain via inter-leaflet coupling, and the coupling manner is dictated by the acyl chain length of sphingomyelin (SM) partitioned to the lipid domain. Shorter SM promotes membrane domain registration, whereby PIP2 accumulates beneath the domain across the membrane. In contrast, the anti-registration is thermodynamically preferred if the lipid domain has longer SM due to the hydrophobic mismatch between the corresponding acyl chains in SM and PIP2. In this case, PIP2 is expelled by the domain with a higher diffusivity. These results provide molecular insights into the regulatory mechanism of correlation between the outer lipid domain and inner PIP2, both of which are critical components for cell signal transduction.


Assuntos
Fosfatidilinositóis , Esfingomielinas , Humanos , Fosfatidilinositóis/análise , Fosfatidilinositóis/metabolismo , Membrana Celular/química , Simulação de Dinâmica Molecular , Microdomínios da Membrana/química , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo
2.
Adv Exp Med Biol ; 1422: 61-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988877

RESUMO

Cell membranes regulate a wide range of phenomena that are implicated in key cellular functions. Cholesterol, a critical component of eukaryotic cell membranes, is responsible for cellular organization, membrane elasticity, and other critical physicochemical parameters. Besides cholesterol, other lipid components such as phosphatidylinositol 4,5-bisphosphate (PIP2) are found in minor concentrations in cell membranes yet can also play a major regulatory role in various cell functions. In this chapter, we describe how solid-state deuterium nuclear magnetic resonance (2H NMR) spectroscopy together with neutron spin-echo (NSE) spectroscopy can inform synergetic changes to lipid molecular packing due to cholesterol and PIP2 that modulate the bending rigidity of lipid membranes. Fundamental structure-property relations of molecular self-assembly are illuminated and point toward a length and time-scale dependence of cell membrane mechanics, with significant implications for biological activity and membrane lipid-protein interactions.


Assuntos
Lipídeos de Membrana , Fosfatidilinositóis , Fosfatidilinositóis/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Colesterol/química , Biofísica , Bicamadas Lipídicas/química , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo
3.
Adv Exp Med Biol ; 1422: 381-392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988889

RESUMO

Besides its protective role in the maintenance of cell homeostasis, the plasma membrane is the site of exchanges between the cell interior and the extracellular medium. To circumvent the hydrophobic barrier formed by the acyl chains of the lipid bilayer, protein channels and transporters are key players in the exchange of small hydrophilic compounds such as ions or nutrients, but they hardly account for the transport of larger biological molecules. Exchange of proteins usually relies on membrane-fusion events between vesicles and the plasma membrane. In recent years, several alternative unconventional protein secretion (UPS) pathways across the plasma membrane have been characterised for a specific set of secreted substrates, some of them excluding any membrane-fusion events (Dimou and Nickel, Curr Biol 28:R406-R410, 2018). One of thesbe pathways, referred as type I UPS, relies on the direct translocation of the protein across the plasma membrane and not surprisingly, lipids are essential players in this process. In this chapter, we discuss the roles of phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and cholesterol in unconventional pathways involving Engrailed-2 homeoprotein and fibroblast growth factor 2.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana Transportadoras , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Transporte Proteico , Proteínas de Membrana Transportadoras/metabolismo , Colesterol/metabolismo , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo
4.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769158

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is an essential plasma membrane component involved in several cellular functions, including membrane trafficking and cytoskeleton organization. This function multiplicity is partially achieved through a dynamic spatiotemporal organization of PI(4,5)P2 within the membrane. Here, we use a Förster resonance energy transfer (FRET) approach to quantitatively assess the extent of PI(4,5)P2 confinement within the plasma membrane. This methodology relies on the rigorous evaluation of the dependence of absolute FRET efficiencies between pleckstrin homology domains (PHPLCδ) fused with fluorescent proteins and their average fluorescence intensity at the membrane. PI(4,5)P2 is found to be significantly compartmentalized at the plasma membrane of HeLa cells, and these clusters are not cholesterol-dependent, suggesting that membrane rafts are not involved in the formation of these nanodomains. On the other hand, upon inhibition of actin polymerization, compartmentalization of PI(4,5)P2 is almost entirely eliminated, showing that the cytoskeleton network is the critical component responsible for the formation of nanoscale PI(4,5)P2 domains in HeLa cells.


Assuntos
Citoesqueleto/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Microdomínios da Membrana/metabolismo , Microscopia , Fosfatidilinositol 4,5-Difosfato/análise
5.
Histochem Cell Biol ; 156(2): 109-121, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34052862

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is generated through phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P) by Mss4p, the only PtdIns phosphate 5-kinase in yeast cells. PtdIns(4,5)P2 is involved in various kinds of yeast functions. PtdIns(4)P is not only the immediate precursor of PtdIns(4,5)P2, but also an essential signaling molecule in the plasma membrane, Golgi, and endosomal system. To analyze the distribution of PtdIns(4,5)P2 and PtdIns(4)P in the yeast plasma membrane at a nanoscale level, we employed a freeze-fracture electron microscopy (EM) method that physically immobilizes lipid molecules in situ. It has been reported that the plasma membrane of budding yeast can be divided into three distinct areas: furrowed, hexagonal, and undifferentiated flat. Previously, using the freeze-fracture EM method, we determined that PtdIns(4)P is localized in the undifferentiated flat area, avoiding the furrowed and hexagonal areas of the plasma membrane. In the present study, we found that PtdIns(4,5)P2 was localized in the cytoplasmic leaflet of the plasma membrane, and concentrated in the furrowed area. There are three types of PtdIns 4-kinases which are encoded by stt4, pik1, and lsb6. The labeling density of PtdIns(4)P in the plasma membrane significantly decreased in both pik1ts and stt4ts mutants. However, the labeling densities of PtdIns(4,5)P2 in the plasma membrane of both the pik1ts and stt4ts mutants were comparable to that of the wild type yeast. These results suggest that PtdIns(4)P produced by either Pik1p or Stt4p is immediately phosphorylated by Mss4p and converted to PtdIns(4,5)P2 at the plasma membrane.


Assuntos
Membrana Celular/química , Fosfatidilinositol 4,5-Difosfato/análise , Saccharomycetales/química , 1-Fosfatidilinositol 4-Quinase/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
6.
Methods Mol Biol ; 2251: 121-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481235

RESUMO

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is an enzyme that converts phosphatidylinositol 4-phosphate [PI4P] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. PIP5K plays a key role in the regulation of vesicular transport, cytoskeleton reorganization, and cell division. In general, to investigate an enzymatic activity of PIP5K, the amount of incorporated [P32] ATP into PI(4,5)P2 fraction is measured in in vitro reconstitution experiments. However, tools to monitor dynamic changes in its activity in real time have been lacking. Recently, we have developed a novel PIP5K assay using fluorescence spectroscopy. Compared to conventional methods in which lipids extraction steps are needed, our method is easy and quick to perform and enables a real-time analysis. This chapter provides a protocol to set up and perform the novel PIP5K assay we have recently established.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/análise , Fosfotransferases (Aceptor do Grupo Álcool)/química , Espectrometria de Fluorescência/métodos , Animais , Humanos , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositol 4,5-Difosfato/química , Fosfatos de Fosfatidilinositol/análise , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/análise , Fosfatidilinositóis/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transporte Proteico
7.
Biochem Biophys Res Commun ; 527(4): 1050-1056, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32439160

RESUMO

Phospholipids are distributed asymmetrically in the plasma membrane (PM) of mammalian cells. Phosphatidylinositol (PI) and its phosphorylated forms are primarily located in the inner leaflet of the PM. Among them, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a well-known substrate for phospholipase C (PLC) or phosphoinositide-3 kinase, and is also a regulator for the actin cytoskeleton or ion channels. Although functions of PI(4,5)P2 in the inner leaflet are well characterized, those in the outer leaflet are poorly understood. Here, PI(4,5)P2 was detected in the cell surface of non-permeabilized cells by anti-PI(4,5)P2 antibodies and the pleckstrin-homology (PH) domain of PLCδ1 that specifically binds PI(4,5)P2. Cell surface PI(4,5)P2 signal was universally detected in various cell lines and freshly isolated mouse bone marrow cells and showed a punctate pattern in a cholesterol, sphingomyelin, and actin polymerization-dependent manner. Furthermore, blocking cell surface PI(4,5)P2 by the addition of anti-PI(4,5)P2 antibody or the PH domain of PLCδ1 inhibited cell attachment, spreading, and migration. Taken together, these results indicate a unique localization of PI(4,5)P2 in the outer leaflet that may have a crucial role in cell attachment, spreading, and migration.


Assuntos
Adesão Celular , Membrana Celular/metabolismo , Movimento Celular , Fosfatidilinositol 4,5-Difosfato/metabolismo , Actinas/metabolismo , Linhagem Celular , Colesterol/metabolismo , Humanos , Fosfatidilinositol 4,5-Difosfato/análise , Domínios de Homologia à Plecstrina , Esfingomielinas/metabolismo , Fosfolipases Tipo C/análise , Fosfolipases Tipo C/metabolismo
8.
Commun Biol ; 3(1): 92, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111929

RESUMO

PTEN, a 3-phosphatase of phosphoinositide, regulates asymmetric PI(3,4,5)P3 signaling for the anterior-posterior polarization and migration of motile cells. PTEN acts through posterior localization on the plasma membrane, but the mechanism for this accumulation is poorly understood. Here we developed an in vitro single-molecule imaging assay with various lipid compositions and use it to demonstrate that the enzymatic product, PI(4,5)P2, stabilizes PTEN's membrane-binding. The dissociation kinetics and lateral mobility of PTEN depended on the PI(4,5)P2 density on artificial lipid bilayers. The basic residues of PTEN were responsible for electrostatic interactions with anionic PI(4,5)P2 and thus the PI(4,5)P2-dependent stabilization. Single-molecule imaging in living Dictyostelium cells revealed that these interactions were indispensable for the stabilization in vivo, which enabled efficient cell migration by accumulating PTEN posteriorly to restrict PI(3,4,5)P3 distribution to the anterior. These results suggest that PI(4,5)P2-mediated positive feedback and PTEN-induced PI(4,5)P2 clustering may be important for anterior-posterior polarization.


Assuntos
Membranas/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Polaridade Celular , Células Cultivadas , Dictyostelium/química , Dictyostelium/metabolismo , Retroalimentação Fisiológica/fisiologia , PTEN Fosfo-Hidrolase/análise , Fosfatidilinositol 4,5-Difosfato/análise , Ligação Proteica , Imagem Individual de Molécula/métodos
9.
Sci Rep ; 9(1): 17661, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776383

RESUMO

Human immunodeficiency virus type 1 (HIV-1) acquires its lipid envelope during budding from the plasma membrane of the host cell. Various studies indicated that HIV-1 membranes differ from producer cell plasma membranes, suggesting budding from specialized membrane microdomains. The phosphoinositide PI(4,5)P2 has been of particular interest since PI(4,5)P2 is needed to recruit the viral structural polyprotein Gag to the plasma membrane and thus facilitates viral morphogenesis. While there is evidence for an enrichment of PIP2 in HIV-1, fully quantitative analysis of all phosphoinositides remains technically challenging and therefore has not been reported, yet. Here, we present a comprehensive analysis of the lipid content of HIV-1 and of plasma membranes from infected and non-infected producer cells, resulting in a total of 478 quantified lipid compounds, including molecular species distribution of 25 different lipid classes. Quantitative analyses of phosphoinositides revealed strong enrichment of PIP2, but also of PIP3, in the viral compared to the producer cell plasma membrane. We calculated an average of ca. 8,000 PIP2 molecules per HIV-1 particle, three times more than Gag. We speculate that the high density of PIP2 at the HIV-1 assembly site is mediated by transient interactions with viral Gag polyproteins, facilitating PIP2 concentration in this microdomain. These results are consistent with our previous observation that PIP2 is not only required for recruiting, but also for stably maintaining Gag at the plasma membrane. We believe that this quantitative analysis of the molecular anatomy of the HIV-1 lipid envelope may serve as standard reference for future investigations.


Assuntos
Membrana Celular/química , HIV-1/química , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositóis/análise , HIV-1/ultraestrutura , Humanos , Lipídeos/análise , Microdomínios da Membrana , Fosfatidilinositóis/metabolismo , Montagem de Vírus , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
10.
Biosci Rep ; 39(10)2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31652444

RESUMO

Phosphatidylinositol-5-phosphate (PI5P) is a low abundance lipid proposed to have functions in cell migration, DNA damage responses, receptor trafficking and insulin signalling in metazoans. However, studies of PI5P function are limited by the lack of scalable techniques to quantify its level from cells and tissues in multicellular organisms. Currently, PI5P measurement requires the use of radionuclide labelling approaches that are not easily applicable in tissues or in vivo samples. In the present study, we describe a simple and reliable, non-radioactive mass assay to measure total PI5P levels from cells and tissues of Drosophila, a genetically tractable multicellular model. We use heavy oxygen-labelled ATP (18O-ATP) to label PI5P from tissue extracts while converting it into PI(4,5)P2 using an in vitro kinase reaction. The product of this reaction can be selectively detected and quantified with high sensitivity using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) platform. Further, using this method, we capture and quantify the unique acyl chain composition of PI5P from Drosophila cells and tissues. Finally, we demonstrate the use of this technique to quantify elevations in PI5P levels, from Drosophila larval tissues and cultured cells depleted of phosphatidylinositol 5 phosphate 4-kinase (PIP4K), that metabolizes PI5P into PI(4,5)P2 thus regulating its levels. Thus, we demonstrate the potential of our method to quantify PI5P levels with high sensitivity from cells and tissues of multicellular organisms thus accelerating understanding of PI5P functions in vivo.


Assuntos
Fosfatidilinositol 4,5-Difosfato , Fosfatos de Fosfatidilinositol , Espectrometria de Massas em Tandem , Animais , Linhagem Celular , Cromatografia Líquida , Drosophila melanogaster , Especificidade de Órgãos , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/análise , Fosfatos de Fosfatidilinositol/metabolismo
11.
Lipids ; 53(8): 835-839, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30334270

RESUMO

Plant diseases caused by Phytophthora species are serious threats to agriculture and the natural environment. Genome sequencing has revealed the lack of a gene for canonical phospholipase C (PLC), an enzyme that was hitherto thought to be ubiquitous in eukaryotes. PLC acts in the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5-P2 ), a membrane-bound phospholipid critical for signal initiation in many cellular processes. Previous studies have not provided evidence of endogenous PtdIns-4,5-P2 in Phytophthora and, in the absence of canonical PLC, argued for redundancy or loss in the PLC pathway in Phytophthora. Using liquid chromatography mass spectrometry, we have detected endogenous PtdIns-4,5-P2 in Phytophthora cinnamomi. This is the first identification of the phospholipid in the genus, and is significant because it indicates that the signal transduction pathway of the PLC product, inositol 1,4,5-trisphosphate (IP3 ), may have been retained in Phytophthora incorporating an as-yet unidentified homolog or analog of PLC.


Assuntos
Fosfatidilinositol 4,5-Difosfato/análise , Phytophthora/química , Cromatografia Líquida , Espectrometria de Massas , Estrutura Molecular
12.
J Biol Chem ; 293(23): 8734-8749, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29610273

RESUMO

G protein-coupled receptors that signal through Gαq (Gq receptors), such as α1-adrenergic receptors (α1-ARs) or angiotensin receptors, share a common proximal signaling pathway that activates phospholipase Cß1 (PLCß1), which cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. Despite these common proximal signaling mechanisms, Gq receptors produce distinct physiological responses, yet the mechanistic basis for this remains unclear. In the heart, Gq receptors are thought to induce myocyte hypertrophy through a mechanism termed excitation-transcription coupling, which provides a mechanistic basis for compartmentalization of calcium required for contraction versus IP3-dependent intranuclear calcium required for hypertrophy. Here, we identified subcellular compartmentalization of Gq-receptor signaling as a mechanistic basis for unique Gq receptor-induced hypertrophic phenotypes in cardiac myocytes. We show that α1-ARs co-localize with PLCß1 and PIP2 at the nuclear membrane. Further, nuclear α1-ARs induced intranuclear PLCß1 activity, leading to histone deacetylase 5 (HDAC5) export and a robust transcriptional response (i.e. significant up- or down-regulation of 806 genes). Conversely, we found that angiotensin receptors localize to the sarcolemma and induce sarcolemmal PLCß1 activity, but fail to promote HDAC5 nuclear export, while producing a transcriptional response that is mostly a subset of α1-AR-induced transcription. In summary, these results link Gq-receptor compartmentalization in cardiac myocytes to unique hypertrophic transcription. They suggest a new model of excitation-transcription coupling in adult cardiac myocytes that accounts for differential Gq-receptor localization and better explains distinct physiological functions of Gq receptors.


Assuntos
Cardiomegalia/patologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C beta/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Feminino , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/análise , Histona Desacetilases/análise , Histona Desacetilases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Fenótipo , Fosfatidilinositol 4,5-Difosfato/análise , Fosfolipase C beta/análise , Receptores Adrenérgicos alfa 1/análise , Sarcolema/metabolismo , Sarcolema/patologia , Ativação Transcricional
13.
J Neurosci ; 37(48): 11632-11646, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29066559

RESUMO

Membrane proteins, such as ion channels, interact dynamically with their lipid environment. Phosphoinositol-4,5-bisphosphate (PIP2) can directly or indirectly modify ion-channel properties. In auditory sensory hair cells of rats (Sprague Dawley) of either sex, PIP2 localizes within stereocilia, near stereocilia tips. Modulating the amount of free PIP2 in inner hair-cell stereocilia resulted in the following: (1) the loss of a fast component of mechanoelectric-transduction current adaptation, (2) an increase in the number of channels open at the hair bundle's resting position, (3) a reduction of single-channel conductance, (4) a change in ion selectivity, and (5) a reduction in calcium pore blocking effects. These changes occur without altering hair-bundle compliance or the number of functional stereocilia within a given hair bundle. Although the specific molecular mechanism for PIP2 action remains to be uncovered, data support a hypothesis for PIP2 directly regulating channel conformation to alter calcium permeation and single-channel conductance.SIGNIFICANCE STATEMENT How forces are relayed to the auditory mechanoelectrical transduction (MET) channel remains unknown. However, researchers have surmised that lipids might be involved. Previous work on bullfrog hair cells showed an effect of phosphoinositol-4,5-bisphosphate (PIP2) depletion on MET current amplitude and adaptation, leading to the postulation of the existence of an underlying myosin-based adaptation mechanism. We find similar results in rat cochlea hair cells but extend these data to include single-channel analysis, hair-bundle mechanics, and channel-permeation properties. These additional data attribute PIP2 effects to actions on MET-channel properties and not motor interactions. Further findings support PIP2's role in modulating a fast, myosin-independent, and Ca2+-independent adaptation process, validating fast adaptation's biological origin. Together this shows PIP2's pivotal role in auditory MET, likely as a direct channel modulator.


Assuntos
Adaptação Fisiológica/fisiologia , Células Ciliadas Auditivas/fisiologia , Mecanotransdução Celular/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Animais , Feminino , Células Ciliadas Auditivas/química , Masculino , Fosfatidilinositol 4,5-Difosfato/análise , Ratos , Ratos Sprague-Dawley
14.
J Biol Chem ; 290(23): 14289-301, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25887399

RESUMO

Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) at the plasma membrane (PM) constitutively controls many cellular functions, and its hydrolysis via receptor stimulation governs cell signaling. The PI transfer protein Nir2 is essential for replenishing PM PIP2 following receptor-induced hydrolysis, but key mechanistic aspects of this process remain elusive. Here, we demonstrate that PI at the membrane of the endoplasmic reticulum (ER) is required for the rapid replenishment of PM PIP2 mediated by Nir2. Nir2 detects PIP2 hydrolysis and translocates to ER-PM junctions via binding to phosphatidic acid. With distinct phosphatidic acid binding abilities and PI transfer protein activities, Nir2 and its homolog Nir3 differentially regulate PIP2 homeostasis in cells during intense receptor stimulation and in the resting state, respectively. Our study reveals that Nir2 and Nir3 work in tandem to achieve different levels of feedback based on the consumption of PM PIP2 and function at ER-PM junctions to mediate nonvesicular lipid transport between the ER and the PM.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Ligação ao Cálcio/análise , Membrana Celular/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Proteínas do Olho/análise , Células HeLa , Homeostase , Humanos , Hidrólise , Proteínas de Membrana/análise , Proteínas de Membrana Transportadoras , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/análise
15.
Pancreas ; 44(1): 158-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25222134

RESUMO

OBJECTIVES: The α and ß cells of pancreatic islet release important hormones in response to intracellular Ca increases that result from Ca releases through the inositol 1,4,5-trisphoshate receptor (IP3R)/Ca channels. Yet no systematic studies on distribution of IP3R/Ca channels have been done, prompting us to investigate the distribution of all 3 IP3R isoforms. METHODS: Immunogold electron microscopy was performed to determine the presence and the relative concentrations of all 3 IP3R isoforms in 2 major organelles secretory granules (SGs) and the endoplasmic reticulum of α and ß cells of rat pancreas. RESULTS: All 3 IP3R isoforms were present in SG membranes of both cells, and the IP3R concentrations in SGs were ∼2-fold higher than those in the endoplasmic reticulum. Moreover, large halos shown in the electron microscope images of insulin-containing SGs of ß cells were gap spaces that resulted from separation of granule membranes from the surrounding cytoplasm. CONCLUSIONS: These results strongly suggest the important roles of SGs in IP3-induced, Ca-dependent regulatory secretory pathway in pancreas. Moreover, the accurate location of SG membranes of ß cells was further confirmed by the location of another integral membrane protein synaptotagmin V and of membrane phospholipid PI(4,5)P2.


Assuntos
Células Secretoras de Glucagon/química , Receptores de Inositol 1,4,5-Trifosfato/análise , Células Secretoras de Insulina/química , Vesículas Secretórias/química , Animais , Retículo Endoplasmático/química , Retículo Endoplasmático/ultraestrutura , Células Secretoras de Glucagon/ultraestrutura , Imuno-Histoquímica , Células Secretoras de Insulina/ultraestrutura , Microscopia Eletrônica , Fosfatidilinositol 4,5-Difosfato/análise , Ratos Sprague-Dawley , Vesículas Secretórias/ultraestrutura , Sinaptotagminas/análise
16.
Adv Exp Med Biol ; 991: 85-104, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23775692

RESUMO

PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) is a relatively common anionic lipid that regulates cellular functions by multiple mechanisms. Hydrolysis of PtdIns(4,5)P2 by phospholipase C yields inositol trisphosphate and diacylglycerol. Phosphorylation by phosphoinositide 3-kinase yields PtdIns(3,4,5)P3, which is a potent signal for survival and proliferation. Also, PtdIns(4,5)P2 can bind directly to integral and peripheral membrane proteins. As an example of regulation by PtdIns(4,5)P2, we discuss phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in detail. PTEN is an important tumor suppressor and hydrolyzes PtdIns(3,4,5)P3. PtdIns(4,5)P2 enhances PTEN association with the plasma membrane and activates its phosphatase activity. This is a critical regulatory mechanism, but a detailed description of this process from a structural point of view is lacking. The disordered lipid bilayer environment hinders structural determinations of membrane-bound PTEN. A new method to analyze membrane-bound protein measures neutron reflectivity for proteins bound to tethered phospholipid membranes. These methods allow determination of the orientation and shape of membrane-bound proteins. In combination with molecular dynamics simulations, these studies will provide crucial structural information that can serve as a foundation for our understanding of PTEN regulation in normal and pathological processes.


Assuntos
PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Transdução de Sinais/fisiologia , Animais , Proliferação de Células , Sobrevivência Celular , Humanos , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , PTEN Fosfo-Hidrolase/análise , PTEN Fosfo-Hidrolase/química , Fosfatidilinositol 4,5-Difosfato/análise
17.
Plant J ; 67(4): 635-47, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21554449

RESUMO

PtdIns-4,5-bisphosphate is a lipid messenger of eukaryotic cells that plays a critical role in processes such as cytoskeleton organization, intracellular vesicular trafficking, secretion, cell motility, regulation of ion channels and nuclear signalling pathways. The enzymes responsible for the synthesis of PtdIns(4,5)P2 are phosphatidylinositol phosphate kinases (PIPKs). The moss Physcomitrella patens contains two PIPKs, PpPIPK1 and PpPIPK2. To study their physiological role, both genes were disrupted by targeted homologous recombination and as a result mutant plants with lower PtdIns(4,5)P2 levels were obtained. A strong phenotype for pipk1, but not for pipk2 single knockout lines, was obtained. The pipk1 knockout lines were impaired in rhizoid and caulonemal cell elongation, whereas pipk1-2 double knockout lines showed dramatic defects in protonemal and gametophore morphology manifested by the absence of rapidly elongating caulonemal cells in the protonemal tissue, leafy gametophores with very short rhizoids, and loss of sporophyte production. pipk1 complemented by overexpression of PpPIPK1 fully restored the wild-type phenotype whereas overexpression of the inactive PpPIPK1E885A did not. Overexpression of PpPIPK2 in the pipk1-2 double knockout did not restore the wild-type phenotype demonstrating that PpPIPK1 and PpPIPK2 are not functionally redundant. In vivo imaging of the cytoskeleton network revealed that the shortened caulonemal cells in the pipk1 mutants was the result of the absence of the apicobasal gradient of cortical F-actin cables normally observed in wild-type caulonemal cells. Our data indicate that both PpPIPKs play a crucial role in the development of the moss P. patens, and particularly in the regulation of tip growth.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Bryopsida/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Substituição de Aminoácidos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bryopsida/enzimologia , Bryopsida/genética , Bryopsida/ultraestrutura , Citocalasina B/farmacologia , Regulação da Expressão Gênica de Plantas , Recombinação Homóloga , Fenótipo , Fosfatidilinositol 4,5-Difosfato/análise , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Deleção de Sequência , Tiazolidinas/farmacologia
19.
Cell Host Microbe ; 7(6): 453-62, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20542249

RESUMO

Shifts in electrostatic surface charge of membranes have recently been highlighted as a significant factor contributing to protein targeting to the plasma membrane and nascent phagosomes. Intracellular, vacuole-adapted pathogens may also regulate surface charge of their vacuoles to establish a replicative niche. Since Salmonella enterica serovar Typhimurium controls trafficking of the Salmonella-containing vacuole (SCV) and inhibits its fusion with lysosomes, we investigated the contribution of surface charge to this process. Using recently developed fluorescent biosensors, we show that the bacterial phosphoinositide phosphatase SopB controls membrane surface charge of nascent SCVs by reducing levels of negatively charged lipids phosphatidylinositol-4,5-bisphosphate and phosphatidylserine. This SopB activity results in dissociation of a number of host-cell endocytic trafficking proteins from this compartment and inhibits SCV-lysosome fusion. Moreover, inducible reduction of negative charge rescues DeltasopB bacteria-containing SCVs from fusion with lysosomes. These results reveal a membrane-charge-based mechanism used by S. Typhimurium to control SCV maturation.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Membranas Intracelulares/química , Salmonella typhimurium/patogenicidade , Vacúolos/microbiologia , Fatores de Virulência/metabolismo , Eletricidade , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilserinas/análise , Vacúolos/química
20.
Methods Mol Biol ; 462: 75-88, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19160662

RESUMO

Phosphatidylinositol (PtdIns) and its phosphorylated derivatives represent less than 5% of total membrane phospholipids in cells. Despite their low abundance, they form a dynamic signaling system that is regulated in response to a variety of extra- and intracellular cues. Protein domains including PH, FYVE, ENTH, PHOX, PHD fingers, and lysine-/arginine-rich patches can bind to specific phosphoinositide isomers, which, in turn, can induce changes in the subcellular localization, posttranslational modification, protein interaction partners, or activity of the protein containing such a domain. Phosphoinositides and the enzymes that synthesize them are found in many different subcellular compartments including the nuclear matrix, heterochromatin, and sites of active RNA splicing, suggesting that phosphoinositides may regulate specific functions within the nuclear compartment. The existence of distinct subcellular pools has led to the challenging task of the quantitation of temporal and spatial changes in phosphoinositides. We report methods to measure the mass levels of three different phosphoinositides within the nuclear compartment.


Assuntos
Núcleo Celular/química , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositol 4,5-Difosfato/química , Fosfatos de Fosfatidilinositol/análise , Fosfatos de Fosfatidilinositol/química , Linhagem Celular , Vidro/química , Humanos , Neomicina/química , Fosfatidilinositol 4,5-Difosfato/isolamento & purificação , Fosfatos de Fosfatidilinositol/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA