Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Braz J Microbiol ; 55(1): 1023-1028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200375

RESUMO

The mechanism of colonisation of the chicken intestine by Salmonella remains poorly understood, while the severity of infections vary enormously depending on the serovar and the age of the bird. Several metabolism and virulence genes have been identified in Salmonella Heidelberg; however, information on their roles in infection, particularly in the chicken infection model, remains scarce. In the present publication, we investigated three Salmonella Heidelberg mutants containing deletions in misL, ssa, and pta-ackA genes by using signature-tagged mutagenesis. We found that mutations in these genes of S. Heidelberg result in an increase in fitness in the chicken model. The exception was perhaps the pta-ackA mutant where colonisation was slightly reduced (2, 7, 14, and 21 days post-infection) although some birds were still excreting at the end of the experiment. Our results suggest that for intestinal colonisation of the chicken caecum, substrate-level phosphorylation is likely to be more important than the MisL outer membrane protein or even the secretion system apparatus. These findings validate previous work that demonstrated the contribution of ackA and pta mutants to virulence in chickens, suggesting that the anaerobic metabolism genes such as pta-ackA could be a promising mitigation strategy to reduce S. Heidelberg virulence.


Assuntos
Galinhas , Salmonelose Animal , Animais , Fosforilação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Anaerobiose , Virulência , Salmonella , Salmonelose Animal/microbiologia
2.
PLoS One ; 18(5): e0283952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200262

RESUMO

The mechanisms of energy generation and carbon-source utilization in the syphilis spirochete Treponema pallidum have remained enigmatic despite complete genomic sequence information. Whereas the bacterium harbors enzymes for glycolysis, the apparatus for more efficient use of glucose catabolites, namely the citric-acid cycle, is apparently not present. Yet, the organism's energy needs likely exceed the modest output from glycolysis alone. Recently, building on our structure-function studies of T. pallidum lipoproteins, we proposed a "flavin-centric" metabolic lifestyle for the organism that partially resolves this conundrum. As a part of the hypothesis, we have proposed that T. pallidum contains an acetogenic energy-conservation pathway that catabolizes D-lactate, yielding acetate, reducing equivalents for the generation and maintenance of chemiosmotic potential, and ATP. We already have confirmed the D-lactate dehydrogenase activity in T. pallidum necessary for this pathway to operate. In the current study, we focused on another enzyme ostensibly involved in treponemal acetogenesis, phosphotransacetylase (Pta). This enzyme is putatively identified as TP0094 and, in this study, we determined a high-resolution (1.95 Å) X-ray crystal structure of the protein, finding that its fold comports with other known Pta enzymes. Further studies on its solution behavior and enzyme activity confirmed that it has the properties of a Pta. These results are consistent with the proposed acetogenesis pathway in T. pallidum, and we propose that the protein be referred to henceforth as TpPta.


Assuntos
Sífilis , Treponema pallidum , Humanos , Treponema pallidum/genética , Fosfato Acetiltransferase/metabolismo , Proteínas de Bactérias/metabolismo , Sífilis/microbiologia , Treponema/genética
3.
Microbiology (Reading) ; 168(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36048631

RESUMO

Successful adaptation of Escherichia coli to constant environmental challenges demands the operation of a wide range of regulatory control mechanisms, some of which are global, while others are specific. Here, we show that the ability of acetate-negative phenotype strains of E. coli devoid of acetate kinase (AK) and phosphotransacetylase (PTA) to assimilate acetate when challenged at the end of growth on acetogenic substrates is explicable by the co-expression of acetyl CoA-synthetase (AcCoA-S) and acetate permease (AP). Furthermore, mRNA transcript measurements for acs and aceA, together with the enzymatic activities of their corresponding enzymes, acetyl CoA synthetase (AcCoA-S) and isocitrate lyase (ICL), clearly demonstrate that the expression of the two enzymes is inextricably linked and triggered in response to growth rate threshold signal (0.4 h-1± 0.03: n4). Interestingly, further restriction of carbon supply to the level of starvation led to the repression of acs (AcCoA-S), ackA (AK) and pta (PTA). Further, we provide evidence that the reaction sequence catalysed by PTA, AK and AcCoA-S is not in operation at low growth rates and that the reaction catalysed by AcCoA-S is not merely an ATP-dissipating reaction but rather advantageous, as it elevates the available free energy (ΔG°) in central metabolism. Moreover, the transcriptomic data reinforce the view that the expression of PEP carboxykinase is essential in gluconeogenic phenotypes.


Assuntos
Acetato-CoA Ligase , Escherichia coli , Acetato Quinase/genética , Acetato Quinase/metabolismo , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Escherichia coli/metabolismo , Óperon , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo
4.
J Appl Microbiol ; 133(5): 2931-2940, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35938518

RESUMO

AIMS: Aromatic amines with diverse physical characteristics are often employed as antioxidants and precursors to pharmaceutical products. As the traditional chemical methods pose serious environmental pollution, there is an arising interest in biomanufacturing aromatic amines from renewable feedstocks. MATERIALS AND RESULTS: We report the establishment of a bacterial platform for synthesizing three types of aromatic amines, namely, tyramine, dopamine and phenylethylamine. First, we expressed aromatic amino acid decarboxylase from Enterococcus faecium (pheDC) in an Escherichia coli strain with increasing shikimate (SHK) pathway flux towards L-tyrosine. We found that glycerol served as a better carbon source than glucose, resulting in 940 ± 46 mg/L tyramine from 4% glycerol. Next, the genes of lactate dehydrogenase (ldhA), pyruvate formate lyase (pflB), phosphate acetyltransferase (pta) and alcohol dehydrogenase (adhE) were deleted to mitigate the fermentation by-product formation. The tyramine level was further increased to 1.965 ± 0.205 g/L in the shake flask, which was improved by 2.1 times compared with that of the parental strain. By using a similar strategy, we also managed to produce 703 ± 21 mg/L dopamine and 555 ± 50 mg/L phenethylamine. CONCLUSIONS: We demonstrated that the knockout of ldhA-pflB-pta-adhE is an effective strategy for improving aromatic amine productions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study achieved the highest aromatic amine titres in E. coli under shake flask reported to date.


Assuntos
Escherichia coli , Liases , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfato Acetiltransferase/metabolismo , Álcool Desidrogenase/genética , Glicerol/metabolismo , Dopamina/metabolismo , Fermentação , Glucose/metabolismo , Piruvatos/metabolismo , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Tirosina/metabolismo , Tiramina , Fenetilaminas/metabolismo , Carbono/metabolismo , Preparações Farmacêuticas , Lactato Desidrogenases/metabolismo , Formiatos/metabolismo , Liases/metabolismo , Engenharia Metabólica
5.
Sci Total Environ ; 847: 157619, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901877

RESUMO

As an emerging pollutant, benzalkonium chlorides (BACs) potentially enriched in waste activated sludge (WAS). However, the microbial response mechanism under chronic effects of BACs on acidogenesis and methanogenesis in anaerobic digestion (AD) has not been clearly disclosed. This study investigated the AD (by-)products and microbial evolution under low to high BACs concentrations from bioreactor startup to steady running. It was found that BACs can lead to an increase of WAS hydrolysis and fermentation, but a disturbance to acidogenic bacteria also occurred at low BACs concentration. A noticeable inhibition to methanogenesis occurred when BAC concentration was up to 15 mg/g TSS. Metagenomic analysis revealed the key genes involved in acetic acid (HAc) biosynthesis (i.e. phosphate acetyltransferase, PTA), ß-oxidation pathway (acetyl-CoA C-acetyltransferase) and propionic acid (HPr) conversion was slightly promoted compared with control. Furthermore, BACs inhibited the acetotrophic methanogenesis (i.e. acetyl-CoA synthetase), especially BAC concentration was up to 15 mg/g TSS, thereby enhanced short chain fatty acids (SCFAs) accumulation. Overall, chronic stimulation of functional microorganisms with increasing concentrations of BACs impact WAS fermentation.


Assuntos
Poluentes Ambientais , Esgotos , Acetilcoenzima A/metabolismo , Acetil-CoA C-Acetiltransferase/metabolismo , Anaerobiose , Compostos de Benzalcônio , Reatores Biológicos/microbiologia , Ácidos Graxos Voláteis/metabolismo , Fermentação , Ligases/metabolismo , Metano , Fosfato Acetiltransferase/metabolismo , Propionatos , Esgotos/microbiologia
6.
Biochim Biophys Acta Proteins Proteom ; 1868(9): 140462, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32485238

RESUMO

Malic enzymes participate in key metabolic processes, the MaeB-like malic enzymes carry a catalytic inactive phosphotransacetylase domain whose function remains elusive. Here we show that acetyl-CoA directly binds and inhibits MaeB-like enzymes with a saturable profile under physiological relevant acetyl-CoA concentrations. A MaeB-like enzyme from the nitrogen-fixing bacterium Azospirillum brasilense, namely AbMaeB1, binds both acetyl-CoA and unesterified CoASH in a way that inhibition of AbMaeB1 by acetyl-CoA is relieved by increasing CoASH concentrations. Hence, AbMaeB1 senses the acetyl-CoA/CoASH ratio. We revisited E. coli MaeB regulation to determine the inhibitory constant for acetyl-CoA. Our data support that the phosphotransacetylase domain of MaeB-like enzymes senses acetyl-CoA to dictate the fate of carbon distribution at the phosphoenol-pyruvate / pyruvate / oxaloacetate metabolic node.


Assuntos
Acetilcoenzima A/metabolismo , Coenzima A/metabolismo , Malato Desidrogenase/metabolismo , Malatos/metabolismo , NADP/metabolismo , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Malato Desidrogenase/genética , Fosfato Acetiltransferase/metabolismo
7.
Microb Cell Fact ; 18(1): 199, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727065

RESUMO

BACKGROUND: Oleaginous yeasts are able to accumulate very high levels of neutral lipids especially under condition of excess of carbon and nitrogen limitation (medium with high C/N ratio). This makes necessary the use of two-steps processes in order to achieve high level of biomass and lipid. To simplify the process, the decoupling of lipid synthesis from nitrogen starvation, by establishing a cytosolic acetyl-CoA formation pathway alternative to the one catalysed by ATP-citrate lyase, can be useful. RESULTS: In this work, we introduced a new cytoplasmic route for acetyl-CoA (AcCoA) formation in Rhodosporidium azoricum by overexpressing genes encoding for homologous phosphoketolase (Xfpk) and heterologous phosphotransacetylase (Pta). The engineered strain PTAPK4 exhibits higher lipid content and produces higher lipid concentration than the wild type strain when it was cultivated in media containing different C/N ratios. In a bioreactor process performed on glucose/xylose mixture, to simulate an industrial process for lipid production from lignocellulosic materials, we obtained an increase of 89% in final lipid concentration by the engineered strain in comparison to the wild type. This indicates that the transformed strain can produce higher cellular biomass with a high lipid content than the wild type. The transformed strain furthermore evidenced the advantage over the wild type in performing this process, being the lipid yields 0.13 and 0.05, respectively. CONCLUSION: Our results show that the overexpression of homologous Xfpk and heterologous Pta activities in R. azoricum creates a new cytosolic AcCoA supply that decouples lipid production from nitrogen starvation. This metabolic modification allows improving lipid production in cultural conditions that can be suitable for the development of industrial bioprocesses using lignocellulosic hydrolysates.


Assuntos
Basidiomycota/metabolismo , Lignina/metabolismo , Lipídeos/biossíntese , Engenharia Metabólica/métodos , Acetilcoenzima A/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Bacillus subtilis/genética , Biomassa , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Genes Bacterianos , Genes Fúngicos , Engenharia Genética , Recombinação Homóloga , Metabolismo dos Lipídeos/genética , Nitrogênio/metabolismo , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Proteínas Recombinantes , Transfecção
8.
J Biotechnol ; 301: 2-10, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31158408

RESUMO

Diacetyl, an important flavor extensively used in the food industry, can be produced from the non-enzymatic oxidative decarboxylation of α-acetolactate in bacteria fermentation. In previous work, we obtained a strain of Bacillus sp. DL01-ΔalsD with low diacetyl accumulation. The strain was engineered and optimized for improving the production of diacetyl in this study. First, deletion of the gene encoding phosphotransacetylase (pta), by homologous recombination with high temperature sensitive shuttle plasmid vector pKS1, led to a reduction of acetate and 130% increase of diacetyl production in B. sp. DL01-ΔalsD-Δpta. Then overexpression of α-acetolactate synthase (ALS) from B. subtilis 168 in B. sp. DL01-ΔalsD-Δpta resulted in efficient diacetyl production with a titer of 5.43 g/L. To further increase diacetyl production, single factor and orthogonal experimental data were used to predict the optimal fermentation conditions by Back Propagation neural network. Optimal value of KLa (Dissolved oxygen volume coefficient) was 12.4 h-1 with fermentation parameters of aeration rate 0.66 vvm, agitation speed 179 rpm and temperature 35.7 ℃. A titer of 11.18 g/L diacetyl, the highest reported diacetyl production, was achieved by fed-batch fermentation at the optimal condition using the metabolic engineered strain of B. sp. DL01-ΔalsD-Δpta-als168. These results are of great importance as a new way for the efficient production of diacetyl by food-safety bacteria.


Assuntos
Bacillus , Diacetil , Engenharia Metabólica/métodos , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Bacillus/enzimologia , Bacillus/genética , Bacillus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos/microbiologia , Diacetil/análise , Diacetil/metabolismo , Fermentação , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
J Biosci Bioeng ; 127(2): 256-264, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30150148

RESUMO

Many cyanophages, which infect cyanobacteria, most of possess putative sigma factors that have high amino acid sequence homology with the σ70-type sigma factor present in cyanobacteria, allowing them to obtain energy and metabolites for their own propagation. In this study, we aimed to modify the carbon metabolism of Synechococcus elongatus PCC 7942 by expressing putative sigma factors from Synechococcus phages to improve bioproduction. Four cyanophage-derived putative sigma factors-putative RpsD4 from Synechococcus phage S-CBS1, putative RpoD and putative RpoS from S-CBS2, and putative RpsD4 from S-CBS3-were selected for this purpose. These were introduced into S. elongatus PCC 7942, and their expression was controlled with a theophylline-dependent riboswitch. The expression of the putative RpoD from S-CBS2 and putative RpsD4 from S-CBS3 resulted in a significant decrease in the growth rate of S. elongatus PCC 7942. In addition, metabolome analysis showed a 3.2-fold increase in acetyl-CoA concentration with the expression of the putative RpoD from S-CBS2 and a 1.9-fold increase with the putative RpsD4 from S-CBS3. The results of RT-qPCR showed that several sugar metabolism genes were repressed by the putative RpoD and activated by the putative RpsD4. In particular, the engineered strain overexpressing the putative RpsD4 and expressing phosphate acetyltransferase succeeded in improving the productivity of the model target product acetate to 217% of its previous value. To the best of our knowledge, this study is the first to modify the metabolism of S. elongatus PCC 7942 by expressing their putative sigma factors from cyanophages.


Assuntos
Bacteriófagos/fisiologia , Carbono/metabolismo , Engenharia Metabólica/métodos , Fator sigma/genética , Synechococcus/genética , Synechococcus/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Dióxido de Carbono/metabolismo , Redes e Vias Metabólicas/genética , Técnicas Microbiológicas/métodos , Organismos Geneticamente Modificados , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Fator sigma/metabolismo , Synechococcus/crescimento & desenvolvimento , Transformação Bacteriana/fisiologia
10.
Mol Microbiol ; 111(5): 1182-1194, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30589958

RESUMO

The DevRS/DosT two-component system is essential for mycobacterial survival under hypoxia, a prevailing stress within granulomas. DevR (also known as DosR) is activated by an inducing stimulus, such as hypoxia, through conventional phosphorylation by its cognate sensor kinases, DevS (also known as DosS) and DosT. Here, we show that the DevR regulon is activated by acetyl phosphate under 'non-inducing' aerobic conditions when Mycobacterium tuberculosis devS and dosT double deletion strain is cultured on acetate. Overexpression of phosphotransacetylase caused a perturbation of the acetate kinase-phosphotransacetylase pathway, a decrease in the concentration of acetyl phosphate and dampened the aerobic induction response in acetate-grown bacteria. The operation of two pathways of DevR activation, one through sensor kinases and the other by acetyl phosphate, was established by an analysis of wild-type DevS and phosphorylation-defective DevSH395Q mutant strains under conditions partially mimicking a granulomatous-like environment of acetate and hypoxia. Our findings reveal that DevR can be phosphorylated in vivo by acetyl phosphate. Importantly, we demonstrate that acetyl phosphate-dependent phosphorylation can occur in the absence of DevR's cognate kinases. Based on our findings, we conclude that anti-mycobacterial therapy should be targeted to DevR itself and not to DevS/DosT kinases.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Organofosfatos/metabolismo , Proteínas Quinases/genética , Regulon , Acetatos/metabolismo , Aerobiose , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Quinases/metabolismo
11.
Metab Eng ; 48: 243-253, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29906505

RESUMO

Clostridium ljungdahlii has emerged as an attractive candidate for the bioconversion of synthesis gas (CO, CO2, H2) to a variety of fuels and chemicals through the Wood-Ljungdahl pathway. However, metabolic engineering and pathway elucidation in this microbe is limited by the lack of genetic tools to downregulate target genes. To overcome this obstacle, here we developed an inducible CRISPR interference (CRISPRi) system for C. ljungdahlii that enables efficient (> 94%) transcriptional repression of several target genes, both individually and in tandem. We then applied CRISPRi in a strain engineered for 3-hydroxybutyrate (3HB) production to examine targets for increasing carbon flux toward the desired product. Downregulating phosphotransacetylase (pta) with a single sgRNA led to a 97% decrease in enzyme activity and a 2.3-fold increase in titer during heterotrophic growth. However, acetate production still accounted for 40% of the carbon flux. Repression of aldehyde:ferredoxin oxidoreductase (aor2), another potential route for acetate production, led to a 5% reduction in acetate flux, whereas using an additional sgRNA targeted to pta reduced the enzyme activity to 0.7% of the wild-type level, and further reduced acetate production to 25% of the carbon flux with an accompanying increase in 3HB titer and yield. These results demonstrate the utility of CRISPRi for elucidating and controlling carbon flow in C. ljungdahlii.


Assuntos
Ácido 3-Hidroxibutírico , Sistemas CRISPR-Cas , Carbono/metabolismo , Clostridium , Engenharia Metabólica , Ácido 3-Hidroxibutírico/biossíntese , Ácido 3-Hidroxibutírico/genética , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridium/genética , Clostridium/metabolismo , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo
12.
J Ind Microbiol Biotechnol ; 45(5): 357-367, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29460214

RESUMO

L-tryptophan (L-trp) is a precursor of various bioactive components and has great pharmaceutical interest. However, due to the requirement of several precursors and complex regulation of the pathways involved, the development of an efficient L-trp production strain is challenging. In this study, Escherichia coli (E. coli) strain KW001 was designed to overexpress the L-trp operator sequences (trpEDCBA) and 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (aroG fbr ). To further improve the production of L-trp, pyruvate kinase (pykF) and the phosphotransferase system HPr (ptsH) were deleted after inactivation of repression (trpR) and attenuation (attenuator) to produce strain KW006. To overcome the relatively slow growth and to increase the transport rate of glucose, strain KW018 was generated by combinatorial regulation of glucokinase (galP) and galactose permease (glk) expression. To reduce the production of acetic acid, strain KW023 was created by repressive regulation of phosphate acetyltransferase (pta) expression. In conclusion, strain KW023 efficiently produced 39.7 g/L of L-trp with a conversion rate of 16.7% and a productivity of 1.6 g/L/h in a 5 L fed-batch fermentation system.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Triptofano/biossíntese , Proteínas de Escherichia coli/metabolismo , Fermentação , Glucoquinase/metabolismo , Glucose/metabolismo , Proteínas de Transporte de Monossacarídeos , Fosfato Acetiltransferase/metabolismo , Piruvato Quinase/metabolismo
13.
PLoS One ; 13(1): e0189144, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29381705

RESUMO

Succinate is a precursor of multiple commodity chemicals and bio-based succinate production is an active area of industrial bioengineering research. One of the most important microbial strains for bio-based production of succinate is the capnophilic gram-negative bacterium Actinobacillus succinogenes, which naturally produces succinate by a mixed-acid fermentative pathway. To engineer A. succinogenes to improve succinate yields during mixed acid fermentation, it is important to have a detailed understanding of the metabolic flux distribution in A. succinogenes when grown in suitable media. To this end, we have developed a detailed stoichiometric model of the A. succinogenes central metabolism that includes the biosynthetic pathways for the main components of biomass-namely glycogen, amino acids, DNA, RNA, lipids and UDP-N-Acetyl-α-D-glucosamine. We have validated our model by comparing model predictions generated via flux balance analysis with experimental results on mixed acid fermentation. Moreover, we have used the model to predict single and double reaction knockouts to maximize succinate production while maintaining growth viability. According to our model, succinate production can be maximized by knocking out either of the reactions catalyzed by the PTA (phosphate acetyltransferase) and ACK (acetyl kinase) enzymes, whereas the double knockouts of PEPCK (phosphoenolpyruvate carboxykinase) and PTA or PEPCK and ACK enzymes are the most effective in increasing succinate production.


Assuntos
Actinobacillus/metabolismo , Técnicas de Silenciamento de Genes , Ácido Succínico/metabolismo , Actinobacillus/enzimologia , Actinobacillus/genética , Biomassa , Meios de Cultura , Fermentação , Modelos Biológicos , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo
14.
J Ind Microbiol Biotechnol ; 44(8): 1245-1260, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28536840

RESUMO

Genetic research enables the evolution of novel biochemical reactions for the production of valuable chemicals from environmentally-friendly raw materials. However, the choice of appropriate microorganisms to support these reactions, which must have strong robustness and be capable of a significant product output, is a major difficulty. In the present study, the complete genome of the Clostridium tyrobutyricum strain CCTCC W428, a hydrogen- and butyric acid-producing bacterium with increased oxidative tolerance was analyzed. A total length of 3,011,209 bp of the C. tyrobutyricum genome with a GC content of 31.04% was assembled, and 3038 genes were discovered. Furthermore, a comparative clustering of proteins from C. tyrobutyricum CCTCC W428, C. acetobutylicum ATCC 824, and C. butyricum KNU-L09 was conducted. The results of genomic analysis indicate that butyric acid is produced by CCTCC W428 from butyryl-CoA through acetate reassimilation via CoA transferase, instead of the well-established phosphotransbutyrylase-butyrate kinase pathway. In addition, we identified ten proteins putatively involved in hydrogen production and 21 proteins associated with CRISPR systems, together with 358 ORFs related to ABC transporters and transcriptional regulators. Enzymes, such as oxidoreductases, HNH endonucleases, and catalase, were also found in this species. The genome sequence illustrates that C. tyrobutyricum has several desirable traits, and is expected to be suitable as a platform for the high-level production of bulk chemicals as well as bioenergy.


Assuntos
Proteínas de Bactérias/genética , Clostridium tyrobutyricum/genética , Genoma Bacteriano , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Biotecnologia , Ácido Butírico/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Clostridium tyrobutyricum/metabolismo , Meios de Cultura/química , DNA Bacteriano/genética , Hidrogênio/metabolismo , Microbiologia Industrial , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Análise de Sequência de DNA
15.
Metab Eng ; 40: 138-147, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28159643

RESUMO

Clostridium acetobutylicum possesses two homologous buk genes, buk (or buk1) and buk2, which encode butyrate kinases involved in the last step of butyrate formation. To investigate the contribution of buk in detail, an in-frame deletion mutant was constructed. However, in all the Δbuk mutants obtained, partial deletions of the upstream ptb gene were observed, and low phosphotransbutyrylase and butyrate kinase activities were measured. This demonstrates that i) buk (CA_C3075) is the key butyrate kinase-encoding gene and that buk2 (CA_C1660) that is poorly transcribed only plays a minor role; and ii) strongly suggests that a Δbuk mutant is not viable if the ptb gene is not also inactivated, probably due to the accumulation of butyryl-phosphate, which might be toxic for the cell. One of the ΔbukΔptb mutants was subjected to quantitative transcriptomic (mRNA molecules/cell) and fluxomic analyses in acidogenic, solventogenic and alcohologenic chemostat cultures. In addition to the low butyrate production, drastic changes in metabolic fluxes were also observed for the mutant: i) under acidogenic conditions, the primary metabolite was butanol and a new metabolite, 2-hydroxy-valerate, was produced ii) under solventogenesis, 58% increased butanol production was obtained compared to the control strain under the same conditions, and a very high yield of butanol formation (0.3gg-1) was reached; and iii) under alcohologenesis, the major product was lactate. Furthermore, at the transcriptional level, adhE2, which encodes an aldehyde/alcohol dehydrogenase and is known to be a gene specifically expressed in alcohologenesis, was surprisingly highly expressed in all metabolic states in the mutant. The results presented here not only support the key roles of buk and ptb in butyrate formation but also highlight the metabolic flexibility of C. acetobutylicum in response to genetic alteration of its primary metabolism.


Assuntos
Ácido Butírico/metabolismo , Clostridium acetobutylicum/fisiologia , Redes e Vias Metabólicas/fisiologia , Fosfato Acetiltransferase/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Engenharia Metabólica/métodos , Análise do Fluxo Metabólico/métodos , Mutação/genética , Fosfato Acetiltransferase/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/genética
16.
Appl Environ Microbiol ; 83(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28159797

RESUMO

For the efficient production of target metabolites from carbohydrates, syngas, or H2-CO2 by genetically engineered Moorella thermoacetica, the control of acetate production (a main metabolite of M. thermoacetica) is desired. Although propanediol utilization protein (PduL) was predicted to be a phosphotransacetylase (PTA) involved in acetate production in M. thermoacetica, this has not been confirmed. Our findings described herein directly demonstrate that two putative PduL proteins, encoded by Moth_0864 (pduL1) and Moth_1181 (pduL2), are involved in acetate formation as PTAs. To disrupt these genes, we replaced each gene with a lactate dehydrogenase gene from Thermoanaerobacter pseudethanolicus ATCC 33223 (T-ldh). The acetate production from fructose as the sole carbon source by the pduL1 deletion mutant was not deficient, whereas the disruption of pduL2 significantly decreased the acetate yield to approximately one-third that of the wild-type strain. The double-deletion (both pduL genes) mutant did not produce acetate but produced only lactate as the end product from fructose. These results suggest that both pduL genes are associated with acetate formation via acetyl-coenzyme A (acetyl-CoA) and that their disruption enables a shift in the homoacetic pathway to the genetically synthesized homolactic pathway via pyruvate.IMPORTANCE This is the first report, to our knowledge, on the experimental identification of PTA genes in M. thermoacetica and the shift of the native homoacetic pathway to the genetically synthesized homolactic pathway by their disruption on a sugar platform.


Assuntos
Acetatos/metabolismo , Fermentação , Engenharia Genética , Moorella/genética , Moorella/metabolismo , Acetilcoenzima A/metabolismo , Anaerobiose , Carbono/metabolismo , L-Lactato Desidrogenase/genética , Moorella/enzimologia , Fosfato Acetiltransferase/metabolismo , Propilenoglicóis/metabolismo , Thermoanaerobacter/genética
17.
Sci Rep ; 7: 42135, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186174

RESUMO

Escherichia coli excretes acetate upon growth on fermentable sugars, but the regulation of this production remains elusive. Acetate excretion on excess glucose is thought to be an irreversible process. However, dynamic 13C-metabolic flux analysis revealed a strong bidirectional exchange of acetate between E. coli and its environment. The Pta-AckA pathway was found to be central for both flux directions, while alternative routes (Acs or PoxB) play virtually no role in glucose consumption. Kinetic modelling of the Pta-AckA pathway predicted that its flux is thermodynamically controlled by the extracellular acetate concentration in vivo. Experimental validations confirmed that acetate production can be reduced and even reversed depending solely on its extracellular concentration. Consistently, the Pta-AckA pathway can rapidly switch from acetate production to consumption. Contrary to current knowledge, E. coli is thus able to co-consume glucose and acetate under glucose excess. These metabolic capabilities were confirmed on other glycolytic substrates which support the growth of E. coli in the gut. These findings highlight the dual role of the Pta-AckA pathway in acetate production and consumption during growth on glycolytic substrates, uncover a novel regulatory mechanism that controls its flux in vivo, and significantly expand the metabolic capabilities of E. coli.


Assuntos
Acetato Quinase/metabolismo , Ácido Acético/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Fosfato Acetiltransferase/metabolismo , Acetato Quinase/genética , Isótopos de Carbono , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fermentação , Marcação por Isótopo , Cinética , Redes e Vias Metabólicas/genética , Fosfato Acetiltransferase/genética , Especificidade por Substrato , Termodinâmica
18.
Appl Environ Microbiol ; 83(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28130304

RESUMO

In the dental caries pathogen Streptococcus mutans, phosphotransacetylase (Pta) and acetate kinase (Ack) convert pyruvate into acetate with the concomitant generation of ATP. The genes for this pathway are tightly regulated by multiple environmental and intracellular inputs, but the basis for differential expression of the genes for Pta and Ack in S. mutans had not been investigated. Here, we show that inactivation in S. mutans of ccpA or codY reduced the activity of the ackA promoter, whereas a ccpA mutant displayed elevated pta promoter activity. The interactions of CcpA with the promoter regions of both genes were observed using electrophoretic mobility shift and DNase protection assays. CodY bound to the ackA promoter region but only in the presence of branched-chain amino acids (BCAAs). DNase footprinting revealed that the upstream region of both genes contains two catabolite-responsive elements (cre1 and cre2) that can be bound by CcpA. Notably, the cre2 site of ackA overlaps with a CodY-binding site. The CcpA- and CodY-binding sites in the promoter region of both genes were further defined by site-directed mutagenesis. Some differences between the reported consensus CodY binding site and the region protected by S. mutans CodY were noted. Transcription of the pta and ackA genes in the ccpA mutant strain was markedly different at low pH relative to transcription at neutral pH. Thus, CcpA and CodY are direct regulators of transcription of ackA and pta in S. mutans that optimize acetate metabolism in response to carbohydrate, amino acid availability, and environmental pH.IMPORTANCE The human dental caries pathogen Streptococcus mutans is remarkably adept at coping with extended periods of carbohydrate limitation during fasting periods. The phosphotransacetylase-acetate kinase (Pta-Ack) pathway in S. mutans modulates carbohydrate flux and fine-tunes the ability of the organisms to cope with stressors that are commonly encountered in the oral cavity. Here, we show that CcpA controls transcription of the pta and ackA genes via direct interaction with the promoter regions of both genes and that branched-chain amino acids (BCAAs), particularly isoleucine, enhance the ability of CodY to bind to the promoter region of the ackA gene. A working model is proposed to explain how regulation of pta and ackA genes by these allosterically controlled regulatory proteins facilitates proper carbon flow and energy production, which are essential functions during infection and pathogenesis as carbohydrate and amino acid availability continually fluctuate.


Assuntos
Acetatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Acetato Quinase/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Sítios de Ligação , Metabolismo dos Carboidratos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Cárie Dentária/microbiologia , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Regiões Promotoras Genéticas , Ácido Pirúvico/metabolismo , Transcrição Gênica
19.
Biotechnol Lett ; 39(4): 529-533, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27999972

RESUMO

OBJECTIVES: To reduce the unpleasant odor during 1-deoxynojirimycin (DNJ) production, the genes of leucine dehydrogenase (bcd) and phosphate butryltransferase (ptb) were deleted from Bacillus amyloliquefaciens HZ-12, and the concentrations of branched-chain short fatty acids (BCFAs) and DNJ were compared. RESULTS: By knockout of the ptb gene, 1.01 g BCFAs kg-1 was produced from fermented soybean by HZ-12Δptb. This was a 56% decrease compared with that of HZ-12 (2.27 g BCFAs kg-1). Moreover, no significant difference was found in the DNJ concentration (0.7 g kg-1). After further deletion of the bcd gene from HZ-12Δptb, no BCFAs was detected in fermented soybeans with HZ-12ΔptbΔbcd, while the DNJ yield decreased by 26% compared with HZ-12. CONCLUSIONS: HZ-12Δptb had decreased BCFAs formation but also maintained the stable DNJ yield, which contributed to producing DNJ-rich products with decreased unpleasant smell.


Assuntos
1-Desoxinojirimicina/metabolismo , Bacillus amyloliquefaciens/metabolismo , Ácidos Graxos/biossíntese , Microbiologia de Alimentos , Engenharia Metabólica , Bacillus amyloliquefaciens/genética , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Fermentação , Expressão Gênica , Técnicas de Inativação de Genes , Genes Bacterianos , Leucina Desidrogenase/metabolismo , Odorantes/prevenção & controle , Fosfato Acetiltransferase/metabolismo , Glycine max/metabolismo
20.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(3): 283-290, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27940001

RESUMO

Listeria monocytogenes, the causative agent of listeriosis, can build up to dangerous levels in refrigerated foods potentially leading to expensive product recalls. An important aspect of the bacterium's growth at low temperatures is its ability to increase the branched-chain fatty acid anteiso C15:0 content of its membrane at lower growth temperatures, which imparts greater membrane fluidity. Mutants in the branched-chain α-keto dehydrogenase (bkd) complex are deficient in branched-chain fatty acids (BCFAs,) but these can be restored by feeding C4 and C5 branched-chain carboxylic acids (BCCAs). This suggests the presence of an alternate pathway for production of acyl CoA precursors for fatty acid biosynthesis. We hypothesize that the alternate pathway is composed of butyrate kinase (buk) and phosphotransbutyrylase (ptb) encoded in the bkd complex which produce acyl CoA products by their sequential action through the metabolism of carboxylic acids. We determined the steady state kinetics of recombinant His-tagged Buk using 11 different straight-chain and BCCA substrates in the acyl phosphate forming direction. Buk demonstrated highest catalytic efficiency with pentanoate as the substrate. Low product formation observed with acetate (C2) and hexanoate (C6) as the substrates indicates that Buk is not involved in either acetate metabolism or long chain carboxylic acid activation. We were also able to show that Buk catalysis occurs through a ternary complex intermediate. Additionally, Buk demonstrates a strong preference for BCCAs at low temperatures. These results indicate that Buk may be involved in the activation and assimilation of exogenous carboxylic acids for membrane fatty acid biosynthesis.


Assuntos
Listeria monocytogenes/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Acil Coenzima A/metabolismo , Ácidos Carboxílicos/metabolismo , Temperatura Baixa , Ácidos Graxos/metabolismo , Cinética , Lipogênese/fisiologia , Fluidez de Membrana/fisiologia , Fosfato Acetiltransferase/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA