Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.934
Filtrar
1.
Water Res ; 256: 121638, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691899

RESUMO

In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.


Assuntos
Eletrodos , Peróxido de Hidrogênio , Magnésio , Fósforo , Ureia , Ureia/química , Fósforo/química , Magnésio/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Urina/química , Fosfatos/química , Estruvita/química , Amônia/química , Compostos de Magnésio/química , Nitrogênio/química , Humanos
2.
Biomed Mater Eng ; 35(3): 265-278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728179

RESUMO

BACKGROUND: Bone defects arising from diverse causes, such as traffic accidents, contemporary weapon usage, and bone-related disorders, present significant challenges in clinical treatment. Prolonged treatment cycles for bone defects can result in complications, impacting patients' overall quality of life. Efficient and timely repair of bone defects is thus a critical concern in clinical practice. OBJECTIVE: This study aims to assess the scientific progress and achievements of magnesium phosphate bone cement (MPC) as an artificial bone substitute material. Additionally, the research seeks to explore the future development path and clinical potential of MPC bone cement in addressing challenges associated with bone defects. METHODS: The study comprehensively reviews MPC's performance, encompassing e.g. mechanical properties, biocompatibility, porosity, adhesion and injectability. Various modifiers are also considered to broaden MPC's applications in bone tissue engineering, emphasizing drug-loading performance and antibacterial capabilities, which meet clinical diversification requirements. RESULTS: In comparison to alternatives such as autogenous bone transplantation, allograft, polymethyl methacrylate (PMMA), and calcium phosphate cement (CPC), MPC emerges as a promising solution for bone defects. It addresses limitations associated with these alternatives, such as immunological rejection and long-term harm to patients. MPC can control heat release during the curing process, exhibits superior mechanical strength, and has the capacity to stimulate new bone growth. CONCLUSION: MPC stands out as an artificial bone substitute with appropriate mechanical strength, rapid degradation, non-toxicity, and good biocompatibility, facilitating bone repair and regeneration. Modification agents can enhance its clinical versatility. Future research should delve into its mechanical properties and formulations, expanding clinical applications to create higher-performing and more medically valuable alternatives in bone defect repair.


Assuntos
Cimentos Ósseos , Substitutos Ósseos , Compostos de Magnésio , Fosfatos , Cimentos Ósseos/química , Cimentos Ósseos/uso terapêutico , Humanos , Fosfatos/química , Compostos de Magnésio/química , Compostos de Magnésio/uso terapêutico , Substitutos Ósseos/uso terapêutico , Substitutos Ósseos/química , Animais , Regeneração Óssea/efeitos dos fármacos , Porosidade , Teste de Materiais , Osso e Ossos/efeitos dos fármacos
3.
Bioorg Chem ; 147: 107415, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701597

RESUMO

The tobacco mosaic virus coat protein (TMV-CP) is indispensable for the virus's replication, movement and transmission, as well as for the host plant's immune system to recognize it. It constitutes the outermost layer of the virus particle, and serves as an essential component of the virus structure. TMV-CP is essential for initiating and extending viral assembly, playing a crucial role in the self-assembly process of Tobacco Mosaic Virus (TMV). This research employed TMV-CP as a primary target for virtual screening, from which a library of 43,417 compounds was sourced and SH-05 was chosen as the lead compound. Consequently, a series of α-amide phosphate derivatives were designed and synthesized, exhibiting remarkable anti-TMV efficacy. The synthesized compounds were found to be beneficial in treating TMV, with compound 3g displaying a slightly better curative effect than Ningnanmycin (NNM) (EC50 = 304.54 µg/mL) at an EC50 of 291.9 µg/mL. Additionally, 3g exhibited comparable inactivation activity (EC50 = 63.2 µg/mL) to NNM (EC50 = 67.5 µg/mL) and similar protective activity (EC50 = 228.9 µg/mL) to NNM (EC50 = 219.7 µg/mL). Microscale thermal analysis revealed that the binding of 3g (Kd = 4.5 ± 1.9 µM) to TMV-CP showed the same level with NNM (Kd = 5.5 ± 2.6 µM). Results from transmission electron microscopy indicated that 3g could disrupt the structure of TMV virus particles. The toxicity prediction indicated that 3g was low toxicity. Molecular docking showed that 3g interacted with TMV-CP through hydrogen bond, attractive charge interaction and π-Cation interaction. This research provided a novel α-amide phosphate structure target TMV-CP, which may help the discovery of new anti-TMV agents in the future.


Assuntos
Antivirais , Proteínas do Capsídeo , Fosfatos , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Fosfatos/química , Fosfatos/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Simulação de Acoplamento Molecular
4.
PLoS One ; 19(4): e0301986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626158

RESUMO

The production of sludge-based biochar to recover phosphorus (P) from wastewater and reuse the recovered phosphorus as agricultural fertilizer is a preferred process. This article mainly studied the removal of phosphate (PO4-P) from aqueous solution by synthesizing sludge-based biochar (MgSBC-0.1) from anaerobic fermentation sludge treated with magnesium (Mg)-loading-modification, and compared it with unmodified sludge-based biochar (SBC). The physicochemical properties, adsorption efficiency, and adsorption mechanism of MgSBC-0.1 were studied. The results showed that the surface area of MgSBC-0.1 synthesized increased by 5.57 times. The material surface contained MgO, Mg(OH)2, and CaO nanoparticles. MgSBC-0.1 can effectively remove phosphate in the initial solution pH range of 3.00-7.00, with a fitted maximum phosphorus adsorption capacity of 379.52 mg·g-1. The adsorption conforms to the pseudo second-order kinetics model and Langmuir isotherm adsorption curve. The characterization of the adsorbed composite material revealed the contribution of phosphorus crystal deposition and electrostatic attraction to phosphorus absorption.


Assuntos
Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Magnésio , Esgotos , Adsorção , Carvão Vegetal , Fósforo/química , Cinética , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 470: 134198, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608582

RESUMO

A novel Ag3PO4/ZnWO4-modified graphite felt electrode (AZW@GF) was prepared by drop coating method and applied to photoelectrocatalytic removal of harmful algae. Results showed that approximately 99.21% of chlorophyll a and 91.57% of Microcystin-LR (MCLR) were degraded by the AZW@GF-Pt photoelectrocatalytic system under the optimal operating conditions with a rate constant of 0.02617 min-1 and 0.01416 min-1, respectively. The calculated synergistic coefficient of photoelectrocatalytic algal removal and MC-LR degradation by the AZW@GF-Pt system was both larger than 1.9. In addition, the experiments of quenching experiments and electron spin resonance (ESR) revealed that the photoelectrocatalytic reaction mainly generated •OH and •O2- for algal removal and MC-LR degradation. Furthermore, the potential pathway for photoelectrocatalytic degradation of MC-LR was proposed. Finally, the photoelectrocatalytic cycle algae removal experiments were carried out on AZW@GF electrode, which was found to maintain the algae removal efficiency at about 91% after three cycles of use, indicating that the photoelectrocatalysis of AZW@GF electrode is an effective emergency algae removal technology.


Assuntos
Eletrodos , Grafite , Toxinas Marinhas , Microcistinas , Compostos de Prata , Grafite/química , Grafite/efeitos da radiação , Microcistinas/química , Microcistinas/isolamento & purificação , Catálise , Compostos de Prata/química , Fosfatos/química , Óxidos/química , Técnicas Eletroquímicas , Tungstênio/química , Clorofila A/química , Zinco/química , Purificação da Água/métodos , Clorofila/química , Processos Fotoquímicos , Proliferação Nociva de Algas
6.
J Phys Chem Lett ; 15(16): 4351-4358, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38619551

RESUMO

Water molecules are essential to determine the structure of nucleic acids and mediate their interactions with other biomolecules. Here, we characterize the hydration dynamics of analogous DNA and RNA double helices with unprecedented resolution and elucidate the molecular origin of their differences: first, the localization of the slowest hydration water molecules─in the minor groove in DNA, next to phosphates in RNA─and second, the markedly distinct hydration dynamics of the two phosphate oxygen atoms OR and OS in RNA. Using our Extended Jump Model for water reorientation, we assess the relative importance of previously proposed factors, including the local topography, water bridges, and the presence of ions. We show that the slow hydration dynamics at RNA OR sites is not due to bridging water molecules but is caused by both the larger excluded volume and the stronger initial H-bond next to OR, due to the different phosphate orientations in A-form double helical RNA.


Assuntos
DNA , Ligação de Hidrogênio , Conformação de Ácido Nucleico , RNA , Água , DNA/química , RNA/química , Água/química , Fosfatos/química , Simulação de Dinâmica Molecular
7.
J Hazard Mater ; 470: 134306, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626684

RESUMO

Soil cadmium (Cd) is immobilized by the progressing biomineralization process as microbial induced phosphate precipitation (MIPP), which is regulated by phosphate (P) solubilizing microorganisms and P sources. However, little attention has been paid to the implications of Cd biosorption during MIPP. In this study, the newly isolated Penicillium oxalicum could immobilize 5.4-12.6 % of Cd2+, while the presence of hydroxyapatite (HAP) considerably enhanced Cd2+ immobilization in P. oxalicum and reached over 99 % Cd2+ immobilization efficiency within 7 days. Compared to P. oxalicum mono inoculation, MIPP dramatically boosted Cd biosorption and biomineralization efficiency by 71 % and 16 % after 96 h cultivation, respectively. P. oxalicum preferred to absorbing Cd2+ and reaching maximum Cd2+ biosorption efficiency of 87.8 % in the presence of HAP. More surface groups in P. oxalicum and HAP mineral involved adsorption which resulted in the formation of Cd-apatite [Ca8Cd2(PO4)6(OH)2] via ion exchange. Intracellular S2-, secreted organic acids and soluble P via HAP solubilization complexed with Cd2+, progressively mineralized into Cd5(PO4)3OH, Cd(H2PO4)2, C4H6CdO4 and CdS. These results suggested that Cd2+ immobilization was enhanced simultaneously by the accelerated biosorption and biomineralization during P. oxalicum induced P precipitation. Our findings revealed new mechanisms of Cd immobilization in MIPP process and offered clues for remediation practices at metal contaminated sites.


Assuntos
Biomineralização , Cádmio , Penicillium , Fosfatos , Penicillium/metabolismo , Cádmio/química , Cádmio/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Adsorção , Durapatita/química , Poluentes do Solo/metabolismo , Poluentes do Solo/química , Biodegradação Ambiental , Precipitação Química
8.
ACS Appl Mater Interfaces ; 16(17): 21672-21688, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38637290

RESUMO

Titanium (Ti) and its alloys are widely used as hard tissue substitutes in dentistry and orthopedics, but their low bioactivity leads to undesirable osseointegration defects in the early osteogenic phase. Surface modification is an important approach to overcome these problems. In the present study, novel magnesium phosphate (MgP) coatings with controllable structures were fabricated on the surface of Ti using the phosphate chemical conversion (PCC) method. The effects of the microstructure on the physicochemical and biological properties of the coatings on Ti were researched. The results indicated that accelerators in PCC solution were important factors affecting the microstructure and properties of the MgP coatings. In addition, the coated Ti exhibited excellent hydrophilicity, high bonding strength, and good corrosion resistance. Moreover, the biological results showed that the MgP coatings could improve the spread, proliferation, and osteogenic differentiation of mouse osteoblast cells (MC3T3-E1) and vascular differentiation of human umbilical vein endothelial cells (HUVECs), indicating that the coated Ti samples had a great effect on promoting osteogenesis and angiogenesis. Overall, this study provided a new research idea for the surface modification of conventional Ti to enhance osteogenesis and angiogenesis in different bone types for potential biomedical applications.


Assuntos
Diferenciação Celular , Proliferação de Células , Materiais Revestidos Biocompatíveis , Células Endoteliais da Veia Umbilical Humana , Compostos de Magnésio , Neovascularização Fisiológica , Osteogênese , Fosfatos , Titânio , Titânio/química , Titânio/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Camundongos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Fosfatos/química , Fosfatos/farmacologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Propriedades de Superfície , Linhagem Celular , Angiogênese
9.
J Mol Model ; 30(5): 151, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668860

RESUMO

CONTEXT: The controlled slow evaporation process conducted at room temperature has produced a novel hybrid material denoted as (2-hydroxyethyl) trimethylammonium dihydrogen phosphate [2-HDETDHP] (C5H14NO+, H2PO4-), synthesized through the solution growth method. X-ray crystallography analysis reveals a triclinic structure with a filling rate of P and a Z value of 2. This hybrid material displays noteworthy absorption characteristics in the middle and far ultraviolet regions. UV-visible spectroscopy further establishes its transparency in the visible and near-visible ultraviolet domains. FT-IR spectroscopy examines various vibration modes, elucidating their relationships with the functional groups within the structure. Two- and three-dimensional fingerprint maps, coupled with three-dimensional crystal structures through Hirshfeld Surface Analysis, unveil the dominance of O•••H and H•••H interactions in the structure, comprising 49.40% and 50.40%, respectively. Fingerprint plots derived from the Hirshfeld surface assess the percentages of hydrogen bonding interactions, with 80.6% attributed to a fragment patch. The experiment of antimicrobial efficacy of a synthesized product, conducted in triplicate, demonstrated the synthesized product's potential antimicrobial activity. METHODS: Hirshfeld surfaces are employed to investigate intermolecular hydrogen bonding, specifically within single phosphate groups. The molecular structure of 2-HDETDHP was refined using single-crystal X-ray analysis, while its optical characteristics were examined through UV-visible spectroscopy. FT-IR spectroscopy is employed for the assignment of molecular vibrations of functional groups in the affined structure. Quantum calculations were executed with the GAUSSIAN 09 software package at B3LYP/6-311G level of theory, to optimize the molecular geometries. The antimicrobial efficacy of a synthesized product was evaluated using the disc diffusion method against antibiotic-resistant Candida albicans, Candida tropicalis, Aspergillus niger, Staphylococcus aureus, and Escherichia coli. Microorganisms were cultured on nutrient agar, and inhibition zones were measured after incubation, with streptomycin and amphotericin as positive controls.


Assuntos
Fosfatos , Fosfatos/química , Ligação de Hidrogênio , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Cristalografia por Raios X , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química
10.
Soft Matter ; 20(18): 3780-3786, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38639061

RESUMO

Acylphosphatase (AcP) is an enzyme which catalyses the hydrolysis of acylphosphate. The binding with the phosphate ion (Pi) assumes significance in preserving both the stability and enzymatic activity of AcP. While previous studies using single molecule force spectroscopy explored the mechanical properties of AcP, the influence of Pi on its folding and unfolding dynamic behaviors remains unexplored. In this work, using stable magnetic tweezers, we measured and compared the force-dependent folding and unfolding rates of AcP in the Tris buffer and phosphate buffer within a force range from 2 pN to 40 pN. We found that Pi exerts no discernible effect on the folding dynamics but consistently decreases the force-dependent unfolding rate of AcP by a constant ratio across the entire force spectrum. The free energy landscapes of AcP in the absence and presence of Pi are constructed. Our results reveal that Pi selectively binds to the native state of AcP, stabilizing it and suggesting the general properties of specific ligand-receptor interactions.


Assuntos
Acilfosfatase , Dobramento de Proteína , Desdobramento de Proteína , Termodinâmica , Ligantes , Fosfatos/química , Fosfatos/metabolismo
11.
Bioresour Technol ; 401: 130711, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641302

RESUMO

Lithium carboxymethyl cellulose (CMC-Li) is a promising novel water-based binder for lithium-ion batteries. The direct synthesis of CMC-Li was innovatively developed using abundant wood dissolving pulp materials from hardwood (HW) and softwood (SW). The resulting CMC-Li-HW and CMC-Li-SW binders possessed a suitable degree of substitutions and excellent molecular weight distributions with an appropriate quantity of long- and short-chain celluloses, which facilitated the construction of a reinforced concrete-like bonding system. When used as cathode binders in LiFePO4 batteries, they uniformly coated and dispersed the electrode materials, formed a compact and stable conductive network with high mechanical strength and showed sufficient lithium replenishment. The prepared LiFePO4 batteries exhibited good mechanical stability, low charge transfer impedance, high initial discharge capacity (∼180 mAh/g), high initial Coulombic efficiency (99 %), excellent cycling performance (<3% loss over 200 cycles) and good rate capability, thereby outperforming CMC-Na and the widely used cathode binder polyvinylidene fluoride.


Assuntos
Carboximetilcelulose Sódica , Fontes de Energia Elétrica , Eletrodos , Lítio , Madeira , Lítio/química , Madeira/química , Carboximetilcelulose Sódica/química , Fosfatos/química , Íons , Ferro
12.
Metallomics ; 16(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38599629

RESUMO

Taking into account that in recent decades there has been an increase in the incidence of urinary stones, especially in highly developed countries, from a wide range of potentially harmful substances commonly available in such countries, we chose zinc for the research presented in this article, which is classified by some sources as a heavy metal. In this article, we present the results of research on the influence of Zn2+ ion on the nucleation and growth of struvite crystals-the main component of infection urinary stones. The tests were carried out in an artificial urine environment with and without the presence of Proteus mirabilis bacteria. In the latter case, the activity of bacterial urease was simulated chemically, by systematic addition of an aqueous ammonia solution. The obtained results indicate that Zn2+ ions compete with Mg2+ ions, which leads to the gradual replacement of Mg2+ ions in the struvite crystal lattice with Zn2+ ions to some extent. This means co-precipitation of Mg-struvite (MgNH4PO4·6H2O) and Znx-struvite (Mg1-xZnxNH4PO4·6H2O). Speciation analysis of chemical complexes showed that Znx-struvite precipitates at slightly lower pH values than Mg-struvite. This means that Zn2+ ions shift the nucleation point of crystalline solids towards a lower pH. Additionally, the conducted research shows that Zn2+ ions, in the range of tested concentrations, do not have a toxic effect on bacteria; on the contrary, it has a positive effect on cellular metabolism, enabling bacteria to develop better. It means that Zn2+ ions in artificial urine, in vitro, slightly increase the risk of developing infection urinary stones.


Assuntos
Proteus mirabilis , Estruvita , Cálculos Urinários , Zinco , Estruvita/química , Zinco/metabolismo , Zinco/química , Cálculos Urinários/química , Cálculos Urinários/metabolismo , Cálculos Urinários/microbiologia , Proteus mirabilis/metabolismo , Humanos , Fosfatos/metabolismo , Fosfatos/química , Íons , Compostos de Magnésio/metabolismo , Compostos de Magnésio/química , Cristalização
13.
J Environ Manage ; 359: 120938, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669888

RESUMO

The effective purification of phosphate-containing wastewater is considered as increasingly important. In this study, a highly effective LC-CNT film was developed for efficient phosphate removal. Kinetic results showed that the adsorbent exhibited an improved mass transfer efficiency and a fast adsorption rate during adsorption (reaching 80% and 100% equilibrium adsorption capacity within 175 and 270 min, respectively). Kinetic model analysis suggested that the adsorption was a combined chemical physical process. Isotherm study revealed that the LC-CNT film showed a superior adsorption capacity (178.6 mg/g, estimated from the Langmuir model) with multiple adsorption mechanisms. pH study suggested that surface complexation and ligand exchange played important roles during adsorption, and the adsorbent worked well within the pH range of 3-7 with little La leakage. The ionic strength and competing anions showed little influence on the adsorbent effectiveness except for the carbonate and sulfate ions. The characterization and mechanism study revealed that the phosphate adsorption of the LC-CNT film was controlled by inner-sphere complexation, outer-sphere complexation and surface precipitation. The LC-CNT film also showed excellent regenerability and stability in cycling runs, further demonstrating its potential in industrial applications.


Assuntos
Lantânio , Nanotubos de Carbono , Fosfatos , Poluentes Químicos da Água , Fosfatos/química , Lantânio/química , Adsorção , Nanotubos de Carbono/química , Cinética , Poluentes Químicos da Água/química , Purificação da Água/métodos , Águas Residuárias/química , Concentração de Íons de Hidrogênio , Concentração Osmolar
14.
Chemosphere ; 358: 142130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685320

RESUMO

Phosphorus (P) and Ammonium Nitrogen (N) are essential nutrients for plants and environmental stability. However, their excess in water causes eutrophication, damaging aquatic ecosystems. While adsorption is a promising solution, finding affordable and efficient adsorbents remains a challenge. In this study, magnesium (Mg), iron (Fe), and Mg/Fe doped biochars (BC) adsorbents were synthesized, and evaluated for adsorption of individual P and N and a P + N mixture from a solution and wastewater from a wastewater treatment plant. Compared to other adsorbents, Mg/BC showed excellent performance in adsorbing phosphorus (P) and ammonium nitrogen (N) from aqueous solutions. It demonstrated a large adsorption capacity of 64.65 mg/g and 62.50 mg/g from individual P and N solutions, and 30.3 mg/g and 27.67 mg/g from the P and N mixture solution, respectively. In addition, Mg/BC efficiently removed P and N from real-life wastewater. In the real wastewater, P and N removal efficiencies reached 88.30% and 59.36%, respectively. Kinetics analysis revealed that the pseudo-second-order model accurately described the adsorption of phosphorus (P) and ammonium nitrogen (N) in all solutions. The adsorbent followed the monolayer-Langmuir isotherm for N ions and the multilayer-Freundlich isotherm for P, indicating efficient adsorption processes. Thermodynamic experiments indicated that the adsorption of P and N was not only feasible but also occurred spontaneously in a natural manner. This study revealed that the strategic modification of biochar plays a crucial role in advancing effective wastewater treatment technologies designed for nutrient removal.


Assuntos
Carvão Vegetal , Magnésio , Nitrogênio , Fosfatos , Águas Residuárias , Poluentes Químicos da Água , Carvão Vegetal/química , Adsorção , Nitrogênio/química , Magnésio/química , Poluentes Químicos da Água/química , Fosfatos/química , Águas Residuárias/química , Cinética , Eliminação de Resíduos Líquidos/métodos , Fósforo/química , Purificação da Água/métodos
15.
Luminescence ; 39(5): e4751, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666358

RESUMO

This study describes the luminous properties of Pb5(PO4)3Br doped with RE3+ (RE = Dy3+, Eu3+ and Tb3+) synthesised using the solid-state method. The synthesised phosphor was characterised using Fourier-transform infrared, X-ray diffraction, scanning electron microscopy and photoluminescence measurements. Dy3+-doped Pb5(PO4)3Br phosphor exhibited blue and yellow emissions at 480 and 573 nm, respectively, on excitation at 388 nm. Eu3+-doped Pb5(PO4)3Br phosphor exhibited orange and red emissions at 591 and 614 nm, respectively, on excitation at λex = 396 nm. Pb5(PO4)3Br:Tb3+ phosphor exhibited the strongest green emission at 547 nm on excitation at λex = 380 nm. Additionally, the effect of the concentration of rare-earth ions on the emission intensity of Pb5(PO4)3Br:RE3+ (RE3+ = Dy3+, Eu3+ and Tb3+) phosphors was investigated.


Assuntos
Európio , Luminescência , Substâncias Luminescentes , Európio/química , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Térbio/química , Fosfatos/química , Medições Luminescentes , Difração de Raios X , Chumbo/química
16.
Waste Manag ; 181: 44-56, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38583272

RESUMO

Phosphate tailings (PT) was used to reduce the release of heavy metals (HMs) during pyrolysis and the leachable rate of residual HMs, and simultaneously improve the bioavailability of phosphorus in the sludge-based biochar. The concentration of heavy metals and the fractions determined by BCR method was used to investigate the release and the transformation of Zn, Pb, Mn, Ni and Cu during pyrolysis involved with the effects of temperature and the addition of PT. The respective pyrolysis experiments shows that the release of Zn and Pb increases with temperature for both sewage sludge (SS) and PT, and the bioavailable fractions (F1 + F2) of Mn, Ni, and Cu increases with temperature for PT. During co-pyrolysis, blended samples released lower quantities of Zn and Pb and presented lower bioavailability of HMs than the individual SS or PT. A synergistic effect of co-pyrolysis was evident for volatile Zn and Pb. The decomposition of CaMg (CO3)2 from PT produced CaO, by which the volatile ZnCl2 and PbCl2 were transformed into ZnO and PbO with less volatility and higher reactivity with SiO2 and Al2O3 than the chlorides. Then SiO2 and Al2O3 from SS acted as the final stabilizer to immobilize the oxides. The final product combined with SiO2 and Al2O3, such as ZnSiO4 and ZnAl2O4, were detected. The addition of PT also introduced more Ca and P into sludge to produce biochar with higher concentration of apatite phosphorus with higher bioavailability.


Assuntos
Metais Pesados , Fosfatos , Fósforo , Pirólise , Esgotos , Esgotos/química , Metais Pesados/química , Metais Pesados/análise , Fósforo/química , Fosfatos/química , Carvão Vegetal/química
17.
J Environ Manage ; 358: 120950, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657414

RESUMO

In this work, waste plastics have been used with bentonite clay to produce silica-containing graphene nanosheets (GNs) for adsorption of nitrate and phosphate from synthetic water. The GNs were obtained by the two steps process, namely (1) pyrolysis at 750 °C and (2) ball milling. Then, GNs were characterized by Raman spectroscopy, FTIR, XRD, FESEM, HRTEM and EDX spectroscopy, which provided the details of material's morphology, surface properties, and composition. From Raman spectroscopy, D and G bands were found at 1342 cm-1 and 1594 cm-1, respectively, which confirmed the presence of nanosheets on the graphene surface. Furthermore, the layers of nanosheets were confirmed by the HRTEM analysis and XRD peaks. In analytical study, the batch experiment was conducted to investigate the influence of operational parameters such as pH (03-12), contact time (05-120 min), adsorbent dosage (0.01-0.06 g), and initial concentrations of adsorbates (10-50 mg/L for nitrate and 03-15 mg/L for phosphate) on adsorption process. The removal percentage of nitrate and phosphate at optimum dosage = 0.05 g, pH = 6.5, contact time = 60 min, nitrate concentration = 30 mg/L, and phosphate concentration = 09 mg/L were found to be 85 and 91, respectively. The highest adsorption capacity of nitrate and phosphate was found to be 53 mg/g and 16.4 mg/g, respectively. The adsorption behaviour of both nitrate and phosphate showed chemisorption as the experimental data were well fitted by the pseudo-2nd-order kinetic and Langmuir isotherm model. Life cycle cost analysis (LCCA) of the synthesis process was conducted to evaluate the cost-benefit analysis for commercial feasibility. The estimated price for the synthesis of GNs using 1 kg of waste plastics and bentonite clay as precursor was $4.21, suggesting commercialization.


Assuntos
Grafite , Nitratos , Fosfatos , Plásticos , Grafite/química , Fosfatos/química , Nitratos/química , Adsorção , Plásticos/química , Poluentes Químicos da Água/química , Bentonita/química , Nanoestruturas/química
18.
J Environ Manage ; 358: 120866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663085

RESUMO

Cu (II) is a toxic heavy metal commonly identified in groundwater contaminants. Bentonite-based cutoff wall is the most used method in isolating and adsorbing contaminants, while the bentonite in it easily to fail due to Cu(II) exchange. This study synthesized a novel material through the modification of calcium bentonite (CaB) utilizing sodium hexametaphosphate (SHMP) and nano zero-valent iron (NZVI). The characteristics, adsorption performance, and mechanism of the NZVI/SHMP-CaB were investigated comprehensively. The results showed that SHMP can disperse CaB and reduce flocculation, while NZVI can be further stabilized without agglomeration. The best adsorption performance of NZVI/SHMP-CaB could be obtained at the dosage of 2% SHMP and 4% NZVI. The NZVI/SHMP-CaB exhibited an outstanding removal efficiency of over 60% and 90% at a high Cu(II) concentration (pH = 6, Cu(II) = 300 mg/L) and acidic conditions (pH = 3-6, Cu(II) = 50 mg/L), respectively. The adsorption of Cu(II) by NZVI/SHMP-CaB followed a pseudo-second-order kinetic model, and fitting results from the Freundlich isothermal model suggested that the adsorption process occurred spontaneously. Besides the rapid surface adsorption on the NZVI/SHMP-CaB and ion exchange with interlayer ions in bentonite, the removal mechanism of Cu(II) also involved the chemical reduction to insoluble forms such as Cu0 and Cu2O. The generated FePO4 covered the surface of the homogenized NZVI particles, enhancing the resistance of NZVI/SHMP-CaB to acidic and oxidative environments. This study indicates that NZVI/SHMP-CaB is a promising alternative material which can be used for heavy metal removal from contaminated soil and water.


Assuntos
Bentonita , Cobre , Ferro , Fosfatos , Bentonita/química , Adsorção , Ferro/química , Cobre/química , Fosfatos/química , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
19.
Environ Sci Pollut Res Int ; 31(20): 29132-29147, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568311

RESUMO

Layered double hydroxides (LDH) hold great promise as phosphate adsorbents; however, the conventional binary LDH exhibits low adsorption rate and adsorption capacity. In this study, Mg and La were chosen as binary metals in the synthesis of Mg-La LDH to enhance phosphate efficient adsorption. Different molar ratios of Mg to La (2:1, 3:1, and 4:1) were investigated to further enhance P adsorption. The best performing Mg-La LDH, with Mg to La ratio is 4:1 (LDH-4), presented a larger adsorption capacity and faster adsorption rate than other Mg-La LDH. The maximum adsorption capacity (87.23 mg/g) and the rapid adsorption rate in the initial 25 min of LDH-4 (70 mg/(g·h)) were at least 1.6 times and 1.8 times higher than the others. The kinetics, isotherms, the effect of initial pH and co-existing anions, and the adsorption-desorption cycle experiment were studied. The batch experiment results proved that the chemisorption progress occurred on the single-layered LDH surface and the optimized LDH exhibited strong anti-interference capability. Furthermore, the structural characteristics and adsorption mechanism were further investigated by SEM, BET, FTIR, XRD, and XPS. The characterization results showed that the different metal ratios could lead to changes in the metal hydroxide layer and the main ions inside. At lower Mg/La ratios, distortion occurred in the hydroxide layer, resulting in lower crystallinity and lower performance. The characterization results also proved that the main mechanisms of phosphate adsorption are electrostatic adsorption, ion exchange, and inner-sphere complexation. The results emphasized that the Mg-La LDH was efficient in phosphate removal and could be successfully used for this purpose.


Assuntos
Hidróxidos , Magnésio , Fosfatos , Adsorção , Hidróxidos/química , Fosfatos/química , Magnésio/química , Cinética , Lantânio/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
20.
Environ Sci Pollut Res Int ; 31(20): 29584-29594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38580876

RESUMO

Phosphate removal from water by lanthanum-modified tobermorite synthesized from fly ash (LTFA) with different lanthanum concentrations was studied. LTFA samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and Brunauer‒Emmett‒Teller specific surface area analysis. The results showed that the LTFA samples were mainly composed of mesoporous tobermorite-11 Å, and LTFA1 with a lanthanum concentration of 0.15 M had a high specific surface area (83.82 m2/g) and pore volume (0.6778 cm3/g). The phosphate adsorption capacities of LTFA samples were highest at pH 3 and gradually decreased with increasing pH. The phosphate adsorption kinetics data on LTFA samples were most accurately described by the Elovich model. The adsorption isotherms were in the strongest agreement with the Temkin model, and LTFA1 showed the highest phosphate adsorption capacity (282.51 mg P/g), which was higher than that of most other lanthanum-modified adsorbents. LTFA1 presented highly selective adsorption of phosphate with other coexisting ions (HCO3-, Cl-, SO42-, and NO3-). In addition, phosphate was adsorbed onto LTFA samples by forming inner-sphere phosphate complexes and amorphous lanthanum phosphate. This study provides technical support for development of efficient fly ash-based phosphate adsorbents.


Assuntos
Cinza de Carvão , Lantânio , Fosfatos , Lantânio/química , Cinza de Carvão/química , Fosfatos/química , Adsorção , Cinética , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA