Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene ; 702: 133-142, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-30904717

RESUMO

Phosphofructokinase plays an essential role in sugar metabolism in plants. Plants possess two types of phosphofructokinase proteins for phosphorylation of fructose-6-phosphate, the pyrophosphate-dependent fructose-6-phosphate phosphotransferase (PFP), and the ATP-dependent phosphofructokinase (PFK). Until now, the gene evolution, expression patterns, and functions of phosphofructokinase proteins were unknown in pear. In this report, 14 phosphofructokinase genes were identified in pear. The phylogenetic tree indicated that the phosphofructokinase gene family could be grouped into two subfamilies, with 10 genes belonging to the PbPFK subfamily, and 4 genes belonging to the PbPFP subfamily. Conserved motifs and exon numbers of the phosphofructokinase were found in pear and other six species. The evolution analysis indicated that WGD/Segmental and dispersed duplications were the main duplication models for the phosphofructokinase genes expansion in pear and other six species. Analysis of cis-regulatory element sequences of all phosphofructokinase genes identified light regulation and the MYB binding site in the promoter of all pear phosphofructokinase genes, suggesting that phosphofructokinase might could be regulated by light and MYB transcription factors (TFs). Gene expression patterns revealed that PbPFP1 showed similar pattern with sorbitol contents, suggesting important contributions to sugar accumulation during fruit development. Further functional analysis indicated that the phosphofructokinase gene PbPFP1 was localized on plasma membrane compartment, indicating that PbPFP1 had function in plasma membrane. Transient transformation of PbPFP1 in pear fruits led to significant increases of fructose and sorbitol compared to controls. Overall, our study provides important insights into the gene expression patterns and important potential functions of phosphofructokinase for sugar accumulation in pear fruits, which will help to enrich understanding of sugar-related bio-pathways and lay the molecular basis for fruit quality improvement.


Assuntos
Família Multigênica , Fosfofrutoquinases/classificação , Fosfofrutoquinases/genética , Pyrus/enzimologia , Motivos de Aminoácidos , Membrana Celular/enzimologia , Mapeamento Cromossômico , Éxons , Frutas/enzimologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Íntrons , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Pyrus/classificação , Pyrus/genética , Pyrus/crescimento & desenvolvimento , Rosaceae/classificação , Açúcares/metabolismo , Transcrição Gênica
2.
Exp Parasitol ; 151-152: 64-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25662436

RESUMO

Full length cDNAs encoding phosphofructokinase (PFK) were cloned from Teladorsagia circumcincta (TcPFK) and Haemonchus contortus (HcPFK). TcPFK (2361 bp) and HcPFK (2367 bp) cDNA encoded 787 and 789 amino acid proteins respectively. The predicted amino acid sequences showed 98% similarity with each other and 70% with a Caenorhabditis elegans PFK. Substrate binding sites were completely conserved in both proteins. Soluble N-terminal His-tagged PFK proteins were expressed in Escherichia coli strain BL21, purified and characterised. The recombinant TcPFK and HcPFK had very similar kinetic properties: the pH optima were pH 7.0, Km for fructose 6-phosphate was 0.50 ± 0.01 and 0.55 ± 0.01 mM respectively when higher (inhibiting concentration, 0.3 mM) ATP concentration was used and the curve was sigmoidal. The Vmax for TcPFK and HcPFK were 1110 ± 16 and 910 ± 10 nM min(-1 )mg(-1) protein respectively. Lower ATP concentration (non-inhibiting, 0.01 mM) did not change the Vmax for TcPFK and HcPFK (890 ± 10 and 860 ± 12 nM min(-1 )mg(-1) protein) but the substrate affinity doubled and Km for fructose 6-phosphate were 0.20 ± 0.05 and 0.25 ± 0.01 mM respectively. Recognition of TcPFK and HcPFK by mucosal and serum antibodies in nematode exposed animals demonstrates antigenicity and suggests involvement in the host response to nematode infection.


Assuntos
Abomaso/parasitologia , Fosfofrutoquinases/química , Doenças dos Ovinos/parasitologia , Trichostrongyloidea/enzimologia , Tricostrongiloidíase/veterinária , Sequência de Aminoácidos , Animais , Anticorpos Anti-Helmínticos/análise , Anticorpos Anti-Helmínticos/sangue , Anticorpos Anti-Helmínticos/imunologia , Sequência de Bases , Clonagem Molecular , DNA Complementar/química , DNA de Helmintos/química , Hemoncose/imunologia , Hemoncose/parasitologia , Hemoncose/veterinária , Haemonchus/classificação , Haemonchus/enzimologia , Haemonchus/genética , Haemonchus/imunologia , Cinética , Dados de Sequência Molecular , Fosfofrutoquinases/classificação , Fosfofrutoquinases/genética , Fosfofrutoquinases/imunologia , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Saliva/imunologia , Alinhamento de Sequência , Ovinos , Doenças dos Ovinos/imunologia , Trichostrongyloidea/classificação , Trichostrongyloidea/genética , Trichostrongyloidea/imunologia , Tricostrongiloidíase/imunologia , Tricostrongiloidíase/parasitologia
3.
FEBS J ; 281(8): 2017-29, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24860874

RESUMO

In some archaea, the phosphorylation of glucose and fructose 6-phosphate (fructose 6P) is carried out by enzymes that are specific for either substrate and that use ADP as phosphoryl donor. In the hyperthermophilic archaeon Methanocaldococcus jannaschii, a bifunctional enzyme able to phosphorylate glucose and fructose 6P has been described. To determine whether the ability to phosphorylate both glucose and fructose 6P is a common feature for all enzymes of the order Methanococcales, we expressed, purified and characterized the unique homologous protein of the mesophilic archaea Methanococcus maripaludis. Assay of the enzyme activity with different sugars, metals and nucleotides allows us to conclude that the enzyme is able to phosphorylate both fructose 6P and glucose in the presence of ADP and a divalent metal cation. Kinetic characterization of the enzyme revealed complex regulation by the free Mg(2+) concentration and AMP, with the latter appearing to be a key metabolite. To determine whether this enzyme could have a role in gluconeogenesis, we evaluated the reversibility of both reactions and found that glucokinase activity is reversible, whereas phosphofructokinase activity is not. To determine the important residues for glucose and fructose 6P binding, we modeled the bifunctional phosphofructokinase/glucokinase enzyme from M. maripaludis and its interactions with both sugar substrates using protein­ligand docking. Comparison of the active site of the phosphofructokinase/glucokinase enzyme from M. maripaludis with the structural models constructed for all the homology sequences present in the order Methanococcales shows that all of the ADP-dependent kinases from this order would be able to phosphorylate glucose and fructose 6P, which rules out the current annotation of these enzymes as specific phosphofructokinases.


Assuntos
Glucoquinase/metabolismo , Mathanococcus/enzimologia , Fosfofrutoquinases/metabolismo , Glucoquinase/química , Glucoquinase/classificação , Gluconeogênese , Glucose/metabolismo , Cinética , Fosfofrutoquinases/química , Fosfofrutoquinases/classificação , Filogenia
4.
Biophys J ; 85(1): 656-66, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12829519

RESUMO

The allosteric properties of the wild-type Escherichia coli phosphofructokinase were compared to the E187A mutant by using frequency-domain techniques. Tryptophan-shifted mutants comprising of double (W311Y/Y55W and W/311F/F188W) and triple (W311Y/Y55W/E187A and W311F/F188W/E187A) amino acid residue changes, which allowed for better fluorescence probing at targeted sites, were also compared to the wild-type and E187A. The additive nature of multiple mutations allowed one to partition the net effect of modifying residue 187. In general, the mutant enzymes displayed greater heterogeneity in sub-state population than did the wild-type enzyme. The semi-cone angle model was used to quantify the extent of depolarization of the fluorophore. Use of the model presupposes that the extent of depolarization directly correlates with the degree of flexibility of the fluorophore. A relationship has been established between the values determined from the semi-cone angle calculations and the thermodynamic components responsible for the allosteric linkage between the regulatory and substrate binding. Coupling interactions giving rise to positive entropy components are manifested by increasing flexibility of the ternary complexes rather than the binary complexes.


Assuntos
Escherichia coli/enzimologia , Modelos Químicos , Fosfofrutoquinases/química , Fosfofrutoquinases/classificação , Espectrometria de Fluorescência/métodos , Triptofano/química , Anisotropia , Simulação por Computador , Análise de Fourier , Meia-Vida , Isomerismo , Conformação Molecular , Mutação , Fosfofrutoquinases/análise , Estatística como Assunto , Triptofano/análise
5.
Extremophiles ; 5(6): 357-73, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11778837

RESUMO

The enzyme phosphofructokinase (PFK) is a defining activity of the highly conserved glycolytic pathway, and is present in the domains Bacteria, Eukarya, and Archaea. PFK subtypes are now known that utilize either ATP, ADP, or pyrophosphate as the primary phosphoryl donor and share the ability to catalyze the transfer of phosphate to the 1-position of fructose-6-phosphate. Because of the crucial position in the glycolytic pathway of PFKs, their biochemical characteristics and phylogenies may play a significant role in elucidating the origins of glycolysis and, indeed, of metabolism itself. Despite the shared ability to phosphorylate fructose-6-phosphate, PFKs that have been characterized to date now fall into three sequence families: the PFKA family, consisting of the well-known higher eukaryotic ATP-dependent PFKs together with their ATP- and pyrophosphate-dependent bacterial cousins (including the crenarchaeal pyrophosphate-dependent PFK of Thermoprotetus tenax) and plant pyrophosphate-dependent phosphofructokinases; the PFKB family, exemplified by the minor ATP-dependent PFK activity of Escherichia coli (PFK 2), but which also includes at least one crenarchaeal enzyme in Aeropyrum pernix; and the tentatively named PFKC family, which contains the unique ADP-dependent PFKs from the euryarchaeal genera of Pyrococcus and Thermococcus, which are indicated by sequence analysis to be present also in the methanogenic species Methanococcus jannaschii and Methanosarcina mazei.


Assuntos
Archaea/enzimologia , Archaea/genética , Bactérias/enzimologia , Bactérias/genética , Fosfofrutoquinases/química , Fosfofrutoquinases/genética , Sequência de Aminoácidos , Animais , Células Eucarióticas/enzimologia , Evolução Molecular , Dados de Sequência Molecular , Fosfofrutoquinases/classificação , Fosfofrutoquinases/metabolismo , Filogenia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA