Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Amino Acids ; 54(6): 859-875, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35622130

RESUMO

Human microtubule-associated protein Tau (τ) is abundant in the axons of neurons where it stabilizes microtubule bundles; abnormally hyperphosphorylated τ is a hallmark of Alzheimer's disease (AD) and related tauopathies. The hyperphosphorylation events can be recognized by phosphotyrosine-recognition domain SH2 (Src homology 2) to elicit downstream τ signaling in AD pathology. In this study, a comprehensive binary interaction map (CBIM) of all the 6 τ phosphotyrosine sites with 120 SH2 domains in the human genome was systematically created at structural level using computational analyses and binding assays, from which we were able to identify those of strong and moderate binding pairs of sites to domains. It is found that the SH2-recognition specificity of different τ phosphotyrosine sites has been evolutionally optimized to become roughly orthogonal to each other, and thus these site phosphorylations would regulate different but probably partially overlapped biological functions in τ signaling. Some SH2 groups such as SRC, RIN, PLCG, SOCS and SH2D were revealed to have effective binding potency as compared to others; they could be regarded as potential τ-associated proteins to transduce the downstream signaling. We further determined the systematic binding affinities of 6 τ-phosphopeptides to the 11 SH2 domains in SRC group, from which the FYN-τ18 and YES-τ29 pairs were identified as strong binders. Subsequently, rational molecular design was performed on τ18 and τ29 to derive a number of τ-phosphopeptide mutants with increased affinity; they are self-inhibitory candidates to competitively target τ hyperphosphorylation events in AD. In addition, it is revealed that the primary anchor pY0 and secondary anchor X+3 of τ-phosphopeptides play an important role in SRC-group SH2 recognition, which confer stability and specificity to the SH2-phosphopeptide binding, respectively.


Assuntos
Doença de Alzheimer , Domínios de Homologia de src , Doença de Alzheimer/genética , Sítios de Ligação , Genoma Humano , Humanos , Fosfopeptídeos/química , Fosfotirosina/química , Fosfotirosina/genética , Fosfotirosina/metabolismo , Ligação Proteica
2.
Chem Commun (Camb) ; 58(39): 5897-5900, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35474127

RESUMO

Protein tyrosine phosphorylation plays a critical role in signal transduction. We report the genetic incorporation of a phosphotyrosine (pTyr) analog, p-carboxymethyl-L-phenylalanine (CMF), into proteins in mammalian cells. This nonhydrolyzable pTyr analog can facilitate biological studies by removing complications caused by the dynamic interconversion between the phosphorylated and non-phosphorylated isoforms of a protein.


Assuntos
Transdução de Sinais , Tirosina , Animais , Mamíferos/metabolismo , Fosforilação , Fosfotirosina/genética , Fosfotirosina/metabolismo , Processamento de Proteína Pós-Traducional , Tirosina/metabolismo
3.
Nature ; 595(7867): 404-408, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34163073

RESUMO

Congenital myasthenia (CM) is a devastating neuromuscular disease, and mutations in DOK7, an adaptor protein that is crucial for forming and maintaining neuromuscular synapses, are a major cause of CM1,2. The most common disease-causing mutation (DOK71124_1127 dup) truncates DOK7 and leads to the loss of two tyrosine residues that are phosphorylated and recruit CRK proteins, which are important for anchoring acetylcholine receptors at synapses. Here we describe a mouse model of this common form of CM (Dok7CM mice) and a mouse with point mutations in the two tyrosine residues (Dok72YF). We show that Dok7CM mice had severe deficits in neuromuscular synapse formation that caused neonatal lethality. Unexpectedly, these deficits were due to a severe deficiency in phosphorylation and activation of muscle-specific kinase (MUSK) rather than a deficiency in DOK7 tyrosine phosphorylation. We developed agonist antibodies against MUSK and show that these antibodies restored neuromuscular synapse formation and prevented neonatal lethality and late-onset disease in Dok7CM mice. These findings identify an unexpected cause for disease and a potential therapy for both DOK7 CM and other forms of CM caused by mutations in AGRIN, LRP4 or MUSK, and illustrate the potential of targeted therapy to rescue congenital lethality.


Assuntos
Proteínas Musculares/genética , Mutação , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Envelhecimento , Agrina/genética , Agrina/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos/imunologia , Modelos Animais de Doenças , Feminino , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Masculino , Camundongos , Terapia de Alvo Molecular , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Síndromes Miastênicas Congênitas/imunologia , Fosforilação , Fosfotirosina/genética , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Receptores Proteína Tirosina Quinases/agonistas , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Recidiva , Sinapses/metabolismo
4.
Am J Physiol Cell Physiol ; 319(2): C288-C299, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432933

RESUMO

Dysregulation of the mechanical properties and cell adhesive interactions of trabecular meshwork (TM) are known to impair aqueous humor drainage and elevate intraocular pressure in glaucoma patients. The identity of regulatory mechanisms underlying TM mechanotransduction, however, remains elusive. Here we analyzed the phosphotyrosine proteome of human TM cell-extracellular matrix (ECM) adhesion complexes, which play a key role in sensing and transducing extracellular chemical and mechanical cues into intracellular activities, using a two-level affinity pull-down (phosphotyrosine antibody and titanium dioxide beads) method and mass spectrometry. This analysis identified ~1,000 tyrosine-phosphorylated proteins of TM cell-ECM adhesion complexes. Many consensus adhesome proteins were found to be tyrosine phosphorylated. Interestingly, several of the phosphotyrosinylated proteins found in TM cell-ECM adhesion complexes are known to be required for podocyte glomerular filtration, indicating the existence of molecular parallels that are likely relevant to the shared fluid barrier and filtration functions of the two mechanosensitive cell types.


Assuntos
Junções Célula-Matriz/genética , Glaucoma/genética , Proteoma/genética , Malha Trabecular/metabolismo , Adulto , Idoso , Humor Aquoso/metabolismo , Matriz Extracelular/genética , Proteínas da Matriz Extracelular/genética , Glaucoma/patologia , Humanos , Pressão Intraocular/genética , Mecanotransdução Celular/genética , Fosforilação/genética , Fosfotirosina/genética , Cultura Primária de Células , Proteínas Tirosina Fosfatases/genética
5.
Cell Physiol Biochem ; 54(4): 517-537, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32428391

RESUMO

BACKGROUND/AIMS: Src kinase family members, including c-Src, are involved in numerous signaling pathways and have been observed inside different cellular compartments. Notably, c-Src modulates carbohydrate and fatty acid metabolism and is involved in the metabolic rewiring of cancer cells. This kinase is found within mitochondria where it targets different proteins to impact on the organelle functions and overall metabolism. Surprisingly, no global metabolic characterization of Src has been performed although c-Src knock-out mice have been available for 30 years. Considering that c-Src is sensitive to various metabolites, c-Src might represent a crucial player in metabolic adjustments induced by nutrient stress. The aim of this work was to characterize the impact of c-Src on mitochondrial activity and overall metabolism using multi-omic characterization. METHODS: Src+/+ and Src-/- mice were fed ad libitum or fasted during 24h and were then analyzed using multi-omics. RESULTS: We observed that deletion of c-Src is linked to lower phosphorylation of Y412-NDUFA8, inhibition of oxygen consumption and accumulation of metabolites involved in glycolysis, TCA cycle and amino acid metabolism in mice fed ad libitum. Finally, metabolomics and (phosphotyrosine) proteomics are differently impacted by Src according to nutrient availability. CONCLUSION: The findings presented here highlight that c-Src reduces mitochondrial metabolism and impacts the metabolic adjustment induced by nutrient stress.


Assuntos
Mitocôndrias/metabolismo , Fosfotirosina/metabolismo , Proteoma/metabolismo , Quinases da Família src/metabolismo , Animais , Encéfalo/metabolismo , Cromatografia Líquida , Ciclo do Ácido Cítrico/genética , Cromatografia Gasosa-Espectrometria de Massas , Glicólise/genética , Rim/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Nutrientes/metabolismo , Fosforilação , Fosfotirosina/genética , Proteômica , Espectrometria de Massas em Tandem , Quinases da Família src/genética
6.
Sci Rep ; 10(1): 8453, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439998

RESUMO

Patient stratification and individualized therapeutic strategies rely on the established knowledge of genotype-specific molecular and cellular alterations of biological and therapeutic significance. Whilst almost all approved drugs have been developed based on the Reference Sequence protein database (RefSeq), the latest genome sequencing studies establish the substantial prevalence of non-synonymous genetic mutations in the general population, including stop-insertion and frame shift mutations within the coding regions of membrane proteins. While the availability of individual genotypes are becoming increasingly common, the biological and clinical interpretations of mutations among individual genomes is largely lagging behind. Lately, transmembrane proteins of haematopoietic (myeloid and lymphoid) derived immune cells have attracted much attention as important targets for cancer immunotherapies. As such, the signalling properties of haematological transmembrane receptors rely on the membrane-proximal phosphotyrosine based sequence motifs (TBSMs) such as ITAM (immunoreceptor tyrosine-based activation motif), ITIM (immunoreceptor tyrosine-based inhibition motif) and signal transducer and activator of transcription 3 (STAT3)-recruiting YxxQ motifs. However, mutations that alter the coding regions of transmembrane proteins, resulting in either insertion or deletion of crucial signal modulating TBSMs, remains unknown. To conveniently identify individual cell line-specific or patient-specific membrane protein altering mutations, we present the Transmembrane Protein Sequence Variant Identifier (TraPS-VarI). TraPS-VarI is an annotation tool for accurate mapping of the effect of an individual's mutation in the transmembrane protein sequence, and to identify the prevalence of TBSMs. TraPS-VarI is a biologist and clinician-friendly algorithm with a web interface and an associated database browser (https://www.traps-vari.org/).


Assuntos
Melanoma/patologia , Mutação , Fosfoproteínas/metabolismo , Fosfotirosina/metabolismo , Software , Timoma/patologia , Motivos de Aminoácidos , Animais , Biologia Computacional , Melanoma/genética , Melanoma/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fosfoproteínas/genética , Fosforilação , Fosfotirosina/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Timoma/genética , Timoma/metabolismo , Neoplasias do Timo/genética , Neoplasias do Timo/metabolismo , Neoplasias do Timo/patologia
7.
Mol Biol Rep ; 45(6): 2501-2509, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30311130

RESUMO

Protein phosphorylation is one of the most fundamental types of post-translational modifications and it plays a vital role in various cellular processes of eukaryotes. Among three types of phosphorylation i.e. serine, threonine and tyrosine phosphorylation, tyrosine phosphorylation is one of the most frequent and it is important for mediation of signal transduction in eukaryotic cells. Site-directed mutagenesis and mass spectrometry help in the experimental determination of cellular signalling networks, however, these techniques are costly, time taking and labour associated. Thus, efficient and accurate prediction of these sites through computational approaches can be beneficial to reduce cost and time. Here, we present a more accurate and efficient sequence-based computational method for prediction of phosphotyrosine (PhosY) sites by incorporation of statistical moments into PseAAC. The study is carried out based on Chou's 5-step rule, and various position-composition relative features are used to train a neural network for the prediction purpose. Validation of results through Jackknife testing is performed to validate the results of the proposed prediction method. Overall accuracy validated through Jackknife testing was calculated 93.9%. These results suggest that the proposed prediction model can play a fundamental role in the prediction of PhosY sites in an accurate and efficient way.


Assuntos
Biologia Computacional/métodos , Previsões/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Aminoácidos , Biometria , Bases de Dados de Proteínas , Fosforilação/genética , Fosfotirosina/genética , Fosfotirosina/metabolismo , Processamento de Proteína Pós-Traducional
8.
Sci Signal ; 11(524)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615518

RESUMO

Despite belonging to the phosphoserine- and phosphothreonine-specific phosphoprotein phosphatase (PPP) family, Arabidopsis thaliana Rhizobiales-like phosphatase 2 (RLPH2) strongly prefers substrates bearing phosphorylated tyrosine residues. We solved the structures of RLPH2 crystallized in the presence or absence of sodium tungstate. These structures revealed the presence of a central domain that forms a binding site for two divalent metal ions that closely resembles that of other PPP-family enzymes. Unique structural elements from two flanking domains suggest a mechanism for the selective dephosphorylation of phosphotyrosine residues. Cocrystallization with the phosphate mimetic tungstate also suggests how positively charged residues that are highly conserved in the RLPH2 class form an additional pocket that is specific for a phosphothreonine residue located near the phosphotyrosine residue that is bound to the active site. Site-directed mutagenesis confirmed that this auxiliary recognition element facilitates the recruitment of dual-phosphorylated substrates containing a pTxpY motif.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfotirosina/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Modelos Moleculares , Mutação , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosforilação , Fosfotirosina/química , Fosfotirosina/genética , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Compostos de Tungstênio/química , Compostos de Tungstênio/metabolismo , Tirosina/química , Tirosina/genética
9.
Nat Chem Biol ; 13(8): 845-849, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28604693

RESUMO

Tyrosine phosphorylation is a common protein post-translational modification that plays a critical role in signal transduction and the regulation of many cellular processes. Using a propeptide strategy to increase cellular uptake of O-phosphotyrosine (pTyr) and its nonhydrolyzable analog 4-phosphomethyl-L-phenylalanine (Pmp), we identified an orthogonal aminoacyl-tRNA synthetase-tRNA pair that allows site-specific incorporation of both pTyr and Pmp into recombinant proteins in response to the amber stop codon in Escherichia coli in good yields. The X-ray structure of the synthetase reveals a reconfigured substrate-binding site, formed by nonconservative mutations and substantial local structural perturbations. We demonstrate the utility of this method by introducing Pmp into a putative phosphorylation site and determining the affinities of the individual variants for the substrate 3BP2. In summary, this work provides a useful recombinant tool to dissect the biological functions of tyrosine phosphorylation at specific sites in the proteome.


Assuntos
Códon sem Sentido/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfotirosina/análogos & derivados , Fosfotirosina/genética , Cristalografia por Raios X , Ligases/química , Ligases/metabolismo , Modelos Moleculares , Estrutura Molecular , Fosforilação , Fosfotirosina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
Nat Chem Biol ; 13(8): 842-844, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28604697

RESUMO

Access to phosphoproteins with stoichiometric and site-specific phosphorylation status is key to understanding the role of protein phosphorylation. Here we report an efficient method to generate pure, active phosphotyrosine-containing proteins by genetically encoding a stable phosphotyrosine analog that is convertible to native phosphotyrosine. We demonstrate its general compatibility with proteins of various sizes, phosphotyrosine sites and functions, and reveal a possible role of tyrosine phosphorylation in negative regulation of ubiquitination.


Assuntos
Código Genético/genética , Fosfotirosina/genética , Fosfotirosina/metabolismo , Proteínas/genética , Proteínas/metabolismo , Animais , Fosforilação , Proteínas/química , Tirosina/metabolismo
11.
J Proteome Res ; 16(1): 106-121, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27463037

RESUMO

It remains a paradox that IL-2 and IL-15 can differentially modulate the immune response using the same signaling receptors. We have previously dissected the phosphotyrosine-driven signaling cascades triggered by both cytokines in Kit225 T-cells, unveiling subtle differences that may contribute to their functional dichotomy. In this study, we aimed to decipher the receptor complex assembly in IL-2- and IL-15-activated T-lymphocytes that is highly orchestrated by site-specific phosphorylation events. Comparing the cytokine-induced interactome of the interleukin receptor beta and gamma subunits shared by the two cytokines, we defined the components of the early IL-2 and IL-15 receptor-associated complex discovering novel constituents. Additionally, phosphopeptide-directed analysis allowed us to detect several cytokine-dependent and -independent phosphorylation events within the activated receptor complex including novel phosphorylated sites located in the cytoplasmic region of IL-2 receptor ß subunit (IL-2Rß). We proved that the distinct phosphorylations induced by the cytokines serve for recruiting different types of effectors to the initial receptor/ligand complex. Overall, our study sheds new light into the initial molecular events triggered by IL-2 and IL-15 and constitutes a further step toward a better understanding of the early signaling aspects of the two closely related cytokines in T-lymphocytes.


Assuntos
Subunidade gama Comum de Receptores de Interleucina/imunologia , Interleucina-15/farmacologia , Subunidade beta de Receptor de Interleucina-2/imunologia , Interleucina-2/farmacologia , Janus Quinase 1/imunologia , Janus Quinase 3/imunologia , Linfócitos T/efeitos dos fármacos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Interleucina-15/genética , Interleucina-15/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Subunidade beta de Receptor de Interleucina-2/genética , Janus Quinase 1/genética , Janus Quinase 3/genética , Ativação Linfocitária , Fosforilação , Fosfotirosina/genética , Fosfotirosina/imunologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/imunologia
12.
Proc Natl Acad Sci U S A ; 113(41): E6045-E6054, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671650

RESUMO

The DNA strand exchange protein RAD51 facilitates the central step in homologous recombination, a process fundamentally important for accurate repair of damaged chromosomes, restart of collapsed replication forks, and telomere maintenance. The active form of RAD51 is a nucleoprotein filament that assembles on single-stranded DNA (ssDNA) at the sites of DNA damage. The c-Abl tyrosine kinase and its oncogenic counterpart BCR-ABL fusion kinase phosphorylate human RAD51 on tyrosine residues 54 and 315. We combined biochemical reconstitutions of the DNA strand exchange reactions with total internal reflection fluorescence microscopy to determine how the two phosphorylation events affect the biochemical activities of human RAD51 and properties of the RAD51 nucleoprotein filament. By mimicking RAD51 tyrosine phosphorylation with a nonnatural amino acid, p-carboxymethyl-l-phenylalanine (pCMF), we demonstrated that Y54 phosphorylation enhances the RAD51 recombinase activity by at least two different mechanisms, modifies the RAD51 nucleoprotein filament formation, and allows RAD51 to compete efficiently with ssDNA binding protein RPA. In contrast, Y315 phosphorylation has little effect on the RAD51 activities. Based on our work and previous cellular studies, we propose a mechanism underlying RAD51 activation by c-Abl/BCR-ABL kinases.


Assuntos
Nucleoproteínas/metabolismo , Fosfotirosina/metabolismo , Rad51 Recombinase/metabolismo , Mimetismo Biológico , DNA/genética , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Recombinação Homóloga , Humanos , Hidrólise , Modelos Moleculares , Mutação , Nucleoproteínas/química , Fosforilação , Fosfotirosina/química , Fosfotirosina/genética , Conformação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas c-abl/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/genética , Proteínas Recombinantes
13.
FEBS Lett ; 590(17): 3040-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477338

RESUMO

Protein phosphorylation is one of the most important post-translational modifications in nature. However, the site-specific incorporation of O-phosphotyrosine into proteins in vivo has not yet been reported. Endogenous phosphatases present in cells can dephosphorylate phosphotyrosine as a free amino acid or as a protein residue. Therefore, we deleted the genes of five phosphatases from the genome of Escherichia coli with the aim of stabilizing phosphotyrosine. Together with an engineered aminoacyl-tRNA synthetase (derived from Methanocaldococcus jannaschii tyrosyl-tRNA synthetase) and an elongation factor Tu variant, we were able to cotranslationally incorporate O-phosphotyrosine into the superfolder green fluorescent protein at a desired position in vivo. This system will facilitate future studies of tyrosine phosphorylation.


Assuntos
Aminoacil-tRNA Sintetases/genética , Escherichia coli/genética , Monoéster Fosfórico Hidrolases/genética , Fosfotirosina/metabolismo , Escherichia coli/enzimologia , Deleção de Genes , Código Genético , Proteínas de Fluorescência Verde/metabolismo , Methanocaldococcus/enzimologia , Fator Tu de Elongação de Peptídeos/genética , Fosforilação , Fosfotirosina/genética , Engenharia de Proteínas , Processamento de Proteína Pós-Traducional/genética
14.
Biochim Biophys Acta ; 1864(10): 1339-55, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27421795

RESUMO

Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type. In bacteria, this enzyme is involved in the biosynthesis of group 1 and 4 capsules, but it is also a virulence factor in pathogenic strains. In yeast, LMW-PTPs dephosphorylate immunophilin Fpr3, a peptidyl-prolyl-cis-trans isomerase member of the protein chaperone family. In humans, LMW-PTP is encoded by the ACP1 gene, which is composed of three different alleles, each encoding two active enzymes produced by alternative RNA splicing. In animals, LMW-PTP dephosphorylates a number of growth factor receptors and modulates their signalling processes. The involvement of LMW-PTP in cancer progression and in insulin receptor regulation as well as its actions as a virulence factor in a number of pathogenic bacterial strains may promote the search for potent, selective and bioavailable LMW-PTP inhibitors.


Assuntos
Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Aminoácidos , Animais , Evolução Biológica , Humanos , Peso Molecular , Fosfotirosina/genética , Fosfotirosina/metabolismo , Alinhamento de Sequência , Transdução de Sinais/genética
15.
Biochemistry ; 55(11): 1631-4, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26562627

RESUMO

Although histone post-translational modifications play a paramount role in controlling access to genetic information, our understanding of the precise mechanisms regulating chromatin signaling remains superficial. For instance, histone H3 trimethylated on lysine 9 (H3K9(me3)) favors the association of chromodomain proteins such as heterochromatin protein 1α (HP1α) with chromatin. However, HP1α and other such chromatin proteins are not covering all specific histone marks at all times. Thus, how are these reader-histone interactions regulated? We propose tyrosine phosphorylation within the aromatic cage of histone mark readers as a molecular switch that can either turn ON or OFF and even alter the specificity of reader-histone interactions. We have identified tyrosine phosphorylation events on the chromatin proteins HP1α and M-phase phosphoprotein 8 that regulate their association with methylated histones in vitro (synthetic peptides, calf thymus purified histones, and nucleosomes), but also in cells, thus controlling access to genetic information.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Fosfoproteínas/metabolismo , Animais , Bovinos , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Células HEK293 , Histonas/genética , Humanos , Metilação , Nucleossomos/genética , Fosfoproteínas/genética , Fosforilação/fisiologia , Fosfotirosina/genética , Fosfotirosina/metabolismo
16.
PLoS One ; 10(12): e0145142, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26717567

RESUMO

Signal Transducer and Activator of Transcription STAT5 is a key mediator of cell proliferation, differentiation and survival. While STAT5 activity is tightly regulated in normal cells, its constitutive activation directly contributes to oncogenesis and is associated with a broad range of hematological and solid tumor cancers. Therefore the development of compounds able to modulate pathogenic activation of this protein is a very challenging endeavor. A crucial step of drug design is the understanding of the protein conformational features and the definition of putative binding site(s) for such modulators. Currently, there is no structural data available for human STAT5 and our study is the first footprint towards the description of structure and dynamics of this protein. We investigated structural and dynamical features of the two STAT5 isoforms, STAT5a and STAT5b, taken into account their phosphorylation status. The study was based on the exploration of molecular dynamics simulations by different analytical methods. Despite the overall folding similarity of STAT5 proteins, the MD conformations display specific structural and dynamical features for each protein, indicating first, sequence-encoded structural properties and second, phosphorylation-induced effects which contribute to local and long-distance structural rearrangements interpreted as allosteric event. Further examination of the dynamical coupling between distant sites provides evidence for alternative profiles of the communication pathways inside and between the STAT5 domains. These results add a new insight to the understanding of the crucial role of intrinsic molecular dynamics in mediating intramolecular signaling in STAT5. Two pockets, localized in close proximity to the phosphotyrosine-binding site and adjacent to the channel for communication pathways across STAT5, may constitute valid targets to develop inhibitors able to modulate the function-related communication properties of this signaling protein.


Assuntos
Fator de Transcrição STAT5/genética , Transdução de Sinais/genética , Transativadores/genética , Ativação Transcricional/genética , Proteínas Supressoras de Tumor/genética , Sítios de Ligação/genética , Humanos , Simulação de Dinâmica Molecular , Fosforilação/genética , Fosfotirosina/genética , Ligação Proteica/genética , Isoformas de Proteínas/genética
17.
Biomed Res Int ; 2015: 134050, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26090378

RESUMO

To investigate the presence of, and the potential biological roles of, protein tyrosine phosphorylation in the glioblastoma pathogenesis, two-dimensional gel electrophoresis- (2DGE-) based Western blotting coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis was used to detect and identify the phosphotyrosine immunoreaction-positive proteins in a glioblastoma tissue. MS/MS and Mascot analyses were used to determine the phosphotyrosine sites of each phosphopeptide. Protein domain and motif analysis and systems pathway analysis were used to determine the protein domains/motifs that contained phosphotyrosine residue and signal pathway networks to clarify the potential biological functions of protein tyrosine phosphorylation. A total of 24 phosphotyrosine-containing proteins were identified. Each phosphotyrosine-containing protein contained at least one tyrosine kinase phosphorylation motif and a certain structural and functional domains. Those phosphotyrosine-containing proteins were involved in the multiple signal pathway systems such as oxidative stress, stress response, and cell migration. Those data show 2DGE-based Western blotting, MS/MS, and bioinformatics are a set of effective approaches to detect and identify glioblastoma tyrosine-phosphorylated proteome and to effectively rationalize the biological roles of tyrosine phosphorylation in the glioblastoma biological systems. It provides novel insights regarding tyrosine phosphorylation and its potential role in the molecular mechanism of a glioblastoma.


Assuntos
Glioblastoma/genética , Fosfotirosina/genética , Proteínas/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Western Blotting , Glioblastoma/patologia , Fosforilação , Proteínas/genética , Proteoma/genética , Proteoma/metabolismo , Transdução de Sinais
18.
Proteomics ; 15(2-3): 374-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25366905

RESUMO

Esophageal squamous-cell carcinoma (ESCC) is one of the most common malignancies in Asia. Currently, surgical resection of early-stage tumor is the best available treatment. However, most patients present late when surgery is not an option. Data suggest that chemotherapy regimens are inadequate for clinical management of advanced cancer. Targeted therapy has emerged as one of the most promising approaches to treat several malignancies. A prerequisite for developing targeted therapy is prior knowledge of proteins and pathways that drive proliferation in malignancies. We carried out phosphotyrosine profiling across four different ESCC cell lines and compared it to non-neoplastic Het-1A cell line to identify activated tyrosine kinase signaling pathways in ESCC. A total of 278 unique phosphopeptides were identified across these cell lines. This included several tyrosine kinases and their substrates that were hyperphosphorylated in ESCC. Ephrin receptor A2 (EPHA2), a receptor tyrosine kinase, was hyperphosphorylated in all the ESCC cell lines used in the study. EPHA2 is reported to be oncogenic in several cancers and is also known to promote metastasis. Immunohistochemistry-based studies have revealed EPHA2 is overexpressed in nearly 50% of ESCC. We demonstrated EPHA2 as a potential therapeutic target in ESCC by carrying out siRNA-based knockdown studies. Knockdown of EPHA2 in ESCC cell line TE8 resulted in significant decrease in cell proliferation and invasion, suggesting it is a promising therapeutic target in ESCC that warrants further evaluation.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Efrina-A2/metabolismo , Neoplasias Esofágicas/metabolismo , Fosfotirosina/análise , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Efrina-A2/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Esôfago/metabolismo , Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Espectrometria de Massas , Fosforilação , Fosfotirosina/genética , Fosfotirosina/metabolismo
19.
Sci Rep ; 4: 5095, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24865376

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin and leptin signaling, which suggests that it is an attractive therapeutic target in type II diabetes and obesity. The aim of this research is to explore residues which interact with phosphotyrosine substrate can be affected by D181 point mutations and lead to increased substrate binding. To achieve this goal, molecular dynamics simulations were performed on wild type (WT) and two mutated PTP1B/substrate complexes. The cross-correlation and principal component analyses show that point mutations can affect the motions of some residues in the active site of PTP1B. Moreover, the hydrogen bond and energy decomposition analyses indicate that apart from residue 181, point mutations have influence on the interactions of substrate with several residues in the active site of PTP1B.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fosfotirosina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Sítios de Ligação , Domínio Catalítico , Diabetes Mellitus Tipo 2/patologia , Humanos , Ligação de Hidrogênio , Insulina/genética , Insulina/metabolismo , Leptina/genética , Leptina/metabolismo , Simulação de Dinâmica Molecular , Fosfotirosina/genética , Mutação Puntual , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais , Especificidade por Substrato
20.
J Biol Chem ; 289(28): 19694-703, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24825902

RESUMO

The sterile α motif (SAM) domain of the ephrin receptor tyrosine kinase, EphA2, undergoes tyrosine phosphorylation, but the effect of phosphorylation on the structure and interactions of the receptor is unknown. Studies to address these questions have been hindered by the difficulty of obtaining site-specifically phosphorylated proteins in adequate amounts. Here, we describe the use of chemically synthesized and specifically modified domain-length peptides to study the behavior of phosphorylated EphA2 SAM domains. We show that tyrosine phosphorylation of any of the three tyrosines, Tyr(921), Tyr(930), and Tyr(960), has a surprisingly small effect on the EphA2 SAM structure and stability. However, phosphorylation at Tyr(921) and Tyr(930) enables differential binding to the Src homology 2 domain of the adaptor protein Grb7, which we propose will lead to distinct functional outcomes. Setting up different signaling platforms defined by selective interactions with adaptor proteins thus adds another level of regulation to EphA2 signaling.


Assuntos
Proteína Adaptadora GRB7/química , Fosfotirosina/química , Receptor EphA2/química , Motivos de Aminoácidos , Proteína Adaptadora GRB7/genética , Proteína Adaptadora GRB7/metabolismo , Humanos , Fosfotirosina/genética , Fosfotirosina/metabolismo , Estrutura Terciária de Proteína , Receptor EphA2/genética , Receptor EphA2/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA