Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Microbiol Biotechnol ; 32(12): 1527-1536, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36384810

RESUMO

Escherichia coli can use allantoin as its sole nitrogen source under anaerobic conditions. The ureidoglycolate produced by double release of ammonia from allantoin can flow into either the glyoxylate shunt or further catabolic transcarbamoylation. Although the former pathway is well studied, the genes of the latter (catabolic) pathway are not known. In the catabolic pathway, ureidoglycolate is finally converted to carbamoyl phosphate (CP) and oxamate, and then CP is dephosphorylated to carbamate by a catabolic carbamate kinase (CK), whereby ATP is formed. We identified the ybcF gene in a gene cluster containing fdrA-ylbE-ylbF-ybcF that is located downstream of the allDCE-operon. Reverse transcription PCR of total mRNA confirmed that the genes fdrA, ylbE, ylbF, and ybcF are co-transcribed. Deletion of ybcF caused only a slight increase in metabolic flow into the glyoxylate pathway, probably because CP was used to de novo synthesize pyrimidine and arginine. The activity of the catabolic CK was analyzed using purified YbcF protein. The Vmax is 1.82 U/mg YbcF for CP and 1.94 U/mg YbcF for ADP, and the KM value is 0.47 mM for CP and 0.43 mM for ADP. With these results, it was experimentally revealed that the ybcF gene of E. coli encodes catabolic CK, which completes anaerobic allantoin degradation through substrate-level phosphorylation. Therefore, we suggest renaming the ybcF gene as allK.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Alantoína , Carbamoil-Fosfato/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glioxilatos , Proteínas de Membrana , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo
2.
Nat Commun ; 13(1): 891, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173152

RESUMO

Development of hyperproducing strains is important for biomanufacturing of biochemicals and biofuels but requires extensive efforts to engineer cellular metabolism and discover functional components. Herein, we optimize and use the CRISPR-assisted editing and CRISPRi screening methods to convert a wild-type Corynebacterium glutamicum to a hyperproducer of L-proline, an amino acid with medicine, feed, and food applications. To facilitate L-proline production, feedback-deregulated variants of key biosynthetic enzyme γ-glutamyl kinase are screened using CRISPR-assisted single-stranded DNA recombineering. To increase the carbon flux towards L-proline biosynthesis, flux-control genes predicted by in silico analysis are fine-tuned using tailored promoter libraries. Finally, an arrayed CRISPRi library targeting all 397 transporters is constructed to discover an L-proline exporter Cgl2622. The final plasmid-, antibiotic-, and inducer-free strain produces L-proline at the level of 142.4 g/L, 2.90 g/L/h, and 0.31 g/g. The CRISPR-assisted strain development strategy can be used for engineering industrial-strength strains for efficient biomanufacturing.


Assuntos
Bioengenharia/métodos , Reatores Biológicos/microbiologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Prolina/biossíntese , Sequência de Bases , Sistemas CRISPR-Cas/genética , Proteínas de Transporte/genética , Edição de Genes/métodos , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Transporte Proteico/genética
3.
FEBS J ; 288(1): 293-309, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32306469

RESUMO

In cells, the breakdown of arginine to ornithine and ammonium ion plus carbon dioxide is coupled to the generation of metabolic energy in the form of ATP. The arginine breakdown pathway is minimally composed of arginine deiminase, ornithine transcarbamoylase, carbamate kinase, and an arginine/ornithine antiporter; ammonia and carbon dioxide most likely diffuse passively across the membrane. The genes for the enzymes and transporter have been cloned and expressed, and the proteins have been purified from Lactococcus lactis IL1403 and incorporated into lipid vesicles for sustained production of ATP. Here, we study the kinetic parameters and biochemical properties of the individual enzymes and the antiporter, and we determine how the physicochemical conditions, effector composition, and effector concentration affect the enzymes. We report the KM and VMAX values for catalysis and the native oligomeric state of all proteins, and we measured the effect of pathway intermediates, pH, temperature, freeze-thaw cycles, and salts on the activity of the cytosolic enzymes. We also present data on the protein-to-lipid ratio and lipid composition dependence of the antiporter.


Assuntos
Trifosfato de Adenosina/biossíntese , Sistemas de Transporte de Aminoácidos/metabolismo , Antiporters/metabolismo , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Lactococcus lactis/enzimologia , Ornitina Carbamoiltransferase/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Amônia/metabolismo , Antiporters/genética , Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Metabolismo Energético/genética , Regulação Bacteriana da Expressão Gênica , Hidrolases/genética , Cinética , Lactococcus lactis/genética , Lipossomos/química , Lipossomos/metabolismo , Ornitina/metabolismo , Ornitina Carbamoiltransferase/genética , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Infect Immun ; 88(8)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32513856

RESUMO

Staphylococcus aureus fatty acid kinase FakA is necessary for the incorporation of exogenous fatty acids into the lipid membrane. We previously demonstrated that the inactivation of fakA leads to decreased α-hemolysin (Hla) production but increased expression of the proteases SspAB and aureolysin in vitro, and that the ΔfakA mutant causes larger lesions than the wild type (WT) during murine skin infection. As expected, necrosis is Hla dependent in the presence or absence of FakA, as both hla and hla ΔfakA mutants are unable to cause necrosis of the skin. At day 4 postinfection, while the ΔfakA mutant maintains larger and more necrotic abscesses, bacterial numbers are similar to those of the WT, indicating the enhanced tissue damage of mice infected with the ΔfakA mutant is not due to an increase in bacterial burden. At this early stage of infection, skin infected with the ΔfakA mutant has decreased levels of proinflammatory cytokines, such as interleukin-17A (IL-17A) and IL-1α, compared to those of WT-infected skin. At a later stage of infection (day 7), abscess resolution and bacterial clearance are hindered in ΔfakA mutant-infected mice. The paradoxical findings of decreased Hla in vitro but increased necrosis in vivo led us to investigate the role of the proteases regulated by FakA. Utilizing Δaur and ΔsspAB mutants in both the WT and fakA mutant backgrounds, we found that the absence of these proteases in a fakA mutant reduced dermonecrosis to levels similar to those of the WT strain. These studies suggest that the overproduction of proteases is one factor contributing to the enhanced pathogenesis of the ΔfakA mutant during skin infection.


Assuntos
Proteínas de Bactérias/imunologia , Metaloendopeptidases/imunologia , Fosfotransferases (Aceptor do Grupo Carboxila)/imunologia , Serina Endopeptidases/imunologia , Úlcera Cutânea/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/patogenicidade , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Quimiocina CCL4/genética , Quimiocina CCL4/imunologia , Feminino , Regulação da Expressão Gênica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Metaloendopeptidases/deficiência , Metaloendopeptidases/genética , Camundongos , Fosfotransferases (Aceptor do Grupo Carboxila)/deficiência , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Transdução de Sinais , Pele/imunologia , Pele/microbiologia , Pele/patologia , Úlcera Cutânea/genética , Úlcera Cutânea/microbiologia , Úlcera Cutânea/patologia , Infecções Cutâneas Estafilocócicas/genética , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fatores de Virulência/genética , Fatores de Virulência/imunologia
5.
ACS Synth Biol ; 9(7): 1864-1872, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32470293

RESUMO

Chinese hamster ovary (CHO) cells are the superior host cell culture models used for the bioproduction of therapeutic proteins. One of the prerequisites for bioproduction using CHO cell lines is the need to generate stable CHO cell lines with optimal expression output. Antibiotic selection is commonly employed to isolate and select CHO cell lines with stable expression, despite its potential negative impact on cellular metabolism and expression level. Herein, we present a novel proline-based selection system for the isolation of stable CHO cell lines. The system exploits a dysfunctional proline metabolism pathway in CHO cells by using a pyrroline-5-carboxylate synthase gene as a selection marker, enabling selection to be made using proline-free media. The selection system was demonstrated by expressing green fluorescent protein (GFP) and a monoclonal antibody. When GFP was expressed, more than 90% of stable transfectants were enriched within 2 weeks of the selection period. When a monoclonal antibody was expressed, we achieved comparable titers (3.35 ± 0.47 µg/mL) with G418 and Zeocin-based selections (1.65 ± 0.46 and 2.25 ± 0.07 µg/mL, respectively). We further developed a proline-based coselection by using S. cerevisiae PRO1 and PRO2 genes as markers, which enables the generation of 99.5% double-transgenic cells. The proline-based selection expands available selection tools and provides an alternative to antibiotic-based selections in CHO cell line development.


Assuntos
Engenharia Metabólica/métodos , Prolina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aldeído Desidrogenase/deficiência , Aldeído Desidrogenase/genética , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Células CHO , Cricetulus , Meios de Cultura/química , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Ornitina-Oxo-Ácido Transaminase/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Plasmídeos/genética , Proteínas Recombinantes/biossíntese , Transfecção
6.
FEMS Microbiol Lett ; 367(6)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32166312

RESUMO

Short and branched chain fatty acid kinases participate in both bacterial anabolic and catabolic processes, including fermentation, through the reversible, ATP-dependent synthesis of acyl phosphates. This study reports biochemical properties of a predicted butyrate kinase from Desulfovibrio vulgaris str. Hildenborough (DvBuk) expressed heterologously and purified from Escherichia coli. Gel filtration chromatography indicates purified DvBuk is active as a dimer. The optimum temperature and pH for DvBuk activity is 44°C and 7.5, respectively. The enzyme displays enhanced thermal stability in the presence of substrates as observed for similar enzymes. Measurement of kcat and KM for various substrates reveals DvBuk exhibits the highest catalytic efficiencies for butyrate, valerate and isobutyrate. In particular, these measurements reveal this enzyme's apparent high affinity for C4 fatty acids relative to other butyrate kinases. These results have implications on structure and function relationships within the ASKHA superfamily of phosphotransferases, particularly regarding the acyl binding pocket, as well as potential physiological roles for this enzyme in Desulfovibrio vulgaris str. Hildenborough.


Assuntos
Desulfovibrio vulgaris/enzimologia , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Proteínas Recombinantes/metabolismo , Cromatografia em Gel , Desulfovibrio vulgaris/genética , Estabilidade Enzimática , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/isolamento & purificação , Proteínas Recombinantes/genética , Relação Estrutura-Atividade , Temperatura
7.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32060028

RESUMO

PII signal transduction proteins are ubiquitous and highly conserved in bacteria, archaea, and plants and play key roles in controlling nitrogen metabolism. However, research on biological functions and regulatory targets of PII proteins remains limited. Here, we illustrated experimentally that the PII protein Corynebacterium glutamicum GlnK (CgGlnK) increased l-arginine yield when glnK was overexpressed in Corynebacterium glutamicum Data showed that CgGlnK regulated l-arginine biosynthesis by upregulating the expression of genes of the l-arginine metabolic pathway and interacting with N-acetyl-l-glutamate kinase (CgNAGK), the rate-limiting enzyme in l-arginine biosynthesis. Further assays indicated that CgGlnK contributed to alleviation of the feedback inhibition of CgNAGK caused by l-arginine. In silico analysis of the binding interface of CgGlnK-CgNAGK suggested that the B and T loops of CgGlnK mainly interacted with C and N domains of CgNAGK. Moreover, F11, R47, and K85 of CgGlnK were identified as crucial binding sites that interact with CgNAGK via hydrophobic interaction and H bonds, and these interactions probably had a positive effect on maintaining the stability of the complex. Collectively, this study reveals PII-NAGK interaction in nonphotosynthetic microorganisms and further provides insights into the regulatory mechanism of PII on amino acid biosynthesis in corynebacteria.IMPORTANCE Corynebacteria are safe industrial producers of diverse amino acids, including l-glutamic acid and l-arginine. In this study, we showed that PII protein GlnK played an important role in l-glutamic acid and l-arginine biosynthesis in C. glutamicum Through clarifying the molecular mechanism of CgGlnK in l-arginine biosynthesis, the novel interaction between CgGlnK and CgNAGK was revealed. The alleviation of l-arginine inhibition of CgNAGK reached approximately 48.21% by CgGlnK addition, and the semi-inhibition constant of CgNAGK increased 1.4-fold. Furthermore, overexpression of glnK in a high-yield l-arginine-producing strain and fermentation of the recombinant strain in a 5-liter bioreactor led to a remarkably increased production of l-arginine, 49.978 g/liter, which was about 22.61% higher than that of the initial strain. In conclusion, this study provides a new strategy for modifying amino acid biosynthesis in C. glutamicum.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Proteínas PII Reguladoras de Nitrogênio/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Transdução de Sinais , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Corynebacterium glutamicum/química , Corynebacterium glutamicum/metabolismo , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Alinhamento de Sequência
8.
Biochem Pharmacol ; 175: 113868, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32088259

RESUMO

Deoxynivalenol (DON) is the most common mycotoxin in grains, and DON exposure causes gastrointestinal inflammation and systemic immunosuppression. The immunosuppression caused by DON has raised serious concerns about whether it is safe to use probiotics in immunocompromised hosts. Gut microbiota remodeling by Lactobacillus is a potential effective strategy to prevent DON exposure. The athymic nude mice were chose as the model of immunocompromised animals. We tested the effect of the probiotic Lactobacillus rhamnosus GG (LGG) or Lactobacillus acidophilus (LA) supplementation on host protection against DON exposure and the underlying mechanisms in nude mice. DON exposure induced endoplasmic reticulum (ER) stress and impaired intestinal barrier function and microbiota, which were relieved by LGG supplementation but not LA supplementation. LGG supplementation significantly enhanced the intestinal barrier function, increased the body weight and the survival rate in nude mice that exposed to DON for two weeks. Furthermore, LGG supplementation modulated the gut microbiota by increasing the abundance of Bacteroidetes and the levels of the butyrate-producing genes But and Buk to promote butyrate production. Butyrate inhibited the IRE1α/XBP1 signaling pathway to reduce DON-induced intestine injury. In conclusion, LGG supplementation modulated the gut microbiota to promote butyrate production, protecting against DON exposure in nude mice. Both LGG and butyrate show promise for use in protecting against DON exposure.


Assuntos
Butiratos/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Enteropatias/prevenção & controle , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Probióticos/uso terapêutico , Tricotecenos/toxicidade , Animais , Contaminação de Alimentos , Enteropatias/metabolismo , Enteropatias/microbiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Lacticaseibacillus rhamnosus/enzimologia , Masculino , Camundongos , Camundongos Nus , Permeabilidade , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Tricotecenos/metabolismo
9.
FEBS J ; 287(3): 465-482, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31287617

RESUMO

During evolution, several algae and plants became heterotrophic and lost photosynthesis; however, in most cases, a nonphotosynthetic plastid was maintained. Among these organisms, the colourless alga Polytomella parva is a special case, as its plastid is devoid of any DNA, but is maintained for specific metabolic tasks carried out by nuclear encoded enzymes. This makes P. parva attractive to study molecular events underlying the transition from autotrophic to heterotrophic lifestyle. Here we characterize metabolic adaptation strategies of P. parva in comparison to the closely related photosynthetic alga Chlamydomonas reinhardtii with a focus on the role of plastid-localized PII signalling protein. Polytomella parva accumulates significantly higher amounts of most TCA cycle intermediates as well as glutamate, aspartate and arginine, the latter being specific for the colourless plastid. Correlating with the altered metabolite status, the carbon/nitrogen sensory PII signalling protein and its regulatory target N-acetyl-l-glutamate-kinase (NAGK; the controlling enzyme of arginine biosynthesis) show unique features: They have co-evolved into a stable hetero-oligomeric complex, irrespective of effector molecules. The PII signalling protein, so far known as a transiently interacting signalling protein, appears as a permanent subunit of the enzyme NAGK. NAGK requires PII to properly sense the feedback inhibitor arginine, and moreover, PII tunes arginine-inhibition in response to glutamine. No other PII effector molecules interfere, indicating that the PII-NAGK system in P. parva has lost the ability to estimate the cellular energy and carbon status but has specialized to provide an entirely glutamine-dependent arginine feedback control, highlighting the evolutionary plasticity of PII signalling system.


Assuntos
Clorofíceas/metabolismo , Evolução Molecular , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Proteínas de Plantas/metabolismo , Arginina/metabolismo , Chlamydomonas reinhardtii/metabolismo , Clorofíceas/genética , Retroalimentação Fisiológica , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Multimerização Proteica
10.
Planta ; 250(4): 1379-1385, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31359139

RESUMO

MAIN CONCLUSION: L-Arginine supports growth and resulted in increased PII signaling protein levels and lipid droplet accumulation in the colorless green alga Polytomella parva. Polytomella parva, a model system for nonphotosynthetic green algae, utilizes ammonium and several carbon sources, including ethanol and acetate. We previously reported that P. parva accumulates high amounts of arginine with the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase, exhibiting high activity. Here we demonstrate that L-arginine can be used by this alga as a nitrogen source. Externally supplied arginine directly influenced the levels of PII signaling protein and formation of triacylglycerol (TAG)-filled lipid bodies (LBs). Our results suggest that the nitrogen source, but not nitrogen starvation, may be critical for the accumulation of LBs in a PII-independent manner in P. parva.


Assuntos
Arginina/farmacologia , Clorofíceas/fisiologia , Gotículas Lipídicas/metabolismo , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Clorofíceas/crescimento & desenvolvimento , Gotículas Lipídicas/efeitos dos fármacos , Proteínas PII Reguladoras de Nitrogênio/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/metabolismo
11.
Cell Chem Biol ; 26(8): 1187-1194.e5, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31204286

RESUMO

There is a great need for identification and development of new anti-tuberculosis drugs with novel targets. Recent drug-discovery efforts typically focus on identifying inhibitors but not activators that perturb metabolic enzymes' functions as a means to kill Mycobacterium tuberculosis (Mtb). Here, we describe a class of quinoline compounds, Z0933/Z0930, which kill Mtb by acting as activators of glutamate kinase (GK), a previously untargeted enzyme catalyzing the first step of proline biosynthesis. We further show that Z0933/Z0930 augment proline production and induce Mtb killing via proline-derived redox imbalance and production of reactive oxygen species. This work highlights the effectiveness of gain-of-function probes against Mtb and provides a framework for the discovery of next-generation allosteric activators of GK.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Quinolinas/farmacologia , Animais , Antituberculosos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Cinética , Macrófagos/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Estabilidade Proteica , Quinolinas/química , Células RAW 264.7 , Relação Estrutura-Atividade
12.
Microb Cell Fact ; 17(1): 147, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30227873

RESUMO

BACKGROUND: Microbial biosynthesis of natural products holds promise for preclinical studies and treating diseases. For instance, pinocembrin is a natural flavonoid with important pharmacologic characteristics and is widely used in preclinical studies. However, high yield of natural products production is often limited by the intracellular cofactor level, including adenosine triphosphate (ATP). To address this challenge, tailored modification of ATP concentration in Escherichia coli was applied in efficient pinocembrin production. RESULTS: In the present study, a clustered regularly interspaced short palindromic repeats (CRISPR) interference system was performed for screening several ATP-related candidate genes, where metK and proB showed its potential to improve ATP level and increased pinocembrin production. Subsequently, the repression efficiency of metK and proB were optimized to achieve the appropriate levels of ATP and enhancing the pinocembrin production, which allowed the pinocembrin titer increased to 102.02 mg/L. Coupled with the malonyl-CoA engineering and optimization of culture and induction condition, a final pinocembrin titer of 165.31 mg/L was achieved, which is 10.2-fold higher than control strains. CONCLUSIONS: Our results introduce a strategy to approach the efficient biosynthesis of pinocembrin via ATP level strengthen using CRISPR interference. Furthermore coupled with the malonyl-CoA engineering and induction condition have been optimized for pinocembrin production. The results and engineering strategies demonstrated here would hold promise for the ATP level improvement of other flavonoids by CRISPRi system, thereby facilitating other flavonoids production.


Assuntos
Trifosfato de Adenosina/metabolismo , Flavanonas/biossíntese , Engenharia Metabólica/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Engenharia Genética , Metionina Adenosiltransferase/química , Metionina Adenosiltransferase/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Fosfotransferases (Aceptor do Grupo Carboxila)/genética
13.
J Microbiol ; 56(10): 760-771, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136260

RESUMO

The group of butyrate-producing bacteria within the human gut microbiome may be associated with positive effects on memory improvement, according to previous studies on dementia-associated diseases. Here, fecal samples of four elderly Japanese diagnosed with Alzheimer's disease (AD) were used to isolate butyrate-producing bacteria. 226 isolates were randomly picked, their 16S rRNA genes were sequenced, and assigned into sixty OTUs (operational taxonomic units) based on BLASTn results. Four isolates with less than 97% homology to known sequences were considered as unique OTUs of potentially butyrate-producing bacteria. In addition, 12 potential butyrate-producing isolates were selected from the remaining 56 OTUs based on scan-searching against the PubMed and the ScienceDirect databases. Those belonged to the phylum Bacteroidetes and to the clostridial clusters I, IV, XI, XV, XIVa within the phylum Firmicutes. 15 out of the 16 isolates were indeed able to produce butyrate in culture as determined by high-performance liquid chromatography with UV detection. Furthermore, encoding genes for butyrate formation in these bacteria were identified by sequencing of degenerately primed PCR products and included the genes for butyrate kinase (buk), butyryl-CoA: acetate CoAtransferase (but), CoA-transferase-related, and propionate CoA-transferase. The results showed that eight isolates possessed buk, while five isolates possessed but. The CoA-transfer-related gene was identified as butyryl-CoA:4-hydroxybutyrate CoA transferase (4-hbt) in four strains. No strains contained the propionate CoA-transferase gene. The biochemical and butyrate-producing pathways analyses of butyrate producers presented in this study may help to characterize the butyrate-producing bacterial community in the gut of AD patients.


Assuntos
Doença de Alzheimer/microbiologia , Bactérias/classificação , Butiratos/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal , Acil Coenzima A/genética , Idoso de 80 Anos ou mais , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Coenzima A-Transferases/genética , Humanos , Japão , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
14.
PLoS Genet ; 14(8): e1007615, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30148850

RESUMO

Synonymous mutations do not alter the specified amino acid but may alter the structure or function of an mRNA in ways that impact fitness. There are few examples in the literature, however, in which the effects of synonymous mutations on microbial growth rates have been measured, and even fewer for which the underlying mechanism is understood. We evolved four populations of a strain of Salmonella enterica in which a promiscuous enzyme has been recruited to replace an essential enzyme. A previously identified point mutation increases the enzyme's ability to catalyze the newly needed reaction (required for arginine biosynthesis) but decreases its ability to catalyze its native reaction (required for proline biosynthesis). The poor performance of this enzyme limits growth rate on glucose. After 260 generations, we identified two synonymous mutations in the first six codons of the gene encoding the weak-link enzyme that increase growth rate by 41 and 67%. We introduced all possible synonymous mutations into the first six codons and found substantial effects on growth rate; one doubles growth rate, and another completely abolishes growth. Computational analyses suggest that these mutations affect either the stability of a stem-loop structure that sequesters the start codon or the accessibility of the region between the Shine-Dalgarno sequence and the start codon. Thus, these mutations would be predicted to affect translational efficiency and thereby indirectly affect mRNA stability because translating ribosomes protect mRNA from degradation. Experimental data support these hypotheses. We conclude that the effects of the synonymous mutations are due to a combination of effects on mRNA stability and translation efficiency that alter levels of the weak-link enzyme. These findings suggest that synonymous mutations can have profound effects on fitness under strong selection and that their importance in evolution may be under-appreciated.


Assuntos
Proteínas de Bactérias/genética , Aptidão Genética , RNA Mensageiro/genética , Salmonella enterica/crescimento & desenvolvimento , Mutação Silenciosa , Códon , Variações do Número de Cópias de DNA , Evolução Molecular , Conformação de Ácido Nucleico , Óperon , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Mutação Puntual , Proteômica , Estabilidade de RNA , Ribossomos/genética , Salmonella enterica/genética , Sequenciamento Completo do Genoma
15.
FEBS J ; 285(14): 2662-2678, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29777624

RESUMO

Previous metabolic studies have demonstrated that leishmania parasites are able to synthesise proline from glutamic acid and threonine from aspartic acid. The first committed step in both biosynthetic pathways involves an amino acid kinase, either a glutamate 5-kinase (G5K; EC2.7.2.11) or an aspartokinase (EC2.7.2.4). Bioinformatic analysis of multiple leishmania genomes identifies a single amino acid-kinase gene (LdBPK 262740.1) variously annotated as either a putative glutamate or aspartate kinase. To establish the catalytic function of this Leishmania donovani gene product, we have determined the physical and kinetic properties of the recombinant enzyme purified from Escherichia coli. The findings indicate that the enzyme is a bona fide G5K with no activity as an aspartokinase. Tetrameric G5K displays kinetic behaviour similar to its bacterial orthologues and is allosterically regulated by proline, the end product of the pathway. The structure-activity relationships of proline analogues as inhibitors are broadly similar to the bacterial enzyme. However, unlike G5K from E. coli, leishmania G5K lacks a C-terminal PUA (pseudouridine synthase and archaeosine transglycosylase) domain and does not undergo higher oligomerisation in the presence of proline. Gene replacement studies are suggestive, but not conclusive that G5K is essential. ENZYMES: Glutamate 5-kinase (EC2.7.2.11); aspartokinase (EC2.7.2.4).


Assuntos
Ácido Glutâmico/metabolismo , Leishmania donovani/química , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Prolina/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Biocatálise , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Teste de Complementação Genética , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Leishmania donovani/enzimologia , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Filogenia , Prolina/análogos & derivados , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
16.
BMC Genomics ; 19(1): 292, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695242

RESUMO

BACKGROUND: Recent experimental evidence showed that lactobacilli could be used as potential therapeutic agents for hyperammonemia. However, lack of understanding on how lactobacilli reduce blood ammonia levels limits application of lactobacilli to treat hyperammonemia. RESULTS: We report the finished and annotated genome sequence of L. amylovorus JBD401 (GenBank accession no. CP012389). L. amylovorus JBD401 reducing blood ammonia levels dramatically was identified by high-throughput screening of several thousand probiotic strains both within and across Lactobacillus species in vitro. Administration of L. amylovorus JBD401 to hyperammonemia-induced mice reduced the blood ammonia levels of the mice to the normal range. Genome sequencing showed that L. amylovorus JBD401 had a circular chromosome of 1,946,267 bp with an average GC content of 38.13%. Comparative analysis of the L. amylovorus JBD401 genome with L. acidophilus and L. amylovorus strains showed that L. amylovorus JBD401 possessed genes for ammonia assimilation into various amino acids and polyamines Interestingly, the genome of L. amylovorus JBD401 contained unusually large number of various pseudogenes suggesting an active stage of evolution. CONCLUSIONS: L. amylovorus JBD401 has genes for assimilation of free ammonia into various amino acids and polyamines which results in removal of free ammonia in intestinal lumen to reduce the blood ammonia levels in the host. This work explains the mechanism of how probiotics reduce blood ammonia levels.


Assuntos
Amônia/sangue , Genoma Bacteriano , Lactobacillus/genética , Aminoácidos/metabolismo , Amônia/metabolismo , Animais , Proteínas de Bactérias/genética , Hibridização Genômica Comparativa , Evolução Molecular , Lactobacillus/metabolismo , Lactobacillus acidophilus/genética , Redes e Vias Metabólicas/genética , Camundongos , Ornitina Carbamoiltransferase/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Poliaminas/metabolismo
17.
Mol Cell Proteomics ; 17(6): 1156-1169, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29523768

RESUMO

Clostridium acetobutylicum is a strict anaerobic, endospore-forming bacterium, which is used for the production of the high energy biofuel butanol in metabolic engineering. The life cycle of C. acetobutylicum can be divided into two phases, with acetic and butyric acids being produced in the exponential phase (acidogenesis) and butanol formed in the stationary phase (solventogenesis). During the transitional phase from acidogenesis to solventogenesis and latter stationary phase, concentration peaks of the metabolic intermediates butyryl phosphate and acetyl phosphate are observed. As an acyl group donor, acyl-phosphate chemically acylates protein substrates. However, the regulatory mechanism of lysine acetylation and butyrylation involved in the phenotype and solventogenesis of C. acetobutylicum remains unknown. In our study, we conducted quantitative analysis of protein acetylome and butyrylome to explore the dynamic change of lysine acetylation and butyrylation in the exponential phase, transitional phase, and stationary phase of C. acetobutylicum Total 458 lysine acetylation sites and 1078 lysine butyrylation sites were identified in 254 and 373 substrates, respectively. Bioinformatics analysis uncovered the similarities and differences between the two acylation modifications in C. acetobutylicum Mutation analysis of butyrate kinase and the central transcriptional factor Spo0A was performed to characterize the unique role of lysine butyrylation in the metabolic pathway and sporulation process of C. acetobutylicum Moreover, quantitative proteomic assays were performed to reveal the relationship between protein features (e.g. gene expression level and lysine acylation level) and metabolites in the three growth stages. This study expanded our knowledge of lysine acetylation and butyrylation in Clostridia and constituted a resource for functional studies on lysine acylation in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Butiratos/metabolismo , Clostridium acetobutylicum/metabolismo , Acetilação , Lisina/metabolismo , Redes e Vias Metabólicas , Fenótipo , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Esporos Bacterianos , Fatores de Transcrição/genética
18.
Lett Appl Microbiol ; 66(5): 400-408, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29432647

RESUMO

Trans-4-Hydroxy-l-proline (trans-Hyp) is a valuable chiral building block for the synthesis of pharmaceutical intermediates. Bioconversion of l-proline using recombinant strain with proline-4-hydroxylase (P4H) is a preferred biocatalytic process in the economical production of trans-Hyp. In this study, a recombinant E. coli overexpressing hydroxylase (P4H), γ-glutamyl kinase and glutamate-semialdehyde dehydrogenase (ProBA) genes were constructed by knocking out the key genes in the metabolism. These key genes contained putA encoding proline dehydrogenase (PutA) in the l-proline metabolism and other catalytic enzyme genes, sucAB encoding α-ketoglutarate dehydrogenase (SucAB), aceAK encoding isocitratelyase (AceA) and isocitrate dehydrogenase kinase/phosphatase (AceK) in the TCA cycle. This recombinant strain coupled the synthetic pathway of trans-Hyp with TCA cycle of the host strain. It inhibited the consumption of l-proline completely and promoted the accumulation of 2-oxoglutarate (2-OG) as a co-substrate, which realized the highest conversion of glucose to trans-Hyp. A fed-batch strategy was designed, capable of producing 31·0 g l-1 trans-Hyp from glucose. It provided a theoretical basis for commercial conversion of glucose to trans-Hyp. SIGNIFICANCE AND IMPACT OF THE STUDY: Trans-4-Hydroxy-l-proline (trans-Hyp) is a valuable chiral building block for the synthesis of pharmaceutical intermediates. Unsatisfactory microbial bioconversion resulted in a low yield of trans-Hyp. In this study, we blocked the unwanted blunting pathways of host strain and make the cell growth couple with the trans-Hyp synthesis from glucose. Finally, a recombinant Escherichia coli with short-cut and efficient trans-Hyp biosynthetic pathway was obtained. It provided a theoretical basis for commercial production of trans-Hyp.


Assuntos
Escherichia coli , Glucose/metabolismo , Hidroxiprolina/biossíntese , Engenharia Metabólica/métodos , Prolina/metabolismo , Biocatálise , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Glutamato-5-Semialdeído Desidrogenase/genética , Glutamato-5-Semialdeído Desidrogenase/metabolismo , Hidroxiprolina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo
19.
Environ Microbiol ; 19(9): 3700-3720, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28752945

RESUMO

The ProJ and ProH enzymes of Bacillus subtilis catalyse together with ProA (ProJ-ProA-ProH), osmostress-adaptive synthesis of the compatible solute proline. The proA-encoded gamma-glutamyl phosphate reductase is also used for anabolic proline synthesis (ProB-ProA-ProI). Transcription of the proHJ operon is osmotically inducible whereas that of the proBA operon is not. Targeted and quantitative proteome analysis revealed that the amount of ProA is not limiting for the interconnected anabolic and osmostress-responsive proline production routes. A key player for enhanced osmostress-adaptive proline production is the osmotically regulated proHJ promoter. We used site-directed mutagenesis to study the salient features of this stress-responsive promoter. Two important features were identified: (i) deviations of the proHJ promoter from the consensus sequence of SigA-type promoters serve to keep transcription low under non-inducing growth conditions, while still allowing a finely tuned induction of transcriptional activity when the external osmolarity is increased and (ii) a suboptimal spacer length for SigA-type promoters of either 16-bp (the natural proHJ promoter), or 18-bp (a synthetic promoter variant) is strictly required to allow regulation of promoter activity in proportion to the external salinity. Collectively, our data suggest that changes in the local DNA structure at the proHJ promoter are important determinants for osmostress-inducibility of transcription.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Prolina/biossíntese , Pirrolina Carboxilato Redutases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Glutamato-5-Semialdeído Desidrogenase/genética , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Mutação Puntual/genética , Regiões Promotoras Genéticas/genética , delta-1-Pirrolina-5-Carboxilato Redutase
20.
J Ind Microbiol Biotechnol ; 44(8): 1245-1260, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28536840

RESUMO

Genetic research enables the evolution of novel biochemical reactions for the production of valuable chemicals from environmentally-friendly raw materials. However, the choice of appropriate microorganisms to support these reactions, which must have strong robustness and be capable of a significant product output, is a major difficulty. In the present study, the complete genome of the Clostridium tyrobutyricum strain CCTCC W428, a hydrogen- and butyric acid-producing bacterium with increased oxidative tolerance was analyzed. A total length of 3,011,209 bp of the C. tyrobutyricum genome with a GC content of 31.04% was assembled, and 3038 genes were discovered. Furthermore, a comparative clustering of proteins from C. tyrobutyricum CCTCC W428, C. acetobutylicum ATCC 824, and C. butyricum KNU-L09 was conducted. The results of genomic analysis indicate that butyric acid is produced by CCTCC W428 from butyryl-CoA through acetate reassimilation via CoA transferase, instead of the well-established phosphotransbutyrylase-butyrate kinase pathway. In addition, we identified ten proteins putatively involved in hydrogen production and 21 proteins associated with CRISPR systems, together with 358 ORFs related to ABC transporters and transcriptional regulators. Enzymes, such as oxidoreductases, HNH endonucleases, and catalase, were also found in this species. The genome sequence illustrates that C. tyrobutyricum has several desirable traits, and is expected to be suitable as a platform for the high-level production of bulk chemicals as well as bioenergy.


Assuntos
Proteínas de Bactérias/genética , Clostridium tyrobutyricum/genética , Genoma Bacteriano , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Proteínas de Bactérias/metabolismo , Biotecnologia , Ácido Butírico/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Clostridium tyrobutyricum/metabolismo , Meios de Cultura/química , DNA Bacteriano/genética , Hidrogênio/metabolismo , Microbiologia Industrial , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA