Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 906
Filtrar
1.
J Chromatogr A ; 1726: 464947, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38724406

RESUMO

Monoclonal antibodies (mAbs) are large and highly heterogeneous species typically characterized using a plethora of analytical methodologies. There is a trend within the biopharmaceutical industry to combine several of these methods in one analytical platform to simultaneously assess multiple structural attributes. Here, a protein analyzer for the fully automated middle-up and bottom-up liquid chromatography-mass spectrometry (LC-MS) analysis of charge, size and hydrophobic variants is described. The multidimensional set-up combines a multi-method option in the first dimension (1D) (choice between size exclusion - SEC, cation exchange - CEX or hydrophobic interaction chromatography - HIC) with second dimension (2D) on-column reversed-phase (RPLC) based desalting, denaturation and reduction prior to middle-up LC-MS analysis of collected 1D peaks and parallel on-column trypsin digestion of denatured and reduced peaks in the third dimension (3D) followed by bottom-up LC-MS analysis in the fourth dimension (4D). The versatile and comprehensive workflow is applied to the characterization of charge, hydrophobic and size heterogeneities associated with an engineered Fc fragment and is complemented with hydrogen-deuterium exchange (HDX) MS and FcRn affinity chromatography - native MS to explain observations in a structural/functional context.


Assuntos
Anticorpos Monoclonais , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Anticorpos Monoclonais/química , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Fragmentos Fc das Imunoglobulinas/química , Humanos , Cromatografia em Gel/métodos , Espectrometria de Massa com Cromatografia Líquida
2.
PLoS One ; 19(4): e0300964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557973

RESUMO

Human immunoglobulin G (IgG) exists as four subclasses IgG1-4, each of which has two Fab subunits joined by two hinges to a Fc subunit. IgG4 has the shortest hinge with 12 residues. The Fc subunit has two glycan chains, but the importance of glycosylation is not fully understood in IgG4. Here, to evaluate the stability and structure of non-glycosylated IgG4, we performed a multidisciplinary structural study of glycosylated and deglycosylated human IgG4 A33 for comparison with our similar study of human IgG1 A33. After deglycosylation, IgG4 was found to be monomeric by analytical ultracentrifugation; its sedimentation coefficient of 6.52 S was reduced by 0.27 S in reflection of its lower mass. X-ray and neutron solution scattering showed that the overall Guinier radius of gyration RG and its cross-sectional values after deglycosylation were almost unchanged. In the P(r) distance distribution curves, the two M1 and M2 peaks that monitor the two most common distances within IgG4 were unchanged following deglycosylation. Further insight from Monte Carlo simulations for glycosylated and deglycosylated IgG4 came from 111,382 and 117,135 possible structures respectively. Their comparison to the X-ray and neutron scattering curves identified several hundred best-fit models for both forms of IgG4. Principal component analyses showed that glycosylated and deglycosylated IgG4 exhibited different conformations from each other. Within the constraint of unchanged RG and M1-M2 values, the glycosylated IgG4 models showed more restricted Fc conformations compared to deglycosylated IgG4, but no other changes. Kratky plots supported this interpretation of greater disorder upon deglycosylation, also observed in IgG1. Overall, these more variable Fc conformations may demonstrate a generalisable impact of deglycosylation on Fc structures, but with no large conformational changes in IgG4 unlike those seen in IgG1.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Humanos , Imunoglobulina G/química , Estudos Transversais , Modelos Moleculares , Fragmentos Fc das Imunoglobulinas/química
3.
Nat Commun ; 15(1): 3600, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678029

RESUMO

Streptococcus pyogenes can cause invasive disease with high mortality despite adequate antibiotic treatments. To address this unmet need, we have previously generated an opsonic IgG1 monoclonal antibody, Ab25, targeting the bacterial M protein. Here, we engineer the IgG2-4 subclasses of Ab25. Despite having reduced binding, the IgG3 version promotes stronger phagocytosis of bacteria. Using atomic simulations, we show that IgG3's Fc tail has extensive movement in 3D space due to its extended hinge region, possibly facilitating interactions with immune cells. We replaced the hinge of IgG1 with four different IgG3-hinge segment subclasses, IgGhxx. Hinge-engineering does not diminish binding as with IgG3 but enhances opsonic function, where a 47 amino acid hinge is comparable to IgG3 in function. IgGh47 shows improved protection against S. pyogenes in a systemic infection mouse model, suggesting that IgGh47 has promise as a preclinical therapeutic candidate. Importantly, the enhanced opsonic function of IgGh47 is generalizable to diverse S. pyogenes strains from clinical isolates. We generated IgGh47 versions of anti-SARS-CoV-2 mAbs to broaden the biological applicability, and these also exhibit strongly enhanced opsonic function compared to the IgG1 subclass. The improved function of the IgGh47 subclass in two distant biological systems provides new insights into antibody function.


Assuntos
Anticorpos Antivirais , COVID-19 , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , SARS-CoV-2 , Streptococcus pyogenes , Animais , Imunoglobulina G/imunologia , Streptococcus pyogenes/imunologia , SARS-CoV-2/imunologia , Camundongos , Humanos , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/química , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Anticorpos Monoclonais/imunologia , Anticorpos Antibacterianos/imunologia , Fagocitose , Feminino , Engenharia de Proteínas/métodos , Camundongos Endogâmicos BALB C
4.
J Pharm Biomed Anal ; 244: 116120, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547650

RESUMO

Charge heterogeneity is inherent to all therapeutic antibodies and arises from post-translational modifications (PTMs) and/or protein degradation events that may occur during manufacturing. Among therapeutic antibodies, the bispecific antibody (bsAb) containing two unique Fab arms directed against two different targets presents an additional layer of complexity to the charge profile. In the context of a bsAb, a single domain-specific PTM within one of the Fab domains may be sufficient to compromise target binding and could potentially impact the stability, safety, potency, and efficacy of the drug product. Therefore, characterization and routine monitoring of domain-specific modifications is critical to ensure the quality of therapeutic bispecific antibody products. We developed a Digestion-assisted imaged Capillary isoElectric focusing (DiCE) method to detect and quantitate domain-specific charge variants of therapeutic bispecific antibodies (bsAbs). The method involves enzymatic digestion using immunoglobulin G (IgG)-degrading enzyme of S. pyogenes (IdeS) to generate F(ab)2 and Fc fragments, followed by imaged capillary isoelectric focusing (icIEF) under reduced, denaturing conditions to separate the light chains (LCs) from the Fd domains. Our results suggest that DiCE is a highly sensitive method that is capable of quantitating domain-specific PTMs of a bsAb. In one case study, DiCE was used to quantitate unprocessed C-terminal lysine and site-specific glycation of Lys98 in the complementarity-determining region (CDR) of a bsAb that could not be accurately quantitated using conventional, platform-based charge variant analysis, such as intact icIEF. Quantitation of these PTMs by DiCE was comparable to results from peptide mapping, demonstrating that DiCE is a valuable orthogonal method for ensuring product quality. This method may also have potential applications for characterizing fusion proteins, antibody-drug conjugates, and co-formulated antibody cocktails.


Assuntos
Anticorpos Biespecíficos , Focalização Isoelétrica , Processamento de Proteína Pós-Traducional , Anticorpos Biespecíficos/imunologia , Focalização Isoelétrica/métodos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/química , Humanos , Imunoglobulina G/imunologia , Fragmentos Fc das Imunoglobulinas/química
5.
J Chem Inf Model ; 64(3): 785-798, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38262973

RESUMO

The allosteric modulation of the homodimeric H10-03-6 protein to glycan ligands L1 and L2, and the STAB19 protein to glycan ligands L3 and L4, respectively, has been studied by molecular dynamics simulations and free energy calculations. The results revealed that the STAB19 protein has a significantly higher affinity for L3 (-11.38 ± 2.32 kcal/mol) than that for L4 (-5.51 ± 1.92 kcal/mol). However, the combination of the H10-03-6 protein with glycan L2 (1.23 ± 6.19 kcal/mol) is energetically unfavorable compared with that of L1 (-13.96 ± 0.35 kcal/mol). Further, the binding of glycan ligands L3 and L4 to STAB19 would result in the significant closure of the two CH2 domains of the STAB19 conformation with the decrease of the centroid distances between the two CH2 domains compared with the H10-03-6/L1/L2 complex. The CH2 domain closure of STAB19 relates directly to the formation of new hydrogen bonds and hydrophobic interactions between the residues Ser239, Val240, Asp265, Glu293, Asn297, Thr299, Ser337, Asp376, Thr393, Pro395, and Pro396 in STAB19 and glycan ligands L3 and L4, which suggests that these key residues would contribute to the specific regulation of STAB19 to L3 and L4. In addition, the distance analysis revealed that the EF loop in the H10-03-6/L1/L2 model presents a high flexibility and partial disorder compared with the stabilized STAB19/L3/L4 complex. These results will be helpful in understanding the specific regulation through the asymmetric structural characteristics in the CH2 and CH3 domains of the H10-03-6 and STAB19 proteins.


Assuntos
Fragmentos Fc das Imunoglobulinas , Simulação de Dinâmica Molecular , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Isotipos de Imunoglobulinas , Conformação Molecular , Polissacarídeos
6.
J Biomol NMR ; 78(1): 9-18, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37989910

RESUMO

Despite the prevalence and importance of glycoproteins in human biology, methods for isotope labeling suffer significant limitations. Common prokaryotic platforms do not produce mammalian post-translation modifications that are essential to the function of many human glycoproteins, including immunoglobulin G1 (IgG1). Mammalian expression systems require complex media and thus introduce significant costs to achieve uniform labeling. Expression with Pichia is available, though expertise and equipment requirements surpass E. coli culture. We developed a system utilizing Saccharomyces cerevisiae, [13C]-glucose, and [15N]-ammonium chloride with complexity comparable to E. coli. Here we report two vectors for expressing the crystallizable fragment (Fc) of IgG1 for secretion into the culture medium, utilizing the ADH2 or DDI2 promoters. We also report a strategy to optimize the expression yield using orthogonal Taguchi arrays. Lastly, we developed two different media formulations, a standard medium which provides 86-92% 15N and 30% 13C incorporation into the polypeptide, or a rich medium which provides 98% 15N and 95% 13C incorporation as determined by mass spectrometry. This advance represents an expression and optimization strategy accessible to experimenters with the capability to grow and produce proteins for NMR-based experiments using E. coli.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Animais , Humanos , Ressonância Magnética Nuclear Biomolecular/métodos , Glicoproteínas/química , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Mamíferos
7.
J Phys Chem B ; 127(39): 8344-8357, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37751332

RESUMO

Monoclonal antibodies (mAbs) make up a major class of biotherapeutics with a wide range of clinical applications. Their physical stability can be affected by various environmental factors. For instance, an acidic pH can be encountered during different stages of the mAb manufacturing process, including purification and storage. Therefore, understanding the behavior of flexible mAb molecules in acidic solution environments will benefit the development of stable mAb products. This study used small-angle X-ray scattering (SAXS) and complementary biophysical characterization techniques to investigate the conformational flexibility and protein-protein interactions (PPI) of a model mAb molecule under near-neutral and acidic conditions. The study also characterized the interactions between Fab and Fc fragments under the same buffer conditions to identify domain-domain interactions. The results suggest that solution pH significantly influences mAb flexibility and thus could help mAbs remain physically stable by maximizing local electrostatic repulsions when mAbs become crowded in solution. Under acidic buffer conditions, both Fab and Fc contribute to the repulsive PPI observed among the full mAb at a low ionic strength. However, as ionic strength increases, hydrophobic interactions lead to the self-association of Fc fragments and, subsequently, could affect the aggregation state of the mAb.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Anticorpos Monoclonais/química , Espalhamento a Baixo Ângulo , Imunoglobulina G/química , Difração de Raios X , Cloreto de Sódio , Ácidos , Fragmentos Fc das Imunoglobulinas/química , Concentração de Íons de Hidrogênio
8.
MAbs ; 15(1): 2231128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37405954

RESUMO

Antibody-mediated effector functions are widely considered to unfold according to an associative model of IgG-Fcγ receptor (FcγR) interactions. The associative model presupposes that Fc receptors cannot discriminate antigen-bound IgG from free IgG in solution and have equivalent affinities for each. Therefore, the clustering of Fcγ receptors (FcγR) in the cell membrane, cross-activation of intracellular signaling domains, and the formation of the immune synapse are all the result of avid interactions between the Fc region of IgG and FcγRs that collectively overcome the individually weak, transient interactions between binding partners. Antibody allostery, specifically conformational allostery, is a competing model in which antigen-bound antibody molecules undergo a physical rearrangement that causes them to stand out from the background of free IgG by virtue of greater FcγR affinity. Various evidence exists in support of this model of antibody allostery, but it remains controversial. We report observations from multiplexed, label-free kinetic experiments in which the affinity values of FcγR were characterized for covalently immobilized, captured, and antigen-bound IgG. Across the strategies tested, receptors had greater affinity for the antigen-bound mode of IgG presentation. This phenomenon was observed across multiple FcγRs and generalized to multiple antigens, antibody specificities, and subclasses. Furthermore, the thermodynamic signatures of FcγR binding to free or immune-complexed IgG in solution differed when measured by an orthogonal label-free method, but the failure to recapitulate the trend in overall affinity leaves open questions as to what additional factors may be at play.


Assuntos
Imunoglobulina G , Receptores de IgG , Humanos , Imunoglobulina G/química , Ligação Proteica , Fragmentos Fc das Imunoglobulinas/química , Membrana Celular/metabolismo
9.
Cell Rep ; 42(7): 112734, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37421619

RESUMO

Immunoglobulin G (IgG) antibodies coordinate immune effector responses by interacting with effector cells via fragment crystallizable γ (Fcγ) receptors. The IgG Fc domain directs effector responses through subclass and glycosylation variation. Although each Fc variant has been extensively characterized in isolation, during immune responses, IgG is almost always produced in Fc mixtures. How this influences effector responses has not been examined. Here, we measure Fcγ receptor binding to mixed Fc immune complexes. Binding of these mixtures falls along a continuum between pure cases and quantitatively matches a mechanistic model, except for several low-affinity interactions mostly involving IgG2. We find that the binding model provides refined estimates of their affinities. Finally, we demonstrate that the model predicts effector cell-elicited platelet depletion in humanized mice. Contrary to previous views, IgG2 exhibits appreciable binding through avidity, though it is insufficient to induce effector responses. Overall, this work demonstrates a quantitative framework for modeling mixed IgG Fc-effector cell regulation.


Assuntos
Complexo Antígeno-Anticorpo , Receptores de IgG , Animais , Camundongos , Receptores de IgG/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , Imunoglobulina G , Fragmentos Fc das Imunoglobulinas/química , Glicosilação , Receptores Fc/metabolismo
10.
J Immunol Methods ; 516: 113461, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963561

RESUMO

In the process of a solid-phase immunoassay, the stability and binding orientation between the antibody and the solid matrix can substantially influence the results. ZZ protein is a modified peptide of the B domain of Staphylococcus aureus protein A, which can bind to the Fc fragment of an antibody. It is often used for oriented immobilization of antibodies during solid-phase immunoassay. However, the conjugate is often not retained during the process, for example during washing steps. The resulting low stability detracts from reproducibility and sensitivity. Mfp-5 protein comes from mussel, is one of the components of mussel foot silk protein, and has good adhesion and biocompatibility. In this paper, the fusion protein of ZZ and Mfp-5 was constructed and expressed in Escherichia coli. In this method, the ZZ domain was firmly attached to the solid-phase support by Mfp-5, the directional fixation of IgG was realized by binding the ZZ protein to an Fc fragment, and then a Fab fragment was bound to the antigen to realize the solid-phase immunoassay. In addition, a protein adsorption assay confirmed that the adhesion of ZZ-Mfp-5 was significantly higher than that of ZZ protein, and the presence of Mfp-5 improved the ability of ZZ protein to capture antibodies. In conclusion, compared with the passively immobilized ZZ protein, the ZZ-Mfp-5 protein had stronger immobilization and antibody capture, a 10-fold increase in sensitivity and wider linear range, and better stability of detection. This may be an attractive strategy for solid-phase immunoassays or biosensing assays.


Assuntos
Anticorpos , Fragmentos Fc das Imunoglobulinas , Reprodutibilidade dos Testes , Anticorpos/química , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio , Fragmentos Fc das Imunoglobulinas/química
11.
Anal Bioanal Chem ; 415(12): 2239-2247, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36914840

RESUMO

Breast milk immunoglobulin G (IgG) plays an important role in the transfer of passive immunity in early life and in shaping the neonatal immune system through N-glycan-mediated effector functions. Currently, there are no protocols available to analyze breast milk IgG-Fc glycosylation in mouse models. Therefore, we developed and validated a glycoproteomic workflow for the medium-throughput subclass-specific nano-LC-MS analysis of IgG enriched from small milk volumes of lactating mice. With the established methods, the IgG glycopatterns in a mouse model of antibiotic use during pregnancy and increased asthma susceptibility in the offspring were analyzed. Pregnant BALB/c mice were treated with vancomycin during gestation days 8-17 and IgG1F, IgG2, and IgG3-Fc glycosylation was subsequently analyzed in maternal serum, maternal breast milk, and offspring serum on postnatal day 15. The IgG glycosylation profiles of mouse maternal milk and serum revealed no significant differences within the glycoforms quantified across subclasses. However, vancomycin use during pregnancy was associated with changes in IgG-Fc glycosylation in offspring serum, shown by the decreased relative abundance of the IgG1F-G1 and IgG3-G0 glycoforms, together with the increased relative abundance of the IgG3-G2 and S1 glycoforms. The workflow presented will aid in the emerging integrative multi-omics- and glycomics-oriented milk analyses both in rodent models and human cohorts for a better understanding of mother-infant immunological interactions.


Assuntos
Espectrometria de Massas , Animais , Camundongos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Vancomicina/farmacologia , Glicosilação , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas/métodos , Gravidez , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Leite/imunologia , Feminino , Camundongos Endogâmicos BALB C
12.
Appl Biochem Biotechnol ; 195(11): 7075-7085, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36976505

RESUMO

Antibody drugs have been widely used to treat many diseases and are the fastest-growing drug class. IgG1 is the most common type of antibody because of its good serum stability; however, effective methods for the rapid detection of IgG1-type antibodies are lacking. In this study, we designed two aptamer molecules derived from the reported aptamer probe that has been proven to bind to the Fc fragment of the IgG1 antibody. The results showed that Fc-1S could specifically bind to the human IgG1 Fc proteins. In addition, we modified the structure of Fc-1S and constructed three aptamer molecular beacons that could quantitatively detect IgG1-type antibodies within a short time. Furthermore, we unveiled that the Fc-1S37R beacon has the highest sensitivity for IgG1-type antibodies with a detection limit of 48.82813 ng/mL and can accurately detect serum antibody concentrations in vivo with consistent results to ELISA. Therefore, Fc-1S37R is an efficient method for the production monitoring and quality control of IgG1-type antibodies to enable the large-scale production and application of antibody drugs.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Humanos , Imunoglobulina G/química , Fragmentos Fc das Imunoglobulinas/química
13.
MAbs ; 15(1): 2160229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36788124

RESUMO

TrYbe® is an Fc-free therapeutic antibody format, capable of engaging up to three targets simultaneously, with long in vivo half-life conferred by albumin binding. This format is shown by small-angle X-ray scattering to be conformationally flexible with favorable 'reach' properties. We demonstrate the format's broad functionality by co-targeting of soluble and cell surface antigens. The benefit of monovalent target binding is illustrated by the lack of formation of large immune complexes when co-targeting multivalent antigens. TrYbes® are manufactured using standard mammalian cell culture and protein A affinity capture processes. TrYbes® have been formulated at high concentrations and have favorable drug-like properties, including stability, solubility, and low viscosity. The unique functionality and inherent developability of the TrYbe® makes it a promising multi-specific antibody fragment format for antibody therapy.


Assuntos
Fragmentos Fc das Imunoglobulinas , Fragmentos de Imunoglobulinas , Animais , Meia-Vida , Fragmentos Fc das Imunoglobulinas/química , Mamíferos/metabolismo
14.
Biochemistry ; 62(2): 262-269, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35605982

RESUMO

The cell-surface receptor FcγRIIIa is crucial to the efficacy of therapeutic antibodies as well as the immune response. The interaction of the Fc region of IgG molecules with FcγRIIIa has been characterized, but until recently, it was thought that the Fab regions were not involved in the interaction. To evaluate the influence of the Fab regions in a biophysical context, we carried out surface plasmon resonance analyses using recombinant FcγRIIIa ligands. A van't Hoff analysis revealed that compared to the interaction of the papain-digested Fc fragment with FcγRIIIa, the interaction of commercially available, full-length rituximab with FcγRIIIa had a more favorable binding enthalpy, a less favorable binding entropy, and a slower off rate. Similar results were obtained from analyses of IgG1 molecules and an IgG1-Fc fragment produced by Expi293 cells. For further validation, we also prepared a maltose-binding protein-linked IgG1-Fc fragment (MBP-Fc). The binding enthalpy of MBP-Fc was nearly equal to that of the IgG1-Fc fragment for the interaction with FcγRIIIa, indicating that such alternatives to the Fab domains as MBP do not positively contribute to the IgG-FcγRIIIa interactions. Our investigation strongly suggests that the Fab region directly interacts with FcγRIIIa, resulting in an increase in the binding enthalpy and a decrease in the dissociation rate, at the expense of favorable binding entropy.


Assuntos
Imunoglobulina G , Receptores de IgG , Receptores de IgG/química , Imunoglobulina G/química , Rituximab/química , Fragmentos Fc das Imunoglobulinas/química , Termodinâmica , Ressonância de Plasmônio de Superfície
15.
Nat Commun ; 13(1): 6073, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241613

RESUMO

Binding to the neonatal Fc receptor (FcRn) extends serum half-life of IgG, and antagonizing this interaction is a promising therapeutic approach in IgG-mediated autoimmune diseases. Fc-MST-HN, designed for enhanced FcRn binding capacity, has not been evaluated in the context of a full-length antibody, and the structural properties of the attached Fab regions might affect the FcRn-mediated intracellular trafficking pathway. Here we present a comprehensive comparative analysis of the IgG salvage pathway between two full-size IgG1 variants, containing wild type and MST-HN Fc fragments, and their Fc-only counterparts. We find no evidence of Fab-regions affecting FcRn binding in cell-free assays, however, cellular assays show impaired binding of full-size IgG to FcRn, which translates into improved intracellular FcRn occupancy and intracellular accumulation of Fc-MST-HN compared to full size IgG1-MST-HN. The crystal structure of Fc-MST-HN in complex with FcRn provides a plausible explanation why the Fab disrupts the interaction only in the context of membrane-associated FcRn. Importantly, we find that Fc-MST-HN outperforms full-size IgG1-MST-HN in reducing IgG levels in cynomolgus monkeys. Collectively, our findings identify the cellular membrane context as a critical factor in FcRn biology and therapeutic targeting.


Assuntos
Anticorpos Monoclonais , Doenças Autoimunes , Animais , Doenças Autoimunes/tratamento farmacológico , Antígenos de Histocompatibilidade Classe I , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G , Macaca fascicularis/metabolismo , Ligação Proteica , Receptores Fc
16.
Nat Commun ; 13(1): 6314, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274064

RESUMO

Immunoglobulin M (IgM) is the most ancient of the five isotypes of immunoglobulin (Ig) molecules and serves as the first line of defence against pathogens. Here, we use cryo-EM to image the structure of the human full-length IgM pentamer, revealing antigen binding domains flexibly attached to the asymmetric and rigid core formed by the Cµ4 and Cµ3 constant regions and the J-chain. A hinge is located at the Cµ3/Cµ2 domain interface, allowing Fabs and Cµ2 to pivot as a unit both in-plane and out-of-plane. This motion is different from that observed in IgG and IgA, where the two Fab arms are able to swing independently. A biased orientation of one pair of Fab arms results from asymmetry in the constant domain (Cµ3) at the IgM subunit interacting most extensively with the J-chain. This may influence the multi-valent binding to surface-associated antigens and complement pathway activation. By comparison, the structure of the Fc fragment in the IgM monomer is similar to that of the pentamer, but is more dynamic in the Cµ4 domain.


Assuntos
Imunoglobulina A , Fragmentos Fc das Imunoglobulinas , Humanos , Imunoglobulina M , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G , Fragmentos Fab das Imunoglobulinas/química
17.
J Biomol NMR ; 76(4): 95-105, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35802275

RESUMO

The predominant protein expression host for NMR spectroscopy is Escherichia coli, however, it does not synthesize appropriate post-translation modifications required for mammalian protein function and is not ideal for expressing naturally secreted proteins that occupy an oxidative environment. Mammalian expression platforms can address these limitations; however, these are not amenable to cost-effective uniform 15 N labeling resulting from highly complex growth media requirements. Yeast expression platforms combine the simplicity of bacterial expression with the capabilities of mammalian platforms, however yeasts require optimization prior to isotope labeling. Yeast expression will benefit from methods to boost protein expression levels and developing labeling conditions to facilitate growth and high isotope incorporation within the target protein. In this work, we describe a novel platform based on the yeast Saccharomyces cerevisiae that simultaneously expresses the Kar2p chaperone and protein disulfide isomerase in the ER to facilitate the expression of secreted proteins. Furthermore, we developed a growth medium for uniform 15 N labeling. We recovered 2.2 mg/L of uniformly 15 N-labeled human immunoglobulin (Ig)G1 Fc domain with 90.6% 15 N labeling. NMR spectroscopy revealed a high degree of similarity between the yeast and mammalian-expressed IgG1 Fc domains. Furthermore, we were able to map the binding interaction between IgG1 Fc and the Z domain through chemical shift perturbations. This platform represents a novel cost-effective strategy for 15 N-labeled immunoglobulin fragments.


Assuntos
Fragmentos Fc das Imunoglobulinas , Saccharomyces cerevisiae , Animais , Escherichia coli/metabolismo , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Marcação por Isótopo/métodos , Mamíferos/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Saccharomyces cerevisiae/metabolismo
18.
Sci Rep ; 12(1): 12185, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842448

RESUMO

Fc engineering efforts are increasingly being employed to modulate interaction of antibodies with variety of Fc receptors in an effort to improve the efficacy and safety of the therapeutic antibodies. Among the various Fc receptors, Fc gamma receptors (FcγRs) present on variety of immune cells are especially relevant since they can activate multiple effector functions including antibody dependent cellular cytotoxicity (ADCC) and antibody dependent cellular phagocytosis (ADCP). Depending on the desired mechanism of action (MOA) of the antibody, interactions between Fc domain of the antibody and FcγR (denoted as Fc/FcγR) may need to be enhanced or abolished. Therefore, during the antibody discovery process, biochemical methods are routinely used to measure the affinities of Fc/FcγR interactions. To enable such screening, we developed a plate based, simple to use, homogeneous immunoassays for six FcγRs by leveraging a luminescent protein complementation technology (NanoBiT). An added advantage of the NanoBiT immunoassays is their solution-based format, which minimizes well known surface related artifacts associated with traditional biosensor platforms (e.g., surface plasmon resonance and biolayer interferometry). With NanoBiT FcγRs assays, we demonstrate that assays are specific, report IgG subclass specific affinities and detect modulation in Fc/FcγR interactions in response to the changes in the Fc domain. We subsequently screen a panel of therapeutic antibodies including seven monoclonal antibodies (mAbs) and four polyclonal intravenous immunoglobulin (IVIg) products and highlight the advantages of parallel screening method for developing new antibody therapies.


Assuntos
Fragmentos Fc das Imunoglobulinas , Receptores de IgG , Citotoxicidade Celular Dependente de Anticorpos , Imunoensaio , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G , Receptores Fc
19.
Sci Rep ; 12(1): 9321, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35661134

RESUMO

The fragment-antigen-binding arms (Fab1 and Fab2) in a canonical immunoglobulin G (IgG) molecule have identical sequences and hence are always expected to exhibit symmetric conformations and dynamics. Using long all atom molecular simulations of a human IgG1 crystal structure 1HZH, we demonstrate that the translational and rotational dynamics of Fab1 and Fab2 also strongly depend on their interactions with each other and with the fragment-crystallizable (Fc) region. We show that the Fab2 arm in the 1HZH structure is non-covalently bound to the Fc region via long-lived hydrogen bonds, involving its light chain and both heavy chains of the Fc region. These highly stable interactions stabilize non-trivial conformer states with constrained fluctuations. We observe subtle modifications in Fab1 dynamics in response to Fab2-Fc interactions that points to novel allosteric interactions between the Fab arms. These results yield novel insights into the inter- and intra-fragment motions of immunoglobulins which could help us better understand the relation between their structure and function.


Assuntos
Fragmentos Fab das Imunoglobulinas , Imunoglobulina G , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/química
20.
J Phys Chem B ; 126(24): 4431-4441, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35675067

RESUMO

The effects of high pressure and low temperature on the stability of two different monoclonal antibodies (MAbs) were examined in this work. Fluorescence and small-angle neutron scattering were used to monitor the in situ effects of pressure to infer shifts in tertiary structure and characterize aggregation prone intermediates. Partial unfolding was observed for both MAbs, to different extents, under a range of pressure/temperature conditions. Fourier transform infrared spectroscopy was also used to monitor ex situ changes in secondary structure. Preservation of native secondary structure after incubation at elevated pressures and subzero ° C temperatures was independent of the extent of tertiary unfolding and reversibility. Several combinations of pressure and temperature were also used to discern the respective contributions of the isolated Ab fragments (Fab and Fc) to unfolding and aggregation. The fragments for each antibody showed significantly different partial unfolding profiles and reversibility. There was not a simple correlation between stability of the full MAb and either the Fc or Fab fragment stabilities across all cases, demonstrating a complex relationship to full MAb unfolding and aggregation behavior. That notwithstanding, the combined use of spectroscopic and scattering techniques provides insights into MAb conformational stability and hysteresis in high-pressure, low-temperature environments.


Assuntos
Anticorpos Monoclonais , Fragmentos Fab das Imunoglobulinas , Fragmentos Fc das Imunoglobulinas , Dobramento de Proteína , Anticorpos Monoclonais/química , Temperatura Baixa , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/química , Pressão , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA