Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.873
Filtrar
1.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731472

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid beta (Aß) plaques in the brain. Aß1-42 is the main component of Aß plaque, which is toxic to neuronal cells. Si nanowires (Si NWs) have the advantages of small particle size, high specific surface area, and good biocompatibility, and have potential application prospects in suppressing Aß aggregation. In this study, we employed the vapor-liquid-solid (VLS) growth mechanism to grow Si NWs using Au nanoparticles as catalysts in a plasma-enhanced chemical vapor deposition (PECVD) system. Subsequently, these Si NWs were transferred to a phosphoric acid buffer solution (PBS). We found that Si NWs significantly reduced cell death in PC12 cells (rat adrenal pheochromocytoma cells) induced by Aß1-42 oligomers via double staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescein diacetate/propyl iodide (FDA/PI). Most importantly, pre-incubated Si NWs largely prevented Aß1-42 oligomer-induced PC12 cell death, suggesting that Si NWs exerts an anti-Aß neuroprotective effect by inhibiting Aß aggregation. The analysis of Fourier Transform Infrared (FTIR) results demonstrates that Si NWs reduce the toxicity of fibrils and oligomers by intervening in the formation of ß-sheet structures, thereby protecting the viability of nerve cells. Our findings suggest that Si NWs may be a potential therapeutic agent for AD by protecting neuronal cells from the toxicity of Aß1-42.


Assuntos
Peptídeos beta-Amiloides , Nanofios , Silício , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Nanofios/química , Animais , Células PC12 , Ratos , Silício/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo
2.
Neuropeptides ; 105: 102427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579490

RESUMO

Obesity is a critical health condition worldwide that increases the risks of comorbid chronic diseases, but it can be managed with weight loss. However, conventional interventions relying on diet and exercise are inadequate for achieving and maintaining weight loss, thus there is significant market interest for pharmaceutical anti-obesity agents. For decades, receptor agonists for the gut peptide glucagon-like peptide 1 (GLP-1) featured prominently in anti-obesity medications by suppressing appetite and food reward to elicit rapid weight loss. As the neurocircuitry underlying food motivation overlaps with that for drugs of abuse, GLP-1 receptor agonism has also been shown to decrease substance use and relapse, thus its therapeutic potential may extend beyond weight management to treat addictions. However, as prolonged use of anti-obesity drugs may increase the risk of mood-related disorders like anxiety and depression, and individuals taking GLP-1-based medication commonly report feeling demotivated, the long-term safety of such drugs is an ongoing concern. Interestingly, current research now focuses on dual agonist approaches that include GLP-1 receptor agonism to enable synergistic effects on weight loss or associated functions. GLP-1 is secreted from the same intestinal cells as the anorectic gut peptide, Peptide YY3-36 (PYY3-36), thus this review assessed the therapeutic potential and underlying neural circuits targeted by PYY3-36 when administered independently or in combination with GLP-1 to curb the appetite for food or drugs of abuse like opiates, alcohol, and nicotine. Additionally, we also reviewed animal and human studies to assess the impact, if any, for GLP-1 and/or PYY3-36 on mood-related behaviors in relation to anxiety and depression. As dual agonists targeting GLP-1 and PYY3-36 may produce synergistic effects, they can be effective at lower doses and offer an alternative approach for therapeutic benefits while mitigating undesirable side effects.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Peptídeo YY , Humanos , Animais , Peptídeo YY/metabolismo , Peptídeo YY/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Fragmentos de Peptídeos/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo
3.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599494

RESUMO

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Assuntos
Potenciais de Ação , Neurônios Dopaminérgicos , Exenatida , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Camundongos Endogâmicos C57BL , Substância Negra , Animais , Masculino , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Exenatida/farmacologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Camundongos , Peçonhas/farmacologia , Peptídeos/farmacologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Fragmentos de Peptídeos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
4.
Phytochemistry ; 222: 114098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648960

RESUMO

Nine undescribed compounds, along with eight known compounds, were isolated from the stipes of Lentinus edodes. Their structures were established by extensive spectroscopic and circular dichroism analyses. The protective effects against Aß25-35-induced N9 microglia cells injury of these compounds were tested by MTT method, and the levels of apoptosis and ROS were detected by flow cytometry. In addition, the binding sites and interactions of compound with amyloid precursor protein were revealed using molecular docking simulations. These findings further establish the structural diversity and bioactivity of stipes of L. edodes, and provide an experimental basis for targeting Alzheimer's disease as a potential strategy.


Assuntos
Peptídeos beta-Amiloides , Apoptose , Microglia , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Camundongos , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Lentinula/química , Linhagem Celular
5.
Cancer Cell ; 42(5): 850-868.e9, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38670091

RESUMO

TP53-mutant blood cancers remain a clinical challenge. BH3-mimetic drugs inhibit BCL-2 pro-survival proteins, inducing cancer cell apoptosis. Despite acting downstream of p53, functional p53 is required for maximal cancer cell killing by BH3-mimetics through an unknown mechanism. Here, we report p53 is activated following BH3-mimetic induced mitochondrial outer membrane permeabilization, leading to BH3-only protein induction and thereby potentiating the pro-apoptotic signal. TP53-deficient lymphomas lack this feedforward loop, providing opportunities for survival and disease relapse after BH3-mimetic treatment. The therapeutic barrier imposed by defects in TP53 can be overcome by direct activation of the cGAS/STING pathway, which promotes apoptosis of blood cancer cells through p53-independent BH3-only protein upregulation. Combining clinically relevant STING agonists with BH3-mimetic drugs efficiently kills TRP53/TP53-mutant mouse B lymphoma, human NK/T lymphoma, and acute myeloid leukemia cells. This represents a promising therapy regime that can be fast-tracked to tackle TP53-mutant blood cancers in the clinic.


Assuntos
Apoptose , Proteínas de Membrana , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Humanos , Animais , Camundongos , Proteínas de Membrana/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Mutação , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fragmentos de Peptídeos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética
6.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583442

RESUMO

Using duodenocolic fistula in rats, this study attempts to highlight the particular cytoprotection aspects of the healing of fistulas and therapy potential of the stable gastric pentadecapeptide BPC 157, a cytoprotection mediator (i.e. upgrading minor vessels to induce healing at both fistula's sides). Upon duodenocolic fistula creation (two 'perforated' lesions put together) (assessed at 3, 6, 9, 12, and 15 min), BPC 157, given locally at the fistula, or intragastrically (10 µg/kg, 10 ng/kg), rapidly induces vessel 'recruitment', 'running' toward the defect, simultaneously at duodenum and colon, providing numerous collaterals and branching. The mRNA expression studies done at that time provided strongly elevated (nitric oxide synthase 2) and decreased (cyclooxygenase-2, vascular endothelial growth factor A, nitric oxide synthase (NOS)-1, NOS-3, nuclear factor-kappa-B-activating protein) gene expression. As therapy, rats with duodenocolic fistulas, received BPC 157 10 µg/kg, 10 ng/kg, per-orally, in drinking water till sacrifice, or alternatively, intraperitoneally, first application at 30 min after surgery, last at 24 h before sacrifice, at day 1, 3, 7, 14, 21, and 28. Controls exhibited both defects persisting, continuous fistula leakage, diarrhea, continuous weight loss, advanced adhesion formation and intestinal obstruction. Contrary, all BPC 157-treated rats have closed both defects, duodenal and colonic, no fistula leakage (finally, maximal instilled volume corresponds to healthy rats), no cachexia, the same weight as before surgery, no diarrhea, markedly less adhesion formation and intestinal passage obstruction. Thus, BPC 157 regimens resolve the duodenal/colon lesions and duodenocolic fistulas in rats, and rapid vessels recovery appears as the essential point in the implementation of the cytoprotection concept in the fistula therapy.


Assuntos
Antiulcerosos , Fístula , Proteínas , Ratos , Animais , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular , Citoproteção , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Óxido Nítrico Sintase , Antiulcerosos/farmacologia
7.
Biomed Pharmacother ; 174: 116484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565058

RESUMO

A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aß1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aß1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 µM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aß, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Peptídeos beta-Amiloides , Benzotiazóis , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Benzotiazóis/farmacologia , Benzotiazóis/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Peptídeos beta-Amiloides/metabolismo , Acetilcolinesterase/metabolismo , Camundongos , Masculino , Humanos , Piperazinas/farmacologia , Piperazinas/química , Escopolamina , Piperazina/farmacologia , Piperazina/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Simulação de Dinâmica Molecular , Simulação por Computador , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos
8.
Neuropeptides ; 105: 102426, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527407

RESUMO

Galectins are a group of ß-galactoside-binding lectins associated with regulating immunological response. In the brains of AD patients and 5xFAD (familial AD) mice, galectin-3 (Gal-3) was highly upregulated and found to be expressed in microglia associated with Aß plaques. However, the participation of other galectins, specifically galectin-9 (Gal-9) and T-cell immunoglobulin and mucin domain 3 (Tim-3) receptors, are unknown in the inflammatory response. The experimental model of the Aß25-35 peptide will allow us to study the mechanisms of neuroinflammation and describe the changes in the expression of the Gal-9 and Tim-3 receptor. This study aimed to evaluate whether Aß25-35 peptide administration into the lateral ventricles of rats upregulated Gal-9 and Tim-3 implicated in the modulation of neuroinflammation. The vehicle or Aß25-35 peptide (1 µg/µL) was bilaterally administered into the lateral ventricles of the rat, and control group. After the administration of the Aß25-35 peptide, animals were tested for learning (day 29) and spatial memory (day 30) in the novel object recognition test (NOR). On day 31, hippocampus was examined for morphological changes by Nilss stain, biochemical changes by NO2 and MDA, immunohistochemical analysis by astrocytes (GFAP), microglia (Iba1), Gal-9 and Tim-3, and western blot. Our results show the administration of the Aß25-35 peptide into the lateral ventricles of rats induce memory impairment in the NOR by increases the oxidative stress and inflammatory response. This result is associated with an upregulation of Gal-9 and Tim-3 predominantly detected in the microglia cells of Aß25-35-treated rats with respect to the control group. Gal-9 and Tim-3 are upregulated in activated microglia that could modulate the inflammatory response and damage in neurodegenerative processes induced by the Aß25-35 peptide. Therefore, we suggest that Gal-9 and Tim-3 participate in the inflammatory process induced by the administration of the Aß25-35 peptide.


Assuntos
Peptídeos beta-Amiloides , Galectinas , Receptor Celular 2 do Vírus da Hepatite A , Microglia , Fragmentos de Peptídeos , Regulação para Cima , Animais , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Galectinas/metabolismo , Galectinas/farmacologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Regulação para Cima/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Doença de Alzheimer/metabolismo , Receptores de Superfície Celular
9.
J Neuroendocrinol ; 36(5): e13384, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516965

RESUMO

Psychosocial stress negatively impacts reproductive function by inhibiting pulsatile luteinizing hormone (LH) secretion. The posterodorsal medial amygdala (MePD) is responsible in part for processing stress and modulating the reproductive axis. Activation of the neurokinin 3 receptor (NK3R) suppresses the gonadotropin-releasing hormone (GnRH) pulse generator, under hypoestrogenic conditions, and NK3R activity in the amygdala has been documented to play a role in stress and anxiety. We investigate whether NK3R activation in the MePD is involved in mediating the inhibitory effect of psychosocial stress on LH pulsatility in ovariectomised female mice. First, we administered senktide, an NK3R agonist, into the MePD and monitored the effect on pulsatile LH secretion. We then delivered SB222200, a selective NK3R antagonist, intra-MePD in the presence of predator odour, 2,4,5-trimethylthiazole (TMT) and examined the effect on LH pulses. Senktide administration into the MePD dose-dependently suppresses pulsatile LH secretion. Moreover, NK3R signalling in the MePD mediates TMT-induced suppression of the GnRH pulse generator, which we verified using a mathematical model. The model verifies our experimental findings: (i) predator odour exposure inhibits LH pulses, (ii) activation of NK3R in the MePD inhibits LH pulses and (iii) NK3R antagonism in the MePD blocks stressor-induced inhibition of LH pulse frequency in the absence of ovarian steroids. These results demonstrate for the first time that NK3R neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator.


Assuntos
Hormônio Luteinizante , Quinolinas , Receptores da Neurocinina-3 , Transdução de Sinais , Estresse Psicológico , Substância P/análogos & derivados , Animais , Feminino , Receptores da Neurocinina-3/metabolismo , Receptores da Neurocinina-3/antagonistas & inibidores , Receptores da Neurocinina-3/agonistas , Hormônio Luteinizante/metabolismo , Estresse Psicológico/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Complexo Nuclear Corticomedial/metabolismo , Complexo Nuclear Corticomedial/efeitos dos fármacos , Complexo Nuclear Corticomedial/fisiologia , Fragmentos de Peptídeos/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos Endogâmicos C57BL , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos
10.
Cell Death Differ ; 31(4): 405-416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538744

RESUMO

BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.


Assuntos
Proteínas Quinases Ativadas por AMP , Compostos de Anilina , Proteína de Sequência 1 de Leucemia de Células Mieloides , Pirimidinas , Sulfonamidas , Proteína bcl-X , Humanos , Animais , Compostos de Anilina/farmacologia , Sulfonamidas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Proteína bcl-X/metabolismo , Proteína bcl-X/antagonistas & inibidores , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Pirazóis/farmacologia , Proteína de Morte Celular Associada a bcl/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/patologia , Leucemia/metabolismo , Fosforilação/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sinergismo Farmacológico
11.
Eur J Med Chem ; 269: 116299, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38479167

RESUMO

Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 µM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.


Assuntos
Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Animais , Ratos , Enfuvirtida/farmacologia , Enfuvirtida/metabolismo , Inibidores da Fusão de HIV/farmacologia , Inibidores da Fusão de HIV/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo
12.
Arch Pharm (Weinheim) ; 357(5): e2300693, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332316

RESUMO

Aß1-42 and acetylcholinesterase (AChE) are two key therapeutic targets for Alzheimer's disease (AD). The purpose of this study is to develop a dual-target inhibitor that inhibits both of these targets by fusing the chemical structure of baicalein and donepezil. Among them, we modified the structure of baicalein to arylcoumarin, synthesized three kinds of structural compounds, and evaluated their biological activities. The results showed that compound 3b had the strongest inhibitory effect on AChE (IC50 = 0.05 ± 0.02 µM), which was better than those of donepezil and baicalein. In addition, compound 3b has a strong ability to inhibit the aggregation of Aß1-42 and protect nerve cells, and it can also penetrate the blood-brain barrier well. Using a zebrafish behavioral analyzer test, it was found that compound 3b can alleviate the behavioral effects of AlCl3-induced zebrafish larval movement retardation, which has a certain guiding significance for simulating the movement disorders of AD patients. In summary, compound 3b is expected to become a multifunctional agent for treating and alleviating the symptoms of AD patients.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Peptídeos beta-Amiloides , Inibidores da Colinesterase , Desenho de Fármacos , Peixe-Zebra , Doença de Alzheimer/tratamento farmacológico , Animais , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Humanos , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Donepezila/farmacologia , Donepezila/síntese química , Donepezila/química , Barreira Hematoencefálica/metabolismo , Estrutura Molecular , Flavanonas/farmacologia , Flavanonas/síntese química , Flavanonas/química , Relação Dose-Resposta a Droga , Comportamento Animal/efeitos dos fármacos
13.
Mol Nutr Food Res ; 68(5): e2300524, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356052

RESUMO

SCOPE: This study aims to investigate the antihypertensive effect of four chicken muscle-derived angiotensin (Ang)-converting enzymes (ACE)-regulating peptides: Val-Arg-Pro (VRP, ACE inhibition), Leu-Lys-Tyr and Val-Arg-Tyr (LKY and VRY, ACE inhibition and ACE2 upregulation), and Val-Val-His-Pro-Lys-Glu-Ser-Phe (VVHPKESF [V-F], ACE2 upregulation) in spontaneously hypertensive rats. METHODS AND RESULTS: Rats (12-14 weeks old) are grouped: 1) untreated, 2) VRP, 3) LKY, 4) VRY, and 5) V-F. Blood pressure (BP) is monitored using implantable telemetry technology. Over 18-day oral administration of 15 mg kg-1 body weight (BW) per day, only peptide V-F significantly (p < 0.05) reduces BP, decreases circulating Ang II, and increases ACE2 and Ang (1-7) levels, and enhances aortic expressions of ACE2 and Mas receptor (MasR). Peptide V-F also attenuates vascular inflammation (TNFα, MCP-1, IL-1α, IL-15, and cyclooxygenase 2 [COX2]) and vascular oxidative stress (nitrotyrosine). The gastrointestinal (GI)-degraded fragment of peptide V-F, Val-Val-His-Pro-Lys (VVHPK), is also an ACE2-upregulating peptide. Peptides VRP, LKY, and VRY do not reduce BP, possibly due to low bioavailability or other unknown reasons. CONCLUSIONS: Peptide V-F is the first ACE2-upregulating peptide, purified and fractionated from food proteins based on in vitro ACE2 upregulation, that reduces BP associated with the activation of ACE2/Ang (1-7)/MasR axis; the N-terminal moiety VVHPK may be responsible for the antihypertensive effect of V-F.


Assuntos
Enzima de Conversão de Angiotensina 2 , Galinhas , Ratos , Animais , Ratos Endogâmicos SHR , Pressão Sanguínea , Enzima de Conversão de Angiotensina 2/farmacologia , Galinhas/metabolismo , Anti-Hipertensivos/farmacologia , Peptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Angiotensina II/farmacologia , Músculos/metabolismo
14.
Eur J Pharmacol ; 967: 176365, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316247

RESUMO

Glycyrrhizic acid (GA), one of the major active components derived from licorice root, exerts liver-protecting activity. Its molecular mechanisms of action, however, remain not completely understood. The angiotensin (Ang) converting enzyme (ACE) 2/Ang-(1-7)/Mas axis, regulated by ACE2 through converting Ang II into Ang-(1-7) to activate Mas receptor, counteracts the pro-inflammatory and pro-steatotic effects of the ACE/Ang II/Ang II receptor type 1 (AT1) axis. Here, it was found that pretreatment with GA suppressed LPS/D-galactosamine-induced serum hyperactivities of alanine aminotransferase and aspartate aminotransferase, hepatomegaly, pathological changes, and over-accumulation of triglycerides and fatty droplets in the liver of mice. GA also diminished LPS/free fatty acid-induced inflammation and steatosis in cultured hepatocytes. Mechanistically, GA restored hepatic protein hypoexpression of ACE2 and Mas receptor, and the decrease in hepatic Ang-(1-7) content. Hepatic overexpression of angiotensin II and AT1 was also suppressed. However, GA did not alter hepatic protein expression of renin and ACE. In addition, GA inhibited hepatic protein over-phosphorylation of the p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, extracellular signal-regulated kinase, and nuclear factor κB at Ser536. Hepatic overexpression of tumor necrosis factor α, interleukin 6, interleukin 1ß, sterol regulatory element-binding protein 1c, and fatty acid synthase was also inhibited. GA-elicited recovery of ACE2 and Mas protein hypoexpression was further confirmed in the hepatocyte. Thus, the present results demonstrate that GA restores the downregulated hepatic ACE2-mediated anti-inflammatory and anti-steatotic signaling in the amelioration of steatohepatitis. We suggest that GA may protect the liver from injury by regulating the hepatic ACE2-mediated signaling.


Assuntos
Enzima de Conversão de Angiotensina 2 , Fígado Gorduroso , Camundongos , Animais , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Lipopolissacarídeos , Peptidil Dipeptidase A/metabolismo , Fragmentos de Peptídeos/farmacologia , Angiotensina II , Angiotensina I/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
15.
Mol Biol Rep ; 51(1): 313, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374452

RESUMO

BACKGROUND: Glucagon-like peptide-1 (GLP-1) (7-36) amide, an endogenous active form of GLP-1, has been shown to modulate oxidative stress and neuronal cell survival in various neurological diseases. OBJECTIVE: This study investigated the potential effects of GLP-1(7-36) on oxidative stress and apoptosis in neuronal cells following traumatic brain injury (TBI) and explored the underlying mechanisms. METHODS: Traumatic brain injury (TBI) models were established in male SD rats for in vivo experiments. The extent of cerebral oedema was assessed using wet-to-dry weight ratios following GLP-1(7-36) intervention. Neurological dysfunction and cognitive impairment were evaluated through behavioural experiments. Histopathological changes in the brain were observed using haematoxylin and eosin staining. Oxidative stress levels in hippocampal tissues were measured. TUNEL staining and Western blotting were employed to examine cell apoptosis. In vitro experiments evaluated the extent of oxidative stress and neural apoptosis following ERK5 phosphorylation activation. Immunofluorescence colocalization of p-ERK5 and NeuN was analysed using immunofluorescence cytochemistry. RESULTS: Rats with TBI exhibited neurological deterioration, increased oxidative stress, and enhanced apoptosis, which were ameliorated by GLP-1(7-36) treatment. Notably, GLP-1(7-36) induced ERK5 phosphorylation in TBI rats. However, upon ERK5 inhibition, oxidative stress and neuronal apoptosis levels were elevated, even in the presence of GLP-1(7-36). CONCLUSION: In summary, this study suggested that GLP-1(7-36) suppressed oxidative damage and neuronal apoptosis after TBI by activating ERK5/CREB.


Assuntos
Lesões Encefálicas Traumáticas , Peptídeo 1 Semelhante ao Glucagon , Fármacos Neuroprotetores , Animais , Masculino , Ratos , Apoptose , Lesões Encefálicas Traumáticas/tratamento farmacológico , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Hipocampo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos Sprague-Dawley , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Proteína Quinase 7 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
16.
Fundam Clin Pharmacol ; 38(3): 489-501, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38311344

RESUMO

BACKGROUND: The high mortality rate of patients with acute myocardial infarction (AMI) remains the most pressing issue of modern cardiology. Over the past 10 years, there has been no significant reduction in mortality among patients with AMI. It is quite obvious that there is an urgent need to develop fundamentally new drugs for the treatment of AMI. Angiotensin 1-7 has some promise in this regard. OBJECTIVE: The objective of this article is analysis of published data on the cardioprotective properties of angiotensin 1-7. METHODS: PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS: Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart. Angiotensin 1-7 can prevent not only ischemic but also reperfusion cardiac injury. The activation of the Mas receptor plays a key role in these effects of angiotensin 1-7. Angiotensin 1-7 alleviates Ca2+ overload of cardiomyocytes and reactive oxygen species production in ischemia/reperfusion (I/R) of the myocardium. It is possible that both effects are involved in angiotensin 1-7-triggered cardiac tolerance to I/R. Furthermore, angiotensin 1-7 inhibits apoptosis of cardiomyocytes and stimulates autophagy of cells. There is also indirect evidence suggesting that angiotensin 1-7 inhibits ferroptosis in cardiomyocytes. Moreover, angiotensin 1-7 possesses anti-inflammatory properties, possibly achieved through NF-kB activity inhibition. Phosphoinositide 3-kinase, Akt, and NO synthase are involved in the infarct-reducing effect of angiotensin 1-7. However, the specific end-effector of the cardioprotective impact of angiotensin 1-7 remains unknown. CONCLUSION: The molecular nature of the end-effector of the infarct-limiting effect of angiotensin 1-7 has not been elucidated. Perhaps, this end-effector is the sarcolemmal KATP channel or the mitochondrial KATP channel.


Assuntos
Angiotensina I , Traumatismo por Reperfusão Miocárdica , Fragmentos de Peptídeos , Transdução de Sinais , Angiotensina I/farmacologia , Fragmentos de Peptídeos/farmacologia , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Animais , Transdução de Sinais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Apoptose/efeitos dos fármacos
17.
Kidney Blood Press Res ; 49(1): 100-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38237563

RESUMO

INTRODUCTION: Apela has a wide range of biological effects on the cardiovascular system, but the changes and significance of endogenous Apela in patients with chronic heart failure (CHF) and acute deterioration of cardiac and renal function are unclear. METHODS: A total of 69 patients with stable CHF combined with well-preserved renal function were enrolled and followed for 12 months. The effects of Apela on human renal glomerular endothelial cells (hRGEC), human glomerular mesangial cells (hMC), and human renal tubular epithelial cells (HK-2) were observed. RESULTS: Serum Apela concentration was positively correlated with NYHA class (r = 0.711) and N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration (r = 0.303) but negatively correlated with left ventricular ejection fraction (LVEF) (r = -0.374) and 6-min walk distance (r = -0.860) in patients with stable CHF. Twenty-one patients experiencing deterioration of renal and cardiac function were diagnosed with cardiorenal syndrome (CRS) during the follow-up period. In addition, the serum Apela, as well as the difference in Apela between stable and worsening phases (ΔApela), was correlated with the estimated glomerular filtration rate (eGFR) and ΔeGFR in patients with CRS. Apela significantly inhibited the upregulated expression of MCP-1 and TNF-α induced by angiotensin II (AngII) in hRGEC, hMC, and HK-2 cells. Apela inhibited the adhesion of THP-1 cells to hRGEC and promoted the tubular formation of hRGEC. Moreover, Apela enhanced the expression of MMP-9 in hMC but inhibited the upregulated expression of α-SMA and vimentin in HK-2 cells by AngII. CONCLUSION: This study suggests that the level of Apela can be used to diagnose heart failure and assess the severity of cardiac dysfunction in patients with stable CHF, and its dynamic changes can be used to evaluate the damage to renal function in patients with CRS. Apela plays multiple protective effects on renal cells, highlighting its clinical application prospect in the prevention and treatment of CRS.


Assuntos
Síndrome Cardiorrenal , Insuficiência Cardíaca , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Doença Crônica , Peptídeo Natriurético Encefálico/sangue , Taxa de Filtração Glomerular , Células Endoteliais/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/farmacologia , Relevância Clínica
18.
Curr Protein Pept Sci ; 25(4): 339-352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38243941

RESUMO

BACKGROUND: Neurokinin B; an endogenous decapeptide, mediates its reproductive physiological actions through gonadotropin releasing hormone. Despite the potential role of Neurokinin B on seminal vesicles, its effects on seminal vesicles in adult male mammals remain elusive. We aimed to investigate the potentials of variable doses of Neurokinin B, its agonist and antagonist on histomorphology and expression of NK3R on seminal vesicles, and secretory activity of seminal vesicles in adult male rats. METHODS: Adult male Sprague Dawley rats (n=10 in each group) were administered intraperitoneally with Neurokinin B in three variable doses: 1 µg, 1 ηg and 10 ρg while, Senktide (Neurokinin B agonist) and SB222200 (Neurokinin B antagonist) in 1 µg doses consecutively for 12 days. After 12 days of peptide treatment, half of the animals (n=05) in each group were sacrificed while remaining half (n=05) were kept for another 12 days without any treatment to investigate treatment reversal. Seminal vesicles were dissected and excised tissue was processed for light microscopy, immunohistochemistry and estimation of seminal fructose levels. RESULTS: Treatment with Neurokinin B and Senktide significantly increased while SB222200 slightly decrease the seminal vesicles weight, epithelial height and seminal fructose levels as compared to control. Light microscopy revealed increased epithelial height and epithelial folding as compared to control in all Neurokinin B and Senktide treated groups while decreased in SB222200. Effects of various doses of Neurokinin B, Senktide and SB222200 on seminal vesicles weight, epithelial height, seminal fructose levels and histomorphology were reversed when rats were maintained without treatments. Immuno-expression of Neurokinin B shows no change in treatment and reversal groups. CONCLUSION: Continuous administration of Neurokinin B and Senktide effect positively while SB222200 have detrimental effects on cellular morphology, epithelial height and seminal fructose levels in seminal vesicles. Effects of peptide treatments depicted a reversal towards control group when rats were kept without any treatment.


Assuntos
Neurocinina B , Fragmentos de Peptídeos , Ratos Sprague-Dawley , Receptores da Neurocinina-3 , Glândulas Seminais , Substância P , Animais , Masculino , Neurocinina B/metabolismo , Glândulas Seminais/efeitos dos fármacos , Glândulas Seminais/metabolismo , Ratos , Receptores da Neurocinina-3/metabolismo , Receptores da Neurocinina-3/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Substância P/metabolismo , Relação Dose-Resposta a Droga , Proliferação de Células/efeitos dos fármacos
19.
Peptides ; 173: 171148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215942

RESUMO

Type 2 diabetes (T2D) is characterized by peripheral insulin resistance and altered insulin secretion due to a progressive loss of ß-cell mass and function. Today, most antidiabetic agents are designed to resolve impaired insulin secretion and/or insulin resistance, and only GLP-1-based formulations contribute to stopping the decline in ß-cell mass. HTD4010, a peptide carrying two modifications of the amino acid sequence of INGAP-PP (N-terminus acetylation and substitution of Asn13 by Ala) showed greater plasma stability and could be a good candidate for proposal as a drug that could improve ß cell mass and function lost in T2D. In the present study, we showed that HTD4010 included in the culture media of normal rat islets at a dose 100 times lower than that used for INGAP-PP was able to modulate, in the same way as the original peptide, both insulin secretion in response to glucose and the expression of key genes related to insular function, insulin and leptin intracellular pathways, neogenesis, apoptosis, and inflammatory response. Our results confirm the positive effect of HTD4010 on ß-cell function and gene expression of factors involved in the maintenance of ß-cell mass. Although new assays in animal models of prediabetes and T2D must be performed to be conclusive, our results are very encouraging, and they suggest that the use of HTD4010 at a dose 100 times lower than that of INGAP-PP could minimize its side effects in a future clinical trial.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Ilhotas Pancreáticas , Ratos , Animais , Secreção de Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Associadas a Pancreatite/genética , Ratos Wistar , Fragmentos de Peptídeos/farmacologia , Peptídeos/genética , Peptídeos/farmacologia , Peptídeos/metabolismo , Insulina/metabolismo , Expressão Gênica , Ilhotas Pancreáticas/metabolismo
20.
Neurobiol Learn Mem ; 208: 107890, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215963

RESUMO

C-C chemokine receptor 5 (CCR5) is a chemokine receptor involved in immune responses and a co-receptor for HIV infection. Recently, CCR5 has also been reported to play a role in synaptic plasticity, learning and memory, and cognitive deficits associated with normal aging, traumatic brain injury (TBI), and HIV-associated neurocognitive disorder (HAND). In contrast, the role of CCR5 in cognitive deficits associated with other disorders, including Alzheimer's disease (AD), is much less understood. Studies have reported an increase in expression of CCR5 or its ligands in both AD patients and AD rodent models, suggesting a correlation between AD and CCR5 expression. However, whether blocking CCR5 in specific brain regions, such as the hippocampus, could improve memory deficits in AD mouse models is unknown. To study the potential causal role of CCR5 in cognitive deficits in AD, we injected soluble Aß1-42 or a control (Aß42-1) oligomers in the dorsal CA1 region of the hippocampus and found that Aß1-42 injection resulted in severe memory impairment in the object place recognition (OPR) and novel object recognition (NOR) tests. Aß1-42 injection caused an increase in Ccr5, Ccl3, and Ccl4 in the dorsal hippocampus, and the expression levels of CCR5 and its ligands remained elevated at 2 weeks after Aß1-42 injection. Knocking down Ccr5 in the CA1 region of dorsal hippocampus reversed the increase in microglia number and size in dorsal CA1 and rescued memory deficits. These results indicate that CCR5 plays an important role in modulating Aß1-42-induced learning and memory deficits, and suggest that CCR5 antagonists may serve as a potential treatment to improve cognitive deficits associated with AD.


Assuntos
Doença de Alzheimer , Infecções por HIV , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Hipocampo/fisiologia , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Aprendizagem , Transtornos da Memória/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Receptores CCR5/metabolismo , Receptores de Quimiocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA