Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.685
Filtrar
1.
BMC Plant Biol ; 24(1): 390, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38730367

RESUMO

Granulation of juice sacs is a physiological disorder, which affects pomelo fruit quality. Here, the transcriptome and ubiquitinome of the granulated juice sacs were analyzed in Guanxi pomelo. We found that lignin accumulation in the granulated juice sacs was regulated at transcription and protein modification levels. In transcriptome data, we found that the genes in lignin biosynthesis pathway and antioxidant enzyme system of the granulated juice sacs were significantly upregulated. However, in ubiquitinome data, we found that ubiquitinated antioxidant enzymes increased in abundance but the enzyme activities decreased after the modification, which gave rise to reactive oxygen species (ROS) contents in granulated juice sacs. This finding suggests that ubiquitination level of the antioxidant enzymes is negatively correlated with the enzyme activities. Increased H2O2 is considered to be a signaling molecule to activate the key gene expressions in lignin biosynthesis pathway, which leads to the lignification in granulated juice sacs of pomelo. This regulatory mechanism in juice sac granulation of pomelo was further confirmed through the verification experiment using tissue culture by adding H2O2 or dimethylthiourea (DMTU). Our findings suggest that scavenging H2O2 and other ROS are important for reducing lignin accumulation, alleviating juice sac granulation and improving pomelo fruit quality.


Assuntos
Citrus , Lignina , Lignina/metabolismo , Citrus/metabolismo , Citrus/genética , Sucos de Frutas e Vegetais/análise , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma , Peróxido de Hidrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Frutas/metabolismo , Frutas/genética , Antioxidantes/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731974

RESUMO

Tomato (Solanum lycopersicum) breeding for improved fruit quality emphasizes selecting for desirable taste and characteristics, as well as enhancing disease resistance and yield. Seed germination is the initial step in the plant life cycle and directly affects crop productivity and yield. ERECTA (ER) is a receptor-like kinase (RLK) family protein known for its involvement in diverse developmental processes. We characterized a Micro-Tom EMS mutant designated as a knock-out mutant of sler. Our research reveals that SlER plays a central role in controlling critical traits such as inflorescence development, seed number, and seed germination. The elevation in auxin levels and alterations in the expression of ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI5 in sler seeds compared to the WT indicate that SlER modulates seed germination via auxin and abscisic acid (ABA) signaling. Additionally, we detected an increase in auxin content in the sler ovary and changes in the expression of auxin synthesis genes YUCCA flavin monooxygenases 1 (YUC1), YUC4, YUC5, and YUC6 as well as auxin response genes AUXIN RESPONSE FACTOR 5 (ARF5) and ARF7, suggesting that SlER regulates fruit development via auxin signaling.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Germinação , Ácidos Indolacéticos , Proteínas de Plantas , Sementes , Transdução de Sinais , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Ácidos Indolacéticos/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo
3.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732032

RESUMO

Fruit shape is an important external feature when consumers choose their preferred fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its commodity value. However, research on persimmon fruit shape is still in the initial stage. In this study, the mechanism of fruit shape formation was studied by cytological observations, phytohormone assays, and transcriptome analysis using the long fruit and flat fruit produced by 'Yaoxianwuhua' hermaphroditic flowers. The results showed that stage 2-3 (June 11-June 25) was the critical period for persimmon fruit shape formation. Persimmon fruit shape is determined by cell number in the transverse direction and cell length in the longitudinal direction. High IAA, GA4, ZT, and BR levels may promote long fruit formation by promoting cell elongation in the longitudinal direction, and high GA3 and ABA levels may be more conducive to flat fruit formation by increasing the cell number in the transverse direction and inhibiting cell elongation in the longitudinal direction, respectively. Thirty-two DEGs related to phytohormone biosynthesis and signaling pathways and nine DEGs related to cell division and cell expansion may be involved in the persimmon fruit shape formation process. These results provide valuable information for regulatory mechanism research on persimmon fruit formation.


Assuntos
Diospyros , Frutas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Diospyros/genética , Diospyros/metabolismo , Diospyros/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/genética , Flores/metabolismo , Flores/crescimento & desenvolvimento
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732059

RESUMO

Anthocyanin accumulation is regulated by specific genes during fruit ripening. Currently, peel coloration of mango fruit in response to exogenous ethylene and the underlying molecular mechanism remain largely unknown. The role of MiMYB8 on suppressing peel coloration in postharvest 'Guifei' mango was investigated by physiology detection, RNA-seq, qRT-PCR, bioinformatics analysis, yeast one-hybrid, dual-luciferase reporter assay, and transient overexpression. Results showed that compared with the control, low concentration of exogenous ethylene (ETH, 500 mg·L-1) significantly promoted peel coloration of mango fruit (cv. Guifei). However, a higher concentration of ETH (1000 mg·L-1) suppressed color transformation, which is associated with higher chlorophyll content, lower a* value, anthocyanin content, and phenylalanine ammonia-lyase (PAL) activity of mango fruit. M. indica myeloblastosis8 MiMYB8 and MiPAL1 were differentially expressed during storage. MiMYB8 was highly similar to those found in other plant species related to anthocyanin biosynthesis and was located in the nucleus. MiMYB8 suppressed the transcription of MiPAL1 by binding directly to its promoter. Transient overexpression of MiMYB8 in tobacco leaves and mango fruit inhibited anthocyanin accumulation by decreasing PAL activity and down-regulating the gene expression. Our observations suggest that MiMYB8 may act as repressor of anthocyanin synthesis by negatively modulating the MiPAL gene during ripening of mango fruit, which provides us with a theoretical basis for the scientific use of exogenous ethylene in practice.


Assuntos
Antocianinas , Etilenos , Frutas , Regulação da Expressão Gênica de Plantas , Mangifera , Proteínas de Plantas , Fatores de Transcrição , Mangifera/metabolismo , Mangifera/genética , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Frutas/metabolismo , Frutas/genética , Antocianinas/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/genética , Pigmentação/genética , Clorofila/metabolismo
5.
BMC Plant Biol ; 24(1): 374, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714922

RESUMO

BACKGROUND: PC (phytocyanin) is a class of copper-containing electron transfer proteins closely related to plant photosynthesis, abiotic stress responses growth and development in plants, and regulation of the expression of some flavonoids and phenylpropanoids, etc., however, compared with other plants, the PC gene family has not been systematically characterized in apple. RESULTS: A total of 59 MdPC gene members unevenly distributed across 12 chromosomes were identified at the genome-wide level. The proteins of the MdPC family were classified into four subfamilies based on differences in copper binding sites and glycosylation sites: Apple Early nodulin-like proteins (MdENODLs), Apple Uclacyanin-like proteins (MdUCLs), Apple Stellacyanin-like proteins (MdSCLs), and Apple Plantacyanin-like proteins (MdPLCLs). Some MdPC members with similar gene structures and conserved motifs belong to the same group or subfamily. The internal collinearity analysis revealed 14 collinearity gene pairs among members of the apple MdPC gene. Interspecific collinearity analysis showed that apple had 31 and 35 homologous gene pairs with strawberry and grape, respectively. Selection pressure analysis indicated that the MdPC gene was under purifying selection. Prediction of protein interactions showed that MdPC family members interacted strongly with the Nad3 protein. GO annotation results indicated that the MdPC gene also regulated the biosynthesis of phenylpropanoids. Chip data analysis showed that (MdSCL3, MdSCL7 and MdENODL27) were highly expressed in mature fruits and peels. Many cis-regulatory elements related to light response, phytohormones, abiotic stresses and flavonoid biosynthetic genes regulation were identified 2000 bp upstream of the promoter of the MdPC gene, and qRT-PCR results showed that gene members in Group IV (MdSCL1/3, MdENODL27) were up-regulated at all five stages of apple coloring, but the highest expression was observed at the DAF13 (day after fruit bag removal) stage. The gene members in Group II (MdUCL9, MdPLCL3) showed down-regulated or lower expression in the first four stages of apple coloring but up-regulated and highest expression in the DAF 21 stage. CONCLUSION: Herein, one objective of these findings is to provide valuable information for understanding the structure, molecular evolution, and expression pattern of the MdPC gene, another major objective in this study was designed to lay the groundwork for further research on the molecular mechanism of PC gene regulation of apple fruit coloration.


Assuntos
Evolução Molecular , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Pigmentação/genética , Frutas/genética , Frutas/metabolismo , Genes de Plantas , Família Multigênica
6.
Plant Mol Biol ; 114(3): 51, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691187

RESUMO

Pomegranate (Punica granatum L.) which belongs to family Lythraceae, is one of the most important fruit crops of many tropical and subtropical regions. A high variability in fruit color is observed among different pomegranate accessions, which arises from the qualitative and quantitative differences in anthocyanins. However, the mechanism of fruit color variation is still not fully elucidated. In the present study, we investigated the red color mutation between a red-skinned pomegranate 'Hongbaoshi' and a purple-red-skinned cultivar 'Moshiliu', by using transcriptomic and metabolomic approaches. A total of 51 anthocyanins were identified from fruit peels, among which 3-glucoside and 3,5-diglucoside of cyanidin (Cy), delphinidin (Dp), and pelargonidin (Pg) were dominant. High proportion of Pg in early stages of 'Hongbaoshi' but high Dp in late stages of 'Moshiliu' were characterized. The unique high levels of Cy and Dp anthocyanins accumulating from early developmental stages accounted for the purple-red phenotype of 'Moshiliu'. Transcriptomic analysis revealed an early down-regulated and late up-regulated of anthocyanin-related structure genes in 'Moshiliu' compared with 'Hongbaoshi'. Alao, ANR was specially expressed in 'Hongbaoshi', with extremely low expression levels in 'Moshiliu'. For transcription factors R2R3-MYB, the profiles demonstrated a much higher transcription levels of three subgroup (SG) 5 MYBs and a sharp decrease in expression of SG6 MYB LOC116202527 in high-anthocyanin 'Moshiliu'. SG4 MYBs exhibited two entirely different patterns, LOC116203744 and LOC116212505 were down-regulated whereas LOC116205515 and LOC116212778 were up-regulated in 'Moshiliu' pomegranate. The results indicate that specific SG members of the MYB family might promote the peel coloration in different manners and play important roles in color mutation in pomegranate.


Assuntos
Antocianinas , Frutas , Regulação da Expressão Gênica de Plantas , Punica granatum , Transcriptoma , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Antocianinas/genética , Punica granatum/genética , Punica granatum/metabolismo , Pigmentação/genética , Perfilação da Expressão Gênica , Cor , Metabolômica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Physiol Plant ; 176(3): e14333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38710501

RESUMO

Condensed tannins are widely present in the fruits and seeds of plants and effectively prevent them from being eaten by animals before maturity due to their astringent taste. In addition, condensed tannins are a natural compound with strong antioxidant properties and significant antibacterial effects. Four samples of mature and near-mature Quercus fabri acorns, with the highest and lowest condensed tannin content, were used for genome-based transcriptome sequencing. The KEGG enrichment analysis revealed that the differentially expressed genes (DEGs) were highly enriched in phenylpropanoid biosynthesis and starch and sucrose metabolism. Given that the phenylpropanoid biosynthesis pathway is a crucial step in the synthesis of condensed tannins, we screened for significantly differentially expressed transcription factors and structural genes from the transcriptome data of this pathway and found that the expression levels of four MADS-box, PAL, and 4CL genes were significantly increased in acorns with high condensed tannin content. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) experiment further validated this result. In addition, yeast one-hybrid assay confirmed that three MADS-box transcription factors could bind the promoter of the 4CL gene, thereby regulating gene expression levels. This study utilized transcriptome sequencing to discover new important regulatory factors that can regulate the synthesis of acorn condensed tannins, providing new evidence for MADS-box transcription factors to regulate the synthesis of secondary metabolites in fruits.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proantocianidinas , Quercus , Proantocianidinas/metabolismo , Proantocianidinas/biossíntese , Quercus/genética , Quercus/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Frutas/genética , Frutas/metabolismo
8.
Plant Cell Rep ; 43(6): 136, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709311

RESUMO

KEY MESSAGE: In our study, we discovered a fragment duplication autoregulation mechanism in 'ZS-HY', which may be the reason for the phenotype of red foliage and red flesh in grapes. In grapes, MYBA1 and MYBA2 are the main genetic factors responsible for skin coloration which are located at the color loci on chromosome 2, but the exact genes responsible for color have not been identified in the flesh. We used a new teinturier grape germplasm 'ZhongShan-HongYu' (ZS-HY) which accumulate anthocyanin both in skin and flesh as experimental materials. All tissues of 'ZS-HY' contained cyanidin 3-O-(6″-p-coumaroyl glucoside), and pelargonidins were detected in skin, flesh, and tendril. Through gene expression analysis at different stage of flesh, significant differences in the expression levels of VvMYBA1 were found. Gene amplification analysis showed that the VvMYBA1 promoter is composed of two alleles, VvMYBA1a and 'VvMYBA1c-like'. An insertion of a 408 bp repetitive fragment was detected in the allele 'VvMYBA1c-like'. In this process, we found the 408 bp repetitive fragment was co-segregated with red flesh and foliage phenotype. Our results revealed that the 408 bp fragment replication insertion in promoter of 'VvMYBA1c-like' was the target of its protein, and the number of repeat fragments was related to the increase of trans-activation of VvMYBA1 protein. The activation of promoter by VvMYBA1 was enhanced by the addition of VvMYC1. In addition, VvMYBA1 interacted with VvMYC1 to promote the expression of VvGT1 and VvGST4 genes in 'ZS-HY'. The discovery of this mutation event provides new insights into the regulation of VvMYBA1 on anthocyanin accumulation in red-fleshed grape, which is of great significance for molecular breeding of red-fleshed table grapes.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas , Regiões Promotoras Genéticas , Fatores de Transcrição , Vitis , Vitis/genética , Vitis/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Antocianinas/genética , Pigmentação/genética , Frutas/genética , Frutas/metabolismo , Alelos
9.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732247

RESUMO

To explore the impact of shade treatment on grape berries, 'Marselan' grape berries were bagged under different light transmission rates (100% (CK), 75% (A), 50% (B), 25% (C), 0% (D)). It was observed that this treatment delayed the ripening of the grape berries. The individual weight of the grape berries, as well as the content of fructose, glucose, soluble sugars, and organic acids in the berries, was measured at 90, 100, and 125 days after flowering (DAF90, DAF100, DAF125). The results revealed that shading treatment reduced the sugar content in grape berries; the levels of fructose and glucose were higher in the CK treatment compared to the other treatments, and they increased with the duration of the shading treatment. Conversely, the sucrose content exhibited the opposite trend. Additionally, as the weight of the grape berries increased, the content of soluble solids and soluble sugars in the berries also increased, while the titratable acidity decreased. Furthermore, 16 differentially expressed genes (DEGs) were identified in the photosynthesis-antenna protein pathway from the transcriptome sequencing data. Correlation analysis revealed that the expression levels of genes VIT_08s0007g02190 (Lhcb4) and VIT_15s0024g00040 (Lhca3) were positively correlated with sugar content in the berries at DAF100, but negatively correlated at DAF125. qRT-PCR results confirmed the correlation analysis. This indicates that shading grape clusters inhibits the expression of genes in the photosynthesis-antenna protein pathway in the grape berries, leading to a decrease in sugar content. This finding contributes to a deeper understanding of the impact mechanisms of grape cluster shading on berry quality, providing important scientific grounds for improving grape berry quality.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Fotossíntese , Proteínas de Plantas , Açúcares , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efeitos da radiação , Frutas/genética , Frutas/metabolismo , Frutas/efeitos da radiação , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares/metabolismo , Luz
10.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731502

RESUMO

Vacuum saccharification significantly affected the flavor and color of preserved French plums. However, the correlation between color, flavor, and metabolites remains unclear. Metabolites contribute significantly to enhancing the taste and overall quality of preserved French plums. This study aimed to investigate the distinctive metabolites in samples from various stages of the processing of preserved French plums. The PCF4 exhibited the highest appearance, overall taste, and chroma. Furthermore, utilizing UPLC and ESI-Q TRAP-MS/MS, a comprehensive examination of the metabolome in the processing of preserved French plums was conducted. A total of 1776 metabolites were analyzed. Using WGCNA, we explored metabolites associated with sensory features through 10 modules. Based on this, building the correlation of modules and objective quantification metrics yielded three key modules. After screening for 151 differentiated metabolites, amino acids, and their derivatives, phenolic acids, flavonoids, organic acids, and other groups were identified as key differentiators. The response of differential metabolites to stress influenced the taste and color properties of preserved prunes. Based on these analyses, six important metabolic pathways were identified. This study identified changes in the sensory properties of sugar-stained preserved prunes and their association with metabolite composition, providing a scientific basis for future work to improve the quality of prune processing.


Assuntos
Metabolômica , Metabolômica/métodos , Paladar , Espectrometria de Massas em Tandem/métodos , Metaboloma , Cromatografia Líquida de Alta Pressão/métodos , Frutas/química , Frutas/metabolismo
11.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732182

RESUMO

Anthocyanins are water-soluble flavonoid pigments that play a crucial role in plant growth and metabolism. They serve as attractants for animals by providing plants with red, blue, and purple pigments, facilitating pollination and seed dispersal. The fruits of solanaceous plants, tomato (Solanum lycopersicum) and eggplant (Solanum melongena), primarily accumulate anthocyanins in the fruit peels, while the ripe fruits of Atropa belladonna (Ab) have a dark purple flesh due to anthocyanin accumulation. In this study, an R2R3-MYB transcription factor (TF), AbMYB1, was identified through association analysis of gene expression and anthocyanin accumulation in different tissues of A. belladonna. Its role in regulating anthocyanin biosynthesis was investigated through gene overexpression and RNA interference (RNAi). Overexpression of AbMYB1 significantly enhanced the expression of anthocyanin biosynthesis genes, such as AbF3H, AbF3'5'H, AbDFR, AbANS, and Ab3GT, leading to increased anthocyanin production. Conversely, RNAi-mediated suppression of AbMYB1 resulted in decreased expression of most anthocyanin biosynthesis genes, as well as reduced anthocyanin contents in A. belladonna. Overall, AbMYB1 was identified as a fruit-expressed R2R3-MYB TF that positively regulated anthocyanin biosynthesis in A. belladonna. This study provides valuable insights into the regulation of anthocyanin biosynthesis in Solanaceae plants, laying the foundation for understanding anthocyanin accumulation especially in the whole fruits of solanaceous plants.


Assuntos
Antocianinas , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Antocianinas/biossíntese , Antocianinas/metabolismo , Frutas/metabolismo , Frutas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/genética , Interferência de RNA
12.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673847

RESUMO

Anthocyanins are ubiquitous pigments derived from the phenylpropanoid compound conferring red, purple and blue pigmentations to various organs of horticultural crops. The metabolism of flavonoids in the cytoplasm leads to the biosynthesis of anthocyanin, which is then conveyed to the vacuoles for storage by plant glutathione S-transferases (GST). Although GST is important for transporting anthocyanin in plants, its identification and characterization in eggplant (Solanum melongena L.) remains obscure. In this study, a total of 40 GST genes were obtained in the eggplant genome and classified into seven distinct chief groups based on the evolutionary relationship with Arabidopsis thaliana GST genes. The seven subgroups of eggplant GST genes (SmGST) comprise: dehydroascorbate reductase (DHAR), elongation factor 1Bγ (EF1Bγ), Zeta (Z), Theta(T), Phi(F), Tau(U) and tetra-chlorohydroquinone dehalogenase TCHQD. The 40 GST genes were unevenly distributed throughout the 10 eggplant chromosomes and were predominantly located in the cytoplasm. Structural gene analysis showed similarity in exons and introns within a GST subgroup. Six pairs of both tandem and segmental duplications have been identified, making them the primary factors contributing to the evolution of the SmGST. Light-related cis-regulatory elements were dominant, followed by stress-related and hormone-responsive elements. The syntenic analysis of orthologous genes indicated that eggplant, Arabidopsis and tomato (Solanum lycopersicum L.) counterpart genes seemed to be derived from a common ancestry. RNA-seq data analyses showed high expression of 13 SmGST genes with SmGSTF1 being glaringly upregulated on the peel of purple eggplant but showed no or low expression on eggplant varieties with green or white peel. Subsequently, SmGSTF1 had a strong positive correlation with anthocyanin content and with anthocyanin structural genes like SmUFGT (r = 0.9), SmANS (r = 0.85), SmF3H (r = 0.82) and SmCHI2 (r = 0.7). The suppression of SmGSTF1 through virus-induced gene silencing (VIGs) resulted in a decrease in anthocyanin on the infiltrated fruit surface. In a nutshell, results from this study established that SmGSTF1 has the potential of anthocyanin accumulation in eggplant peel and offers viable candidate genes for the improvement of purple eggplant. The comprehensive studies of the SmGST family genes provide the foundation for deciphering molecular investigations into the functional analysis of SmGST genes in eggplant.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Glutationa Transferase , Solanum melongena , Antocianinas/metabolismo , Antocianinas/biossíntese , Arabidopsis/genética , Arabidopsis/metabolismo , Cromossomos de Plantas/genética , Frutas/genética , Frutas/metabolismo , Genoma de Planta , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum melongena/enzimologia , Solanum melongena/genética , Solanum melongena/metabolismo
13.
Plant Physiol Biochem ; 210: 108568, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581806

RESUMO

Postharvest physiological deterioration (PPD) reduces the availability and economic value of fresh produces, resulting in the waste of agricultural products and becoming a worldwide problem. Therefore, many studies have been carried out at the anatomical structural, physiological and biochemical levels and molecular levels of PPD of fresh produces to seek ways to manage the postharvest quality of fresh produce. The cell wall is the outermost structure of a plant cell and as such represents the first barrier to prevent external microorganisms and other injuries. Many studies on postharvest quality of crop storage organs relate to changes in plant cell wall-related components. Indeed, these studies evidence the non-negligible role of the plant cell wall in postharvest storage ability. However, the relationship between cell wall metabolism and postharvest deterioration of fresh produces has not been well summarized. In this review, we summarize the structural changes of cell walls in different types of PPD, metabolic changes, and the possible molecular mechanism regulating cell wall metabolism in PPD of fresh produce. This review provides a basis for further research on delaying the occurrence of PPD of fresh produce.


Assuntos
Parede Celular , Parede Celular/metabolismo , Frutas/metabolismo , Frutas/fisiologia
14.
Plant Physiol Biochem ; 210: 108621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604012

RESUMO

To enhance the postharvest quality of avocado (Persea americana Mill.) fruit, this study investigates alterations in cell wall metabolism and reactive oxygen species (ROS) metabolism during near-freezing temperature (NFT) storage, and explores their impact on fruit softening. The fruit was stored at 25 °C, 5 °C, 2 °C, and NFT, respectively. NFT storage retarded firmness loss and chilling injury in comparison with 25 °C, 5 °C, and 2 °C. NFT storage delayed the decrease of ionic-soluble pectin (ISP) and cellulose (CLL) contents by suppressing cell wall degradation enzyme activities. Correlation analysis showed that cell wall degradation enzyme activities were positively correlated to rates of ethylene release and respiration. Moreover, NFT storage maintained higher levels of DPPH and ABTS scavenging abilities, activities of superoxide dismutase, peroxidase, and catalase, as well as ascorbate-glutathione cycle (ascorbic acid, glutathione, glutathione disulfide, ascorbate peroxidase, cycle-related enzymes), thereby inhibited the increase of ROS content, malondialdehyde content, and cell membrane permeability. Fruit firmness and chilling injury were correlated with the contents of hydrogen (H2O2), superoxide anion (O2.-), ISP, and CLL. These results suggested that NFT could suppress fruit softening and chilling injury by inhibiting cell wall degradation through delaying respiration and ethylene production and suppressing ROS production via activation of antioxidant systems, thereby maintaining quality and prolonged storage life during avocado fruit storage.


Assuntos
Parede Celular , Frutas , Persea , Espécies Reativas de Oxigênio , Persea/metabolismo , Parede Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Frutas/metabolismo , Armazenamento de Alimentos/métodos , Temperatura Baixa , Congelamento , Etilenos/metabolismo , Pectinas/metabolismo , Celulose/metabolismo
15.
Plant Physiol Biochem ; 210: 108611, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615439

RESUMO

A high content of anthocyanin in blueberry (Vaccinium corymbosum) is an important indicator to evaluate fruit quality. Abscisic acid (ABA) can promote anthocyanin biosynthesis, but since the molecular mechanism is unclear, clarifying the mechanism will improve for blueberry breeding and cultivation regulation. VcbZIP55 regulating anthocyanin synthesis in blueberry were screened and mined using the published Isoform-sequencing, RNA-Seq and qRT-PCR at different fruit developmental stages. Blueberry genetic transformation and transgenic experiments confirmed that VcbZIP55 could promote anthocyanin biosynthesis in blueberry adventitious buds, tobacco leaves, blueberry leaves and blueberry fruit. VcbZIP55 responded to ABA signals and its expression was upregulated in blueberry fruit. In addition, using VcbZIP55 for Yeast one hybrid assay (Y1H) and transient expression in tobacco leaves demonstrated an interaction between VcbZIP55 and a G-Box motif on the VcMYB1 promoter to activate the expression of VcMYB1. This study will lay the theoretical foundation for the molecular mechanisms of phytohormone regulation responsible for anthocyanin synthesis and provide theoretical support for blueberry quality improvement.


Assuntos
Ácido Abscísico , Antocianinas , Mirtilos Azuis (Planta) , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Antocianinas/biossíntese , Antocianinas/metabolismo , Ácido Abscísico/metabolismo , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Frutas/metabolismo , Frutas/genética
16.
Food Funct ; 15(9): 4724-4740, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38618933

RESUMO

The prevalence and socioeconomic impact of metabolic diseases is rapidly growing. The limited availability of effective and affordable treatments has fuelled interest in the therapeutic potential of natural compounds as they occur in selected food sources. These compounds might help to better manage the current problems of treatment availability, affordability, and adverse effects that, in combination, limit treatment duration and efficacy at present. Specifically, berries garnered interest given a strong epidemiological link between their consumption and improved metabolic functions, making the analysis of their phytochemical composition and the identification and characterization of biologically active ingredients an emerging area of research. In this regard, the present review focuses on the South American maqui berry Aristotelia chilensis, which has been extensively used by the indigenous Mapuche population for generations to treat a variety of disease conditions. An overview of the maqui plant composition precedes a review of pre-clinical and clinical studies that investigated the effects of maqui berries and their major components on metabolic homeostasis. The final part of the review highlights possible technologies to conserve maqui berry structural and functional integrity during passage through the small intestine, ultimately aiming to augment their systemic and luminal bioavailability and biological effects. The integration of the various aspects discussed herein can assist in the development of effective maqui-based therapies to benefit the growing population of metabolically compromised patients.


Assuntos
Frutas , Homeostase , Frutas/química , Frutas/metabolismo , Humanos , Animais , Elaeocarpaceae/química , Extratos Vegetais/farmacologia
17.
Food Chem ; 448: 139170, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579558

RESUMO

Current nanozyme applications rely heavily on peroxidase-like nanozymes and are limited to a specific temperature range, despite notable advancements in nanozyme development. In this work, we designed novel Mn-based metal organic frameworks (UoZ-4), with excellent oxidase mimic activity towards common substrates. UoZ-4 showed excellent oxidase-like activity (with Km 0.072 mM) in a wide range of temperature, from 10 °C to 100 °C with almost no activity loss, making it a very strong candidate for psychrophilic and thermophilic applications. Ascorbic acid, cysteine, and glutathione could quench the appearance of the blue color of oxTMB, led us to design a visual-based sensing platform for detection of total antioxidant capacity (TAC) in cold, mild and hot conditions. The visual mode successfully assessed TAC in citrus fruits with satisfactory recovery and precisions. Cold/hot adapted and magnetic property will broaden the horizon of nanozyme applications and breaks the notion of the temperature limitation of enzymes.


Assuntos
Antioxidantes , Citrus , Frutas , Manganês , Estruturas Metalorgânicas , Oxirredutases , Temperatura , Citrus/química , Citrus/metabolismo , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/análise , Frutas/química , Frutas/metabolismo , Manganês/metabolismo , Manganês/química , Manganês/análise , Estruturas Metalorgânicas/química , Oxirredutases/metabolismo , Oxirredutases/química
18.
Plant Mol Biol ; 114(3): 38, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605193

RESUMO

The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.


Assuntos
Frutas , Vitis , Frutas/genética , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Perfilação da Expressão Gênica , Parede Celular/metabolismo , Estresse Fisiológico
19.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674082

RESUMO

Leucine-rich repeat receptor-like proteins (LRR-RLPs), a major group of receptor-like proteins in plants, have diverse functions in plant physiology, including growth, development, signal transduction, and stress responses. Despite their importance, the specific roles of kiwifruit LRR-RLPs in response to biotic and abiotic stresses remain poorly understood. In this study, we performed family identification, characterization, transcriptome data analysis, and differential gene expression analysis of kiwifruit LRR-RLPs. We identified totals of 101, 164, and 105 LRR-RLPs in Actinidia chinensis 'Hongyang', Actinidia eriantha 'Huate', and Actinidia chinensis 'Red5', respectively. Synteny analysis revealed that the expansion of kiwifruit LRR-RLPs was primarily attributed to segmental duplication events. Based on RNA-seq data from pathogen-infected kiwifruits, we identified specific LRR-RLP genes potentially involved in different stages of pathogen infection. Additionally, we observed the potential involvement of kiwifruit LRR-RLPs in abiotic stress responses, with upstream transcription factors possibly regulating their expression. Furthermore, protein interaction network analysis unveiled the participation of kiwifruit LRR-RLP in the regulatory network of abiotic stress responses. These findings highlight the crucial roles of LRR-RLPs in mediating both biotic and abiotic stress responses in kiwifruit, offering valuable insights for the breeding of stress-resistant kiwifruit varieties.


Assuntos
Actinidia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Actinidia/genética , Actinidia/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Perfilação da Expressão Gênica , Proteínas de Repetições Ricas em Leucina , Frutas/genética , Frutas/metabolismo , Transcriptoma , Mapas de Interação de Proteínas/genética , Sintenia
20.
Physiol Plant ; 176(2): e14278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644530

RESUMO

Harvest maturity significantly affects the quality of apple fruit in post-harvest storage process. Although the regulatory mechanisms underlying fruit ripening have been studied, the associated epigenetic modifications remain unclear. Thus, we compared the DNA methylation changes and the transcriptional responses of mature fruit (MF) and immature fruit (NF). There were significant correlations between DNA methylation and gene expression. Moreover, the sugar contents (sucrose, glucose, and fructose) were higher in MF than in NF, whereas the opposite pattern was detected for the starch content. The expression-level differences were due to DNA methylations and ultimately resulted in diverse fruit textures and ripeness. Furthermore, the higher ethylene, auxin, and abscisic acid levels in MF than in NF, which influenced the fruit texture and ripening, were associated with multiple differentially expressed genes in hormone synthesis, signaling, and response pathways (ACS, ACO, ZEP, NCED, and ABA2) that were regulated by DNA methylations. Multiple transcription factor genes involved in regulating fruit ripening and quality via changes in DNA methylation were identified, including MIKCC-type MADS-box genes and fruit ripening-related genes (NAP, SPL, WRKY, and NAC genes). These findings reflect the diversity in the epigenetic regulation of gene expression and may be relevant for elucidating the epigenetic regulatory mechanism underlying the ripening and quality of apple fruit with differing harvest maturity.


Assuntos
Metilação de DNA , Frutas , Regulação da Expressão Gênica de Plantas , Malus , Malus/genética , Malus/crescimento & desenvolvimento , Malus/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Metilação de DNA/genética , Epigênese Genética , Reguladores de Crescimento de Plantas/metabolismo , Epigenômica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA