Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 8043-8058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130686

RESUMO

Introduction: Rhabdomyolysis, as an acute stage of myopathy, causes kidney damage. It is known that this pathology is caused by the accumulation of muscle breakdown products and is associated with oxidative stress. Therefore, the present study evaluated the effect of intraperitoneal administration (dose 1 mg/kg) of water-soluble C60 fullerenes, as powerful antioxidants, on the development of rat kidney damage due to rhabdomyolysis caused by mechanical trauma of the muscle soleus of different severity (crush syndrome lasting 1 min under a pressure of 2.5, 3.5, and 4.5 kg/cm2, respectively). Methods: Using tensometry, biochemical and histopathological analyses, the biomechanical parameters of muscle soleus contraction (contraction force and integrated muscle power), biochemical indicators of rat blood (concentrations of creatinine, creatine phosphokinase, urea and hydrogen peroxide, catalase and superoxide dismutase activity), glomerular filtration rate and fractional sodium excretion value, as well as pathohistological and morphometric features of muscle and kidney damages in rats on days 1, 3, 6 and 9 after the initiation of the injury were studied. Results: Positive changes in biomechanical and biochemical parameters were found during the experiment by about 27-30 ± 2%, as well as a decrease in pathohistological and morphometric features of muscle and kidney damages in rats treated with water-soluble C60 fullerenes. Conclusion: These findings indicate the potential application of water-soluble C60 fullerenes in the treatment of pathological conditions of the muscular system caused by rhabdomyolysis and the associated oxidative stress.


Assuntos
Injúria Renal Aguda , Fulerenos , Músculo Esquelético , Ratos Wistar , Rabdomiólise , Animais , Fulerenos/química , Fulerenos/farmacologia , Fulerenos/administração & dosagem , Masculino , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/tratamento farmacológico , Músculo Esquelético/efeitos dos fármacos , Ratos , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Rim/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos
2.
Biointerphases ; 19(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39007691

RESUMO

Retinal degenerative diseases, which can lead to photoreceptor cell apoptosis, have now become the leading irreversible cause of blindness worldwide. In this study, we developed an organic photovoltaic biomaterial for artificial retinas, enabling neural cells to detect photoelectric stimulation. The biomaterial was prepared using a conjugated polymer donor, PCE-10, and a non-fullerene receptor, Y6, both known for their strong near-infrared light absorption capabilities. Additionally, a fullerene receptor, PC61BM, was incorporated, which possesses the ability to absorb reactive oxygen species. We conducted a comprehensive investigation into the microstructure, photovoltaic properties, and photothermal effects of this three-component photovoltaic biomaterial. Furthermore, we employed Rat adrenal pheochromocytoma cells (PC-12) as a standard neural cell model to evaluate the in vitro photoelectric stimulation effect of this photovoltaic biomaterial. The results demonstrate that the photovoltaic biomaterial, enriched with fullerene derivatives, can induce intracellular calcium influx in PC-12 cells under 630 nm (red light) and 780 nm (near-infrared) laser irradiation. Moreover, there were lower levels of oxidative stress and higher levels of mitochondrial activity compared to the non-PC61BM group. This photovoltaic biomaterial proves to be an ideal substrate for near-infrared photoelectrical stimulation of neural cells and holds promise for restoring visual function in patients with photoreceptor apoptosis.


Assuntos
Materiais Biocompatíveis , Fulerenos , Raios Infravermelhos , Animais , Fulerenos/química , Fulerenos/farmacologia , Ratos , Materiais Biocompatíveis/química , Células PC12 , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Cálcio/metabolismo , Cálcio/química
3.
Viruses ; 16(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066201

RESUMO

In the fullerene cone HIV-1 capsid, the central channels of the hexameric and pentameric capsomers each contain a ring of arginine (Arg18) residues that perform essential roles in capsid assembly and function. In both the hexamer and pentamer, the Arg18 rings coordinate inositol hexakisphosphate, an assembly and stability factor for the capsid. Previously, it was shown that amino-acid substitutions of Arg18 can promote pentamer incorporation into capsid-like particles (CLPs) that spontaneously assemble in vitro under high-salt conditions. Here, we show that these Arg18 mutant CLPs contain a non-canonical pentamer conformation and distinct lattice characteristics that do not follow the fullerene geometry of retroviral capsids. The Arg18 mutant pentamers resemble the hexamer in intra-oligomeric contacts and form a unique tetramer-of-pentamers that allows for incorporation of an octahedral vertex with a cross-shaped opening in the hexagonal capsid lattice. Our findings highlight an unexpected degree of structural plasticity in HIV-1 capsid assembly.


Assuntos
Proteínas do Capsídeo , Capsídeo , Fulerenos , HIV-1 , Montagem de Vírus , Humanos , Substituição de Aminoácidos , Arginina/química , Capsídeo/metabolismo , Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Fulerenos/química , HIV-1/genética , HIV-1/fisiologia , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
4.
J Am Chem Soc ; 146(31): 21677-21688, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39042557

RESUMO

Achieving high guest loading and multiguest-binding capacity holds crucial significance for advancement in separation, catalysis, and drug delivery with synthetic receptors; however, it remains a challenging bottleneck in characterization of high-stoichiometry guest-binding events. Herein, we describe a large-sized coordination cage (MOC-70-Zn8Pd6) possessing 12 peripheral pockets capable of accommodating multiple guests and a high-resolution electrospray ionization mass spectrometry (HR-ESI-MS)-based method to understand the solution host-guest chemistry. A diverse range of bulky guests, varying from drug molecules to rigid fullerenes as well as flexible host molecules of crown ethers and calixarenes, could be loaded into open pockets with high capacities. Notably, these hollow cage pockets provide multisites to capture different guests, showing heteroguest coloading behavior to capture binary, ternary, or even quaternary guests. Moreover, a pair of commercially applied drugs for the combination therapy of chronic lymphocytic leukemia (CLL) has been tested, highlighting its potential in multidrug delivery for combined treatment.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Éteres de Coroa/química , Calixarenos/química , Paládio/química , Zinco/química , Fulerenos/química , Estrutura Molecular
5.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998903

RESUMO

The liver is the main organ responsible for the metabolism of ethanol, which suffers significantly as a result of tissue damage due to oxidative stress. It is known that C60 fullerenes are able to efficiently capture and inactivate reactive oxygen species in in vivo and in vitro systems. Therefore, the purpose of this study is to determine whether water-soluble C60 fullerene reduces the level of pathological process development in the liver of rats induced by chronic alcohol intoxication for 3, 6, and 9 months, depending on the daily dose (oral administration; 0.5, 1, and 2 mg/kg) of C60 fullerene throughout the experiment. In this context, the morphology of the C60 fullerene nanoparticles in aqueous solution was studied using atomic force microscopy. Such biochemical parameters of experimental animal blood as ALT (alanine aminotransferase), AST (aspartate aminotransferase), GGT (gamma-glutamyl transferase) and ALP (alkaline phosphatase) enzyme activities, CDT (carbohydrate-deficient transferrin) level, values of pro-antioxidant balance indicators (concentrations of H2O2 (hydrogen peroxide) and GSH (reduced glutathione), activities of CAT (catalase), SOD (superoxide dismutase) and GPx (selenium-dependent glutathione peroxidase)), and pathohistological and morphometric features of liver damage were analyzed. The most significant positive change in the studied biochemical parameters (up to 29 ± 2% relative to the control), as markers of liver damage, was recorded at the combined administration of alcohol (40% ethanol in drinking water) and water-soluble C60 fullerenes in the optimal dose of 1 mg/kg, which was confirmed by small histopathological changes in the liver of rats. The obtained results prove the prospective use of C60 fullerenes as powerful antioxidants for the mitigation of pathological conditions of the liver arising under prolonged alcohol intoxication.


Assuntos
Fulerenos , Fígado , Estresse Oxidativo , Animais , Fulerenos/farmacologia , Ratos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Intoxicação Alcoólica/tratamento farmacológico , Intoxicação Alcoólica/metabolismo , Ratos Wistar , Nanopartículas/química , Etanol/toxicidade
6.
Plant Physiol Biochem ; 214: 108915, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972240

RESUMO

Copper (Cu) toxicity in crops is a result of excessive release of Cu into environment. Little is known about mitigation of Cu toxicity through the application of carbon-based nanomaterials including water-soluble fullerene C60 derivatives. Two derivatives of fullerene were examined: polyhydroxylated C60 (fullerenol) and arginine C60 derivative. In order to study the response of Cu-stressed plants (Cucumis sativus L.) to these nanomaterials, metabolomics analysis by gas chromatography-mass spectrometry (GC-MS) was performed. Excess Cu (15 µM) caused substantial increase in xylem sap Cu, retarded dry biomass and leaf chlorosis of hydroponically grown cucumber. In Cu-stressed leaves, metabolomes was disturbed towards suppression metabolism of nitrogen (N) compounds and activation metabolism of hexoses. Also, upregulation of some metabolites involving in antioxidant defense system, such as ascorbic acid, tocopherol and ferulic acid, was occurred in Cu-stressed leaves. Hydroponically added fullerene adducts decreased the xylem sap Cu and alleviated Cu toxicity with effectiveness has been most pronounced for arginine C60 derivative. Metabolic responses of plants subjected to high Cu with fullerene derivatives were opposite to that observed under Cu alone. Fatty acids up-regulation (linolenic acid) and antioxidant molecules (tocopherol) down-regulation might indicate that arginine C60 adduct can alleviate Cu induced oxidative stress. Although fullerenol slightly improved cucumber growth, its effect on metabolic state of Cu-stressed plants was not statistically significant. We suggest that tested fullerene C60 adducts have a potential to prevent Cu toxicity in plants through a mechanism associated with their capability to restrict xylem transport of Cu from roots to shoot, and to maintain antioxidative properties of plants.


Assuntos
Cobre , Cucumis sativus , Fulerenos , Fulerenos/farmacologia , Fulerenos/metabolismo , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Cobre/toxicidade , Cobre/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo
7.
Sci Total Environ ; 947: 174765, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004362

RESUMO

Widely-used C60 fullerene nanoparticles (C60) result in their release into the aquatic environment, which may affect the distribution and toxicity of pollutants such as arsenic (As), to aquatic organism. In this study, arsenate (As(V)) accumulation, speciation and subcellular distribution was determined in Danio rerio (zebrafish) intestine, head and muscle tissues in the presence of C60. Meanwhile we compared how single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO) and graphene (GN) nanoparticles alter the behaviors of As(V). Results showed that C60 significantly inhibited As accumulation and toxicity in D. rerio, due to a decrease in total As and monomethylarsonic acid (MMA) and As(V) species concentrations, a lower relative distribution in the metal-sensitive fraction (MSF). It was attributed that C60 may coat As(V) ion channels and consequently, affect the secretion of digestive enzymes in the gut, favoring As excretion and inhibiting As methylation. Similarly, MWCNTs reduced the species concentration of MMA and As(V) in the intestines, low GSH (glutathione) contents in the intestine. Due to the disparity of other carbon-based nanomaterial morphologies, SWCNTs, GO and GN exhibited the various effects on the toxicity of As(V). In addition, the possible pathway of arsenobetaine (AsB) biosynthesis included migration from the intestine to muscle in D. rerio, with the precursor of AsB likely to be 2-dimethylarsinylacetic acid (DMAA). The results of this study suggest that C60 is beneficial for controlling As(V) pollution and reducing the impact of As(V) biogeochemical cycles throughout the ecosystem.


Assuntos
Arseniatos , Fulerenos , Nanopartículas , Poluentes Químicos da Água , Peixe-Zebra , Fulerenos/toxicidade , Animais , Arseniatos/toxicidade , Poluentes Químicos da Água/toxicidade , Nanopartículas/toxicidade , Nanotubos de Carbono/toxicidade , Grafite/toxicidade
8.
Talanta ; 277: 126397, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38865956

RESUMO

Graphene-based nanomaterials have attracted significant attention for their potentials in biomedical and biotechnology applications in recent years, owing to the outstanding physical and chemical properties. However, the interaction mechanism and impact on biological activity of macro/micro biomolecules still require more concerns and further research in order to enhance their applicability in biosensors, etc. Herein, an integrated method has been developed to predict the protein bioactivity performance when interacting with nanomaterials for protein-based biosensor. Molecular dynamics simulation and molecular docking technique were consolidated to investigate several nanomaterials: C60 fullerene, single-walled carbon nanotube, pristine graphene and graphene oxide, and their effect when interacting with protein. The adsorption behavior, secondary structure changes and protein bioactivity changes were simulated, and the results of protein activity simulation were verified in combination with atomic force spectrum, circular dichroism spectrum fluorescence and electrochemical experiments. The best quantification alignment between bioactivity obtained by simulation and experiment measurements was further explored. The two proteins, RNase A and Exonuclease III, were regarded as analysis model for the proof of concept, and the prediction accuracy of protein bioactivity could reach up to 0.98. The study shows an easy-to-operate and systematic approach to predict the effects of graphene-based nanomaterials on protein bioactivity, which holds guiding significance for the design of protein-related biosensors. In addition, the proposed prediction model is not limited to carbon-based nanomaterials and can be extended to other types of nanomaterials. This facilitates the rapid, simple, and low-cost selection of efficient and biosafe nanomaterials candidates for protein-related applications in biosensing and biomedical systems.


Assuntos
Técnicas Biossensoriais , Fulerenos , Grafite , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nanoestruturas , Nanotubos de Carbono , Grafite/química , Técnicas Biossensoriais/métodos , Nanotubos de Carbono/química , Fulerenos/química , Nanoestruturas/química , Proteínas/química , Proteínas/análise , Proteínas/metabolismo , Adsorção , Simulação por Computador
9.
Int J Pharm ; 660: 124313, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38857663

RESUMO

Nanomaterials have become increasingly important over time as research technology has enabled the progressively precise study of materials at the nanoscale. Developing an understanding of how nanomaterials are produced and tuned allows scientists to utilise their unique properties for a variety of applications, many of which are already incorporated into commercial products. Fullerenol nanoparticles C60(OH)n, 2 ≤ n ≤ 44 are fullerene derivatives and are produced synthetically. They have good biocompatibility, low toxicity and no immunological reactivity. In addition, their nanometre size, large surface area to volume ratio, ability to penetrate cell membranes, adaptable surface that can be easily modified with different functional groups, drug release, high physical stability in biological media, ability to remove free radicals, magnetic and optical properties make them desirable candidates for various applications. This review comprehensively summarises the various applications of fullerenol nanoparticles in different scientific fields such as nanobiomedicine, including antibacterial and antiviral agents, and provides an overview of their use in agriculture and biosensor technology. Recommendations are also made for future research that would further elucidate the mechanisms of fullerenols actions.


Assuntos
Fulerenos , Nanopartículas , Fulerenos/química , Nanopartículas/química , Humanos , Animais , Técnicas Biossensoriais/métodos , Nanomedicina/métodos , Antivirais/administração & dosagem , Antivirais/química , Antivirais/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia
10.
ACS Nano ; 18(24): 15416-15431, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38840269

RESUMO

The accumulation of amyloid-ß (Aß) peptides is a major hallmark of Alzheimer's disease (AD) and plays a crucial role in its pathogenesis. Particularly, the structured oligomeric species rich in ß-sheet formations were implicated in neuronal organelle damage. Addressing this formidable challenge requires identifying candidates capable of inhibiting peptide aggregation or disaggregating preformed oligomers for effective antiaggregation-based AD therapy. Here, we present a dual-functional nanoinhibitor meticulously designed to target the aggregation driving force and amyloid fibril spatial structure. Leveraging the exceptional structural stability and facile tailoring capability of endohedral metallofullerene Gd@C82, we introduce desired hydrogen-binding sites and charged groups, which are abundant on its surface for specific designs. Impressively, these designs endow the resultant functionalized-Gd@C82 nanoparticles (f-Gd@C82 NPs) with high capability of redirecting peptide self-assembly toward disordered, off-pathway species, obstructing the early growth of protofibrils, and disaggregating the preformed well-ordered protofibrils or even mature Aß fibrils. This results in considerable alleviation of Aß peptide-induced neuronal cytotoxicity, rescuing neuronal death and synaptic loss in primary neuron models. Notably, these modifications significantly improved the dispersibility of f-Gd@C82 NPs, thus substantially enhancing its bioavailability. Moreover, f-Gd@C82 NPs demonstrate excellent cytocompatibility with various cell lines and possess the ability to penetrate the blood-brain barrier in mice. Large-scale molecular dynamics simulations illuminate the inhibition and disaggregation mechanisms. Our design successfully overcomes the limitations of other nanocandidates, which often overly rely on hydrophobic interactions or photothermal conversion properties, and offers a viable direction for developing anti-AD agents through the inhibition and even reversal of Aß aggregation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Neurônios , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Humanos , Gadolínio/química , Gadolínio/farmacologia , Nanopartículas/química , Fulerenos/química , Fulerenos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Camundongos , Desenho de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Ratos
11.
Langmuir ; 40(27): 13844-13859, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38916256

RESUMO

Fullerene-based biosensors have received great attention due to their unique electronic properties that allow them to transduce electrical signals by accepting electrons from amino acids. Babies with MSUD (maple syrup urine disease) are unable to break down amino acids such as l-leucine, and excess levels of the l-leucine are harmful. Therefore, sensing of l-leucine is foremost required. We aim to investigate the interaction tendencies of size-variable fullerenes (CX; X = 24, 36, 50, and 70) toward l-leucine (LEU) using density functional theory (DFT-D3) and classical molecular dynamics (MD) simulation. The C24 fullerene shows the highest affinity of the LEU biomolecule in the gas phase. Smaller fullerenes (C24 and C36) show stronger interactions with leucine due to their higher curvature in water environments. Moreover, recovery times in the ranges of 1010 and 104 s make it a viable candidate for the isolation application of LEU from the biological system. Further, the interaction between LEU and fullerenes is in line with the natural bond order (NBO) analysis, Mulliken charge analysis, quantum theory atom in molecule (QTAIM) analysis, and reduced density gradient (RDG) analysis. At 310 K, employing the explicit water model in classical MD simulations, fullerenes C24 and C36 demonstrate notably elevated binding free energies (-24.946 kJ/mol) in relation to LEU, showcasing their potential as sensors for l-leucine. Here, we demonstrate that the smaller fullerene exhibits a higher potential for l-leucine sensors than the larger fullerene.


Assuntos
Teoria da Densidade Funcional , Fulerenos , Leucina , Simulação de Dinâmica Molecular , Fulerenos/química , Leucina/química , Tamanho da Partícula
12.
Int J Nanomedicine ; 19: 6035-6055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911505

RESUMO

Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects social interaction and communication and can cause stereotypic behavior. Fullerenols, a type of carbon nanomaterial known for its neuroprotective properties, have not yet been studied for their potential in treating ASD. We aimed to investigate its role in improving autistic behaviors in BTBR T+Itpr3tf/J (BTBR) mice and its underlying mechanism, which could provide reliable clues for future ASD treatments. Methods: Our research involved treating C57BL/6J (C57) and BTBR mice with either 0.9% NaCl or fullerenols (10 mg/kg) daily for one week at seven weeks of age. We then conducted ASD-related behavioral tests in the eighth week and used RNA-seq to screen for vital pathways in the mouse hippocampus. Additionally, we used real-time quantitative PCR (RT-qPCR) to verify related pathway genes and evaluated the number of stem cells in the hippocampal dentate gyrus (DG) by Immunofluorescence staining. Results: Our findings revealed that fullerenols treatment significantly improved the related ASD-like behaviors of BTBR mice, manifested by enhanced social ability and improved cognitive deficits. Immunofluorescence results showed that fullerenols treatment increased the number of DCX+ and SOX2+/GFAP+ cells in the DG region of BTBR mice, indicating an expanded neural progenitor cell (NPC) pool of BTBR mice. RNA-seq analysis of the mouse hippocampus showed that VEGFA was involved in the rescued hippocampal neurogenesis by fullerenols treatment. Conclusion: In conclusion, our findings suggest that fullerenols treatment improves ASD-like behavior in BTBR mice by upregulating VEGFA, making nanoparticle- fullerenols a promising drug for ASD treatment.


Assuntos
Transtorno do Espectro Autista , Disfunção Cognitiva , Modelos Animais de Doenças , Proteína Duplacortina , Fulerenos , Camundongos Endogâmicos C57BL , Animais , Camundongos , Fulerenos/farmacologia , Fulerenos/química , Transtorno do Espectro Autista/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Masculino , Comportamento Social , Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fármacos Neuroprotetores/farmacologia , Neurogênese/efeitos dos fármacos , Transtorno Autístico/tratamento farmacológico
13.
J Mol Model ; 30(6): 166, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744728

RESUMO

CONTEXT: Coronavirus (COVID-19) is a novel respiratory viral infection, causing a relatively large number of deaths especially in people who underly lung diseases such as chronic obstructive pulmonary and asthma, and humans are still suffering from the limited testing capacity. In this article, a solution is proposed for the detection of COVID-19 viral infections through the analysis of exhaled breath gasses, i.e., nitric oxide, a prominent biomarker released by respiratory epithelial, as a non-invasive and time-saving approach. Here, we designed a novel and low-cost N and P co-doped C60 fullerene-based breathalyzer for the detection of NO gas exhaled from the respiratory epithelial cells. This breathalyzer shows a quick response to the detection of NO gas by directly converting NO to NO2 without passing any energy barrier (0 kcal/mol activation energy). The recovery time of breathalyzer is very short (0.98 × 103 s), whereas it is highly selective for NO sensing in the mixture of CO2 and H2O gasses. The study provides an idea for the synthesis of low-cost (compared to previously reported Au atom decorated nanostructure and metal-based breathalyzer), efficient, and highly selective N and P co-doped C60 fullerene-based breathalyzer for COVID-19 detection. METHODS: The geometries of N and P-doped systems and gas molecules are simulated using spin-polarized density functional theory calculations.


Assuntos
Biomarcadores , COVID-19 , Fulerenos , Óxido Nítrico , Fulerenos/química , Humanos , Óxido Nítrico/análise , Óxido Nítrico/química , COVID-19/virologia , COVID-19/diagnóstico , Testes Respiratórios/métodos , SARS-CoV-2
14.
Biomed Pharmacother ; 176: 116828, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810406

RESUMO

BACKGROUND: Fullerenes C60 shows great potential for drug transport. C60 generates large amounts of singlet oxygen upon photoexcitation, which has a significant inhibitory effect on tumor cells, so the photosensitive properties of C60 were exploited for photodynamic therapy of tumors by laser irradiation. METHODS: In this study, C60-NH2 was functionalized by introducing amino acids on the surface of C60, coupled with 5-FU to obtain C60 amino acid-derived drugs (C60AF, C60GF, C60LF), and activated photosensitive drugs (C60AFL, C60GFL, C60LFL) were obtained by laser irradiation. The C60 nano-photosensitive drugs were characterized in various ways, and the efficacy and safety of C60 nano-photosensitive drugs were verified by cellular experiments and animal experiments. Bioinformatics methods and cellular experiments were used to confirm the photosensitive drug targets and verify the therapeutic targets with C60AF. RESULTS: Photosensitised tumor-targeted drug delivery effectively crosses cell membranes, leads to more apoptotic cell death, and provides higher anti-tumor efficacy and safety in vitro and in vivo colorectal cancer pharmacodynamic assays compared to free 5-FU.C60 photosensitized drug promotes tumor killing by inhibiting the colorectal cancer FLOR1 tumor protein target, with no significant toxic effects on normal organs. CONCLUSION: C60 photosensitized drug delivery systems are expected to improve efficacy and reduce side effects in the future treatment of colorectal cancer. Further and better development and design of drugs and vectors for colorectal cancer therapy.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Fulerenos , Sistemas de Liberação de Fármacos por Nanopartículas , Fármacos Fotossensibilizantes , Fulerenos/química , Sistemas de Liberação de Fármacos por Nanopartículas/síntese química , Sistemas de Liberação de Fármacos por Nanopartículas/normas , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Neoplasias Colorretais/tratamento farmacológico , Aminoácidos/química , Fluoruracila/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Células HT29 , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Animais , Camundongos , Luz
15.
Plant Physiol Biochem ; 212: 108753, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781637

RESUMO

Biocompounds are metabolites synthesized by plants, with clinically proven capacity in preventing and treating degenerative diseases in humans. Carbon-based nanomaterials (CNMs) are atomic structures that assume different hybridization and shape. Due to the reactive property, CNMs can induce the synthesis of metabolites, such as biocompounds in cells and various plant species, by generating reactive oxygen species (ROS). In response, plants positively or negatively regulate the expression of various families of genes and enzymes involved in physiological and metabolomic pathways of plants, such as carbon and nitrogen metabolism, which are directly involved in plant development and growth. Likewise, ROS can modulate the expression of enzymes and genes related to the adaptation of plants to stress, such as the glutathione ascorbate cycle, the shikimic acid, and phenylpropanoid pathways, from which the largest amount of biocompounds in plants are derived. This document exposes the ability of three CNMs (fullerene, graphene, and carbon nanotubes) to positively or negatively regulate the activity of enzymes and genes involved in various plant species' primary and secondary metabolism. The mechanism of action of CNMs on the production of biocompounds and the effect of the translocation of CNMs on the growth and content of primary metabolites in plants are described. Adverse effects of CNMs on plants, prospects, and possible risks involved are also discussed. The use of CNMs as inducers of biocompounds in plants could have implications and relevance for human health, crop quality, and plant adaptation and resistance to biotic and abiotic stress.


Assuntos
Nanoestruturas , Plantas , Nanoestruturas/química , Plantas/metabolismo , Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Carbono/metabolismo , Nanotubos de Carbono , Fulerenos/farmacologia , Fulerenos/metabolismo , Grafite
16.
J Mol Graph Model ; 131: 108792, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38797085

RESUMO

In the current quantum chemical study, indacenodithiophene donor core-based the end-capped alterations of the reference chromophore BTR drafted eight A2-A1-D-A1-A2 type small non-fullerene acceptors. All the computational simulations were executed under MPW1PW91/6-31G (d, p) level of DFT. The UV-Vis absorption, open circuit voltage, electron affinity, ionization potential, the density of states, reorganization energy, orbital analysis, and non-covalent interactions were studied and compared with BTR. Several molecules of our modeled series BT1-BT8 have shown distinctive features that are better than those of the BTR. The open circuit voltage (VOC) of BT5 has a favorable impact, allowing it to replace BTR in the field of organic solar cells. The charge carrier motilities for proposed molecules generated extraordinary findings when matched to the reference one (BTR). Further charge transmission was confirmed by creating the complex with a PM6 donor molecule. The remarkable dipole moment contributes to the formation of non-covalent bond interactions with chloroform, resulting in superior charge mobility. Based on these findings, it can be said that every tailored molecule has the potential to surpass chromophore molecule (BTR) in OSCs. So, all tailored molecules may enhance the efficiency of photovoltaic cells due to the involvement of potent terminal electron-capturing acceptor2 moieties. Considering these obtained results, these newly presented molecules can be regarded for developing efficient solar devices in the future.


Assuntos
Elétrons , Fulerenos , Energia Solar , Fulerenos/química , Modelos Moleculares , Teoria Quântica , Tiofenos/química , Estrutura Molecular
17.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791388

RESUMO

The use of targeted drug delivery systems, including those based on selective absorption by certain receptors on the surface of the target cell, can lead to a decrease in the minimum effective dose and the accompanying toxicity of the drug, as well as an increase in therapeutic efficacy. A fullerene C60 conjugate (FA-PVP-C60) with polyvinylpyrrolidone (PVP) as a biocompatible spacer and folic acid (FA) as a targeting ligand for tumor cells with increased expression of folate receptors (FR) was obtained. Using 13C NMR spectroscopy, FT-IR, UV-Vis spectrometry, fluorometry and thermal analysis, the formation of the conjugate was confirmed and the nature of the binding of its components was established. The average particle sizes of the conjugate in aqueous solutions and cell culture medium were determined using dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The FA-PVP-C60 showed antiradical activity against •DPPH, •OH and O2•-, but at the same time, it was shown to generate 1O2. It was found that the conjugate in the studied concentration range (up to 200 µg/mL) is non-toxic in vitro and does not affect the cell cycle. To confirm the ability of the conjugate to selectively accumulate through folate-mediated endocytosis, its uptake into cells was analyzed by flow cytometry and confocal microscopy. It was shown that the conjugate is less absorbed by A549 cells with low FR expression than by HeLa, which has a high level of expression of this receptor.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Fólico , Fulerenos , Povidona , Ácido Fólico/química , Ácido Fólico/farmacologia , Humanos , Povidona/química , Fulerenos/química , Fulerenos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Células A549 , Células HeLa , Tamanho da Partícula
18.
Free Radic Biol Med ; 220: 236-248, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704052

RESUMO

Alcoholic liver disease (ALD) is a common chronic redox disease caused by increased alcohol consumption. Abstinence is a major challenge for people with alcohol dependence, and approved drugs have limited efficacy. Therefore, this study aimed to explore a new treatment strategy for ALD using ferroferric oxide endohedral fullerenol (Fe3O4@C60(OH)n) in combination with static magnetic and electric fields (sBE). The primary hepatocytes of 8-9-week-old female BALB/c mice were used to evaluate the efficacy of the proposed combination treatment. A mouse chronic binge ethanol feeding model was established to determine the alleviatory effect of Fe3O4@C60(OH)n on liver injury under sBE exposure. Furthermore, the ability of Fe3O4@C60(OH)n to eliminate •OH was evaluated. Alcohol-induced hepatocyte and mitochondrial damage were reversed in vitro. Additionally, the combination therapy reduced liver damage, alleviated oxidative stress by improving antioxidant levels, and effectively inhibited liver lipid accumulation in animal experiments. Here, we used a combination of magnetic derivatives of fullerenol and sBE to further improve the ROS clearance rate, thereby alleviating ALD. The developed combination treatment may effectively improve alcohol-induced liver damage and maintain redox balance without apparent toxicity, thereby enhancing therapy aimed at ALD and other redox diseases.


Assuntos
Fulerenos , Hepatócitos , Hepatopatias Alcoólicas , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Fulerenos/farmacologia , Fulerenos/química , Fulerenos/uso terapêutico , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Feminino , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Estresse Oxidativo/efeitos dos fármacos , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/tratamento farmacológico , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Antioxidantes/farmacologia , Modelos Animais de Doenças , Humanos , Oxirredução/efeitos dos fármacos , Etanol/toxicidade
19.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731411

RESUMO

Fullerenes, particularly C60, exhibit unique properties that make them promising candidates for various applications, including drug delivery and nanomedicine. However, their interactions with biomolecules, especially proteins, remain not fully understood. This study implements both explicit and implicit C60 models into the UNRES coarse-grained force field, enabling the investigation of fullerene-protein interactions without the need for restraints to stabilize protein structures. The UNRES force field offers computational efficiency, allowing for longer timescale simulations while maintaining accuracy. Five model proteins were studied: FK506 binding protein, HIV-1 protease, intestinal fatty acid binding protein, PCB-binding protein, and hen egg-white lysozyme. Molecular dynamics simulations were performed with and without C60 to assess protein stability and investigate the impact of fullerene interactions. Analysis of contact probabilities reveals distinct interaction patterns for each protein. FK506 binding protein (1FKF) shows specific binding sites, while intestinal fatty acid binding protein (1ICN) and uteroglobin (1UTR) exhibit more generalized interactions. The explicit C60 model shows good agreement with all-atom simulations in predicting protein flexibility, the position of C60 in the binding pocket, and the estimation of effective binding energies. The integration of explicit and implicit C60 models into the UNRES force field, coupled with recent advances in coarse-grained modeling and multiscale approaches, provides a powerful framework for investigating protein-nanoparticle interactions at biologically relevant scales without the need to use restraints stabilizing the protein, thus allowing for large conformational changes to occur. These computational tools, in synergy with experimental techniques, can aid in understanding the mechanisms and consequences of nanoparticle-biomolecule interactions, guiding the design of nanomaterials for biomedical applications.


Assuntos
Fulerenos , Simulação de Dinâmica Molecular , Muramidase , Ligação Proteica , Fulerenos/química , Muramidase/química , Muramidase/metabolismo , Sítios de Ligação , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas/química , Proteínas/metabolismo , Protease de HIV
20.
Int J Biol Macromol ; 271(Pt 2): 132399, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754684

RESUMO

The neutrophil-derived peptide, indolicidin, and the sphere-shaped carbon nanoparticle, C60, are contemporary components capable of acting as bactericides and virucides, among others. Herein, the coarse-grained molecular dynamics simulation method was used to simulate the interactions of gram-negative bacteria, eukaryotes, human immunodeficiency virus (HIV), and SARS-COV-2 membrane models with indolicidin, C60s, and C60-indolicidin hybrids. Our results demonstrated that the carbon nanoparticle penetrated all membrane models, except the bacterial membrane, which remained impenetrable to both the peptide and C60. Additionally, the membrane thickness did not change significantly. The peptide floated above the membranes, with only the side chains of the tryptophan (Trp)-rich site slightly permeating the membranes. After achieving stable contact between the membrane models and nanoparticles, the infiltrated C60s interacted with the unsaturated tail of phospholipids. The density results showed that C60s stayed close to indolicidin and continued to interact with it even after penetration. Indolicidin, especially its Trp-rich site, exhibited more contact with the head and tail of neutral phospholipids compared to other phospholipids. Moreover, both particles interacted with different kinds of glycosphingolipids located in the eukaryote membrane. This investigation has the potential to advance our knowledge of novel approaches to combat antimicrobial resistance.


Assuntos
COVID-19 , Fulerenos , Simulação de Dinâmica Molecular , SARS-CoV-2 , Fulerenos/química , Fulerenos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Humanos , COVID-19/virologia , Membrana Celular/química , Membrana Celular/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , HIV/efeitos dos fármacos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA