Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.214
Filtrar
1.
J Environ Sci Health B ; 59(6): 341-349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709203

RESUMO

The increased consumption of pesticides can have a negative environmental impact by increasing the essential metals to toxic levels. Bordasul® is a commonly used fungicide in Brazil and it is composed of 20% Cu, 10% sulfur, and 3.0% calcium. The study of fungicides in vivo in non-target model organisms can predict their environmental impact more broadly. The Drosophila melanogaster is a unique model due to its ease of handling and maintenance. Here, the potential toxicity of Bordasul® was investigated by assessing the development, survival, and behavior of exposed flies. Exposure to Bordasul® impaired the development (p < 0.01) and caused a significant reduction in memory retention (p < 0.05) and locomotor ability (p < 0.001). Fungicides are needed to assure the world's food demand; however, Bordasul® was highly toxic to D. melanogaster. Therefore, Bordasul® may be potentially toxic to non-target invertebrates and new environmentally-safe biofertilizers have to be developed to preserve the biota.


Assuntos
Cobre , Drosophila melanogaster , Fungicidas Industriais , Animais , Drosophila melanogaster/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Fungicidas Industriais/farmacologia , Cobre/toxicidade , Brasil , Feminino , Masculino , Comportamento Animal/efeitos dos fármacos
2.
Biomed Khim ; 70(2): 73-82, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711406

RESUMO

Thiram is a dithiocarbamate derivative, which is used as a fungicide for seed dressing and spraying during the vegetation period of plants, and also as an active vulcanization accelerator in the production of rubber-based rubber products. In this study the content of reactive oxygen species (ROS) and the state of the glutathione system have been investigated in the oral fluid and gum tissues of adult male Wistar rats treated with thiram for 28 days during its administration with food at a dose of 1/50 LD50. Thiram induced formation of ROS in the oral cavity; this was accompanied by an imbalance in the ratio of reduced and oxidized forms of glutathione due to a decrease in glutathione and an increase in its oxidized form as compared to the control. Thiram administration caused an increase in the activity of glutathione-dependent enzymes (glutathione peroxidase, glutathione transferase, and glutathione reductase). However, the time-course of enzyme activation in the gum tissues and oral fluid varied in dependence on the time of exposure to thiram. In the oral fluid of thiram-treated rats changes in the antioxidant glutathione system appeared earlier. The standard diet did not allow the glutathione pool to be fully restored to physiological levels after cessation of thiram intake. The use of exogenous antioxidants resviratrol and an Echinacea purpurea extract led to the restoration of redox homeostasis in the oral cavity.


Assuntos
Antioxidantes , Fungicidas Industriais , Glutationa , Ratos Wistar , Espécies Reativas de Oxigênio , Tiram , Animais , Masculino , Ratos , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fungicidas Industriais/toxicidade , Tiram/toxicidade , Antioxidantes/farmacologia , Boca/metabolismo , Boca/efeitos dos fármacos , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Glutationa Peroxidase/metabolismo
3.
J Hazard Mater ; 471: 134397, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677114

RESUMO

Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.


Assuntos
Carvão Vegetal , Compostagem , Glicina , Glifosato , Herbicidas , Neonicotinoides , Nitrocompostos , Microbiologia do Solo , Poluentes do Solo , Estrobilurinas , Neonicotinoides/metabolismo , Neonicotinoides/toxicidade , Nitrocompostos/metabolismo , Nitrocompostos/toxicidade , Estrobilurinas/metabolismo , Estrobilurinas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Carvão Vegetal/química , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/toxicidade , Herbicidas/metabolismo , Herbicidas/toxicidade , Carbamatos/metabolismo , Carbamatos/toxicidade , Microbiota/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Pirazóis/metabolismo , Pirazóis/toxicidade , Inseticidas/metabolismo , Inseticidas/toxicidade , Biodegradação Ambiental , Solo/química , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
4.
Chemosphere ; 357: 142027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621487

RESUMO

Myclobutanil (MYC), a typical broad-spectrum triazole fungicide, is often detected in surface water. This study aimed to explore the neurotoxicity of MYC and the underlying mechanisms in zebrafish and in PC12 cells. In this study, zebrafish embryos were exposed to 0, 0.5 and 1 mg/L of MYC from 4 to 96 h post fertilization (hpf) and neurobehavior was evaluated. Our data showed that MYC decreased the survival rate, hatching rate and heart rate, but increased the malformation rate and spontaneous movement. MYC caused abnormal neurobehaviors characterized by decreased swimming distance and movement time. MYC impaired cerebral histopathological morphology and inhibited neurogenesis in HuC:egfp transgenic zebrafish. MYC also reduced the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and downregulated neurodevelopment related genes (gfap, syn2a, gap43 and mbp) in zebrafish and PC12 cells. Besides, MYC activated autophagy through enhanced expression of the LC3-II protein and suppressed expression of the p62 protein and autophagosome formation, subsequently triggering apoptosis by upregulating apoptotic genes (p53, bax, bcl-2 and caspase 3) and the cleaved caspase-3 protein in zebrafish and PC12 cells. These processes were restored by the autophagy inhibitor 3-methyladenine (3-MA) both in vivo and in vitro, indicating that MYC induces neurotoxicity by activating autophagy and apoptosis. Overall, this study revealed the potential autophagy and apoptosis mechanisms of MYC-induced neurotoxicity and provided novel strategies to counteract its toxicity.


Assuntos
Apoptose , Autofagia , Larva , Triazóis , Peixe-Zebra , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células PC12 , Triazóis/toxicidade , Larva/efeitos dos fármacos , Nitrilas/toxicidade , Fungicidas Industriais/toxicidade , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero/efeitos dos fármacos
5.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668960

RESUMO

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Assuntos
Benzo(a)pireno , Adutos de DNA , Poluentes Ambientais , Saccharomyces cerevisiae , Adutos de DNA/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Mutagênicos/toxicidade , Mutagênicos/metabolismo , DNA Fúngico/genética , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo
6.
J Hazard Mater ; 470: 134231, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598881

RESUMO

Fungicides are used worldwide to improve crop yields, but they can affect non-target soil microorganisms which are essential for ecosystem functioning. Microorganisms form complex communities characterized by a myriad of interspecies interactions, yet it remains unclear to what extent non-target microorganisms are indirectly affected by fungicides through biotic interactions with sensitive taxa. To quantify such indirect effects, we fragmented a soil microbial community by filtration to alter biotic interactions and compared the effect of the fungicide hymexazol between fractions in soil microcosms. We postulated that OTUs which are indirectly affected would exhibit a different response to the fungicide across the fragmented communities. We found that hymexazol primarily affected bacterial and fungal communities through indirect effects, which were responsible for more than 75% of the shifts in relative abundance of the dominant microbial OTUs after exposure to an agronomic dose of hymexazol. However, these indirect effects decreased for the bacterial community when hymexazol doses increased. Our results also suggest that N-cycling processes such as ammonia oxidation can be impacted indirectly by fungicide application. This work sheds light on the indirect impact of fungicide exposure on soil microorganisms through biotic interactions, which underscores the need for higher-tier risk assessment. ENVIRONMENTAL IMPLICATION: In this study, we used a novel approach based on the fragmentation of the soil microbial community to determine to which extent fungicide application could indirectly affect fungi and bacteria through biotic interactions. To assess off-target effects of fungicide on soil microorganisms, we selected hymexazol, which is used worldwide to control a variety of fungal plant pathogens, and exposed arable soil to the recommended field rate, as well as to higher rates. Our findings show that at least 75% of hymexazol-impacted microbial OTUs were indirectly affected, therefore emphasizing the importance of tiered risk assessment.


Assuntos
Bactérias , Fungos , Fungicidas Industriais , Microbiologia do Solo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/farmacologia , Fungos/efeitos dos fármacos , Fungos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Poluentes do Solo/toxicidade , Microbiota/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos
7.
Sci Total Environ ; 928: 172444, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38615769

RESUMO

The development of antibiotic resistance threatens human and environmental health. Non-antibiotic stressors, including fungicides, may contribute to the spread of antibiotic resistance genes (ARGs). We determined the promoting effects of tebuconazole on ARG dissemination using a donor, Escherichia coli MG1655, containing a multidrug-resistant fluorescent plasmid (RP4) and a recipient (E. coli HB101). The donor was then incorporated into the soil to test whether tebuconazole could accelerate the spread of RP4 into indigenous bacteria. Tebuconazole promoted the transfer of the RP4 plasmid from the donor into the recipient via overproduction of reactive oxygen species (ROS), enhancement of cell membrane permeability and regulation of related genes. The dissemination of the RP4 plasmid from the donor to soil bacteria was significantly enhanced by tebuconazole. RP4 plasmid could be propagated into more genera of bacteria in tebuconazole-contaminated soil as the exposure time increased. These findings demonstrate that the fungicide tebuconazole promotes the spread of the RP4 plasmid into indigenous soil bacteria, revealing the potential risk of tebuconazole residues enhancing the dissemination of ARGs in soil environments.


Assuntos
Fungicidas Industriais , Plasmídeos , Microbiologia do Solo , Poluentes do Solo , Triazóis , Plasmídeos/genética , Triazóis/toxicidade , Poluentes do Solo/toxicidade , Fungicidas Industriais/toxicidade , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética
8.
Ecotoxicol Environ Saf ; 276: 116261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574644

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these agrochemicals, the interactions of 15 SDHIs with expression and activity of human cytochrome P-450 3A4 (CYP3A4), a major hepatic drug metabolizing enzyme, were investigated in vitro. 12/15 SDHIs, i.e., bixafen, boscalid, fluopyram, flutolanil, fluxapyroxad, furametpyr, isofetamid, isopyrazam, penflufen, penthiopyrad, pydiflumetofen and sedaxane, were found to enhance CYP3A4 mRNA expression in human hepatic HepaRG cells and primary human hepatocytes exposed for 48 h to 10 µM SDHIs, whereas 3/15 SDHIs, i.e., benzovindiflupyr, carboxin and thifluzamide, were without effect. The inducing effects were concentrations-dependent for boscalid (EC50=22.5 µM), fluopyram (EC50=4.8 µM) and flutolanil (EC50=53.6 µM). They were fully prevented by SPA70, an antagonist of the Pregnane X Receptor, thus underlining the implication of this xenobiotic-sensing receptor. Increase in CYP3A4 mRNA in response to SDHIs paralleled enhanced CYP3A4 protein expression for most of SDHIs. With respect to CYP3A4 activity, it was directly inhibited by some SDHIs, including bixafen, fluopyram, fluxapyroxad, isofetamid, isopyrazam, penthiopyrad and sedaxane, which therefore appears as dual regulators of CYP3A4, being both inducer of its expression and inhibitor of its activity. The inducing effect nevertheless predominates for these SDHIs, except for isopyrazam and sedaxane, whereas boscalid and flutolanil were pure inducers of CYP3A4 expression and activity. Most of SDHIs appear therefore as in vitro inducers of CYP3A4 expression in cultured hepatic cells, when, however, used at concentrations rather higher than those expected in humans in response to environmental or dietary exposure to these agrochemicals.


Assuntos
Citocromo P-450 CYP3A , Hepatócitos , Succinato Desidrogenase , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Hepatócitos/efeitos dos fármacos , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Fungicidas Industriais/toxicidade , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/toxicidade , Linhagem Celular
9.
Environ Pollut ; 349: 123938, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588970

RESUMO

With the increasing use of triazole fungicides in agriculture, triazole pesticides have aroused great concern about their toxicity and ecological risk. The current study investigated the impairments of embryonic exposure to fenbuconazole (FBZ) on cardiac transgenerational toxicity and related mechanisms. The fertilized eggs were exposed to 5, 50 and 500 ng/L FBZ for 72 h, and the larvae were then raised to adulthood in clean water. The adult fish were mated with unexposed fish to produce maternal and paternal F1 and F2 embryos, respectively. The results showed that increased arrhythmia were observed in F0, F1 and F2 larvae. Transcriptome sequencing indicated that the pathway of adrenergic signaling in cardiomyocytes was enriched in F0 and F2 larvae. In both F0 and F1 adult zebrafish hearts, ADRB2 protein expression decreased, and transcription of genes related to cardiac development and Ca2+ homeostasis was downregulated. These alterations might cause cardiac developmental defects. Significantly decreased protein levels of H3K9Ac and H3K14Ac might be linked with the downregulation in transcription of cardiac development genes. Protein‒protein interaction analysis exhibited that the pathway affecting the heart was well inherited in the paternal line. These results provide new ideas for the analysis and prevention of congenital heart disease.


Assuntos
Fungicidas Industriais , Triazóis , Peixe-Zebra , Animais , Fungicidas Industriais/toxicidade , Triazóis/toxicidade , Coração/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Feminino , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/genética , Masculino
10.
SAR QSAR Environ Res ; 35(4): 285-307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588502

RESUMO

Heritage agrochemicals like myclobutanil, oxyfluorfen, and pronamide, are extensively used in agriculture, with well-established studies on their animal toxicity. Yet, human toxicity assessment relies on conventional human risk assessment approaches including the utilization of animal-based ADME (Absorption, Distribution, Metabolism, and Excretion) data. In recent years, Physiologically Based Pharmacokinetic (PBPK) modelling approaches have played an increasing role in human risk assessment of many chemicals including agrochemicals. This study addresses the absence of PBPK-type data for myclobutanil, oxyfluorfen, and pronamide by generating in vitro data for key input PBPK parameters (Caco-2 permeability, rat plasma binding, rat blood to plasma ratio, and rat liver microsomal half-life), followed by generation of PBPK models for these three chemicals via the GastroPlusTM software. Incorporating these experimental input parameters into PBPK models, the prediction accuracy of plasma AUC (area under curve) was significantly improved. Validation against rat oral administration data demonstrated substantial enhancement. Steady-state plasma concentrations (Css) of pronamide aligned well with published data using measured PBPK parameters. Following validation, parent-based tissue concentrations for these agrochemicals were predicted in humans and rats after single or 30-day repeat exposure of 10 mg/kg/day. These predicted concentrations contribute valuable information for future human toxicity risk assessments of these agrochemicals.


Assuntos
Modelos Biológicos , Triazóis , Animais , Humanos , Ratos , Administração Oral , Masculino , Nitrilas/farmacocinética , Nitrilas/toxicidade , Relação Quantitativa Estrutura-Atividade , Células CACO-2 , Medição de Risco , Microssomos Hepáticos/metabolismo , Distribuição Tecidual , Fungicidas Industriais/farmacocinética , Fungicidas Industriais/toxicidade , Fungicidas Industriais/administração & dosagem , Fungicidas Industriais/sangue
11.
Environ Toxicol Chem ; 43(5): 976-987, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38488751

RESUMO

There is a growing concern that chronic exposure to fungicides contributes to negative effects on honey bee development, life span, and behavior. Field and caged-bee studies have helped to characterize the adverse outcomes (AOs) of environmentally relevant exposures, but linking AOs to molecular/cellular mechanisms of toxicity would benefit from the use of readily controllable, simplified host platforms like cell lines. Our objective was to develop and optimize an in vitro-based mitochondrial toxicity assay suite using the honey bee as a model pollinator, and the electron transport chain (ETC) modulators boscalid and pyraclostrobin as model fungicides. We measured the effects of short (~30 min) and extended exposures (16-24 h) to boscalid and pyraclostrobin on AmE-711 honey bee cell viability and mitochondrial function. Short exposure to pyraclostrobin did not affect cell viability, but extended exposure reduced viability in a concentration-dependent manner (median lethal concentration = 4175 µg/L; ppb). Mitochondrial membrane potential (MMP) was affected by pyraclostrobin in both short (median effect concentration [EC50] = 515 µg/L) and extended exposure (EC50 = 982 µg/L) scenarios. Short exposure to 10 and 1000 µg/L pyraclostrobin resulted in a rapid decrease in the oxygen consumption rate (OCR), approximately 24% reduction by 10 µg/L relative to the baseline OCR, and 64% by 1000 µg/L. Extended exposure to 1000 µg/L pyraclostrobin reduced all respiratory parameters (e.g., spare capacity, coupling efficiency), whereas 1- and 10-µg/L treatments had no significant effects. The viability of AmE-711 cells, as well as the MMP and cellular respiration were unaffected by short and extended exposures to boscalid. The present study demonstrates that the AmE-711-based assessment of viability, MMP, and ETC functionality can provide a time- and cost-effective platform for mitochondrial toxicity screening relevant to bees. Environ Toxicol Chem 2024;43:976-987. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Compostos de Bifenilo , Sobrevivência Celular , Fungicidas Industriais , Mitocôndrias , Niacinamida , Niacinamida/análogos & derivados , Estrobilurinas , Animais , Estrobilurinas/toxicidade , Abelhas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Niacinamida/farmacologia , Niacinamida/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos
12.
Environ Pollut ; 348: 123833, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522608

RESUMO

Pyraclostrobin, a widely used fungicide, poses significant risks to both the environment and human health. However, research on the microbial degradation process of pyraclostrobin was scarce. Here, a pyraclostrobin-degrading strain, identified as Burkholderia sp. Pyr-1, was isolated from activated sludge. Pyraclostrobin was efficiently degraded by strain Pyr-1, and completely eliminated within 6 d in the presence of glucose. Additionally, pyraclostrobin degradation was significantly enhanced by the addition of divalent metal cations (Mn2+ and Cu2+). The degradation pathway involving ether bond and N-O bond cleavage was proposed by metabolite identification. The sodium alginate-immobilized strain Pyr-1 had a higher pyraclostrobin removal rate from contaminated lake water than the free cells. Moreover, the toxicity evaluation demonstrated that the metabolite 1-(4-chlorophenyl)-1H-pyrazol-3-ol significantly more effectively inhibited Chlorella ellipsoidea than pyraclostrobin, while its degradation products by strain Pyr-1 alleviated the growth inhibition of C. ellipsoidea, which confirmed that the low-toxic metabolites were generated from pyraclostrobin by strain Pyr-1. The study provides a potential strain Pyr-1 for the bioremediation in pyraclostrobin-contaminated aquatic environments.


Assuntos
Burkholderia , Chlorella , Fungicidas Industriais , Humanos , Fungicidas Industriais/toxicidade , Estrobilurinas , Água , Biodegradação Ambiental
13.
Environ Int ; 186: 108608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554503

RESUMO

Bumblebees are among the most important wild bees for pollination of crops and securing wildflower diversity. However, their abundance and diversity have been on a steady decrease in the last decades. One of the most important factors leading to their decline is the frequent use of plant protection products (PPPs) in agriculture, which spread into forests and natural reserves. Mixtures of different PPPs pose a particular threat because of possible synergistic effects. While there is a comparatively large body of studies on the effects of PPPs on honeybees, we still lack data on wild bees. We here investigated the influence of the frequent fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their combination on bumblebees. Cognitive performance and foraging flights of bumblebees were studied. They are essential for the provisioning and survival of the colony. We introduce a novel method for testing four treatments simultaneously on the same colony, minimizing inter-colony differences. For this, we successfully quartered the colony and moved the queen daily between compartments. Bumblebees appeared astonishingly resilient to the PPPs tested or they have developed mechanisms for detoxification. Neither learning capacity nor flight activity were inhibited by treatment with the single PPPs or their combination.


Assuntos
Compostos de Bifenilo , Fungicidas Industriais , Neonicotinoides , Niacinamida/análogos & derivados , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Animais , Fungicidas Industriais/toxicidade , Estrobilurinas , Inseticidas/toxicidade , Piridinas/toxicidade
14.
J Agric Food Chem ; 72(11): 5636-5644, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457784

RESUMO

The evaluation of toxicity and environmental behavior of bioactive lead molecules is helpful in providing theoretical support for the development of agrochemicals, in line with the sustainable development of the ecological environment. In previous work, some acethydrazide structures have been demonstrated to exhibit excellent and broad-spectrum fungicidal activity; however, its environmental compatibility needs to be further elucidated if it is to be identified as a potential fungicide. In this project, the toxicity of fungicidal acethydrazide lead compounds F51, F58, F72, and F75 to zebrafish was determined at 10 µg mL-1 and 1 µg mL-1. Subsequently, the toxic mechanism of compound F58 was preliminarily explored by histologic section and TEM observations, which revealed that the gallbladder volume of common carp treated with compound F58 increased, accompanied by a deepened bile color, damaged plasma membrane, and atrophied mitochondria in gallbladder cells. Approximately, F58-treated hepatocytes exhibited cytoplasmic heterogeneity, with partial cellular vacuolation and mitochondrial membrane rupture. Metabolomics analysis further indicated that differential metabolites were enriched in the bile formation-associated steroid biosynthesis, primary bile acid biosynthesis, and taurine and hypotaurine metabolism pathways, as well as in the membrane function-related glycerophospholipid metabolism, linolenic acid metabolism, α-linolenic acid metabolism, and arachidonic acid metabolism pathways, suggesting that the acethydrazide F58 may have acute liver toxicity to common carp. Finally, the hydrolysis dynamics of F58 was investigated, with the obtained half-life of 5.82 days. The above results provide important guiding significance for the development of new green fungicides.


Assuntos
Fungicidas Industriais , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Hidrólise , Bile , Metabolômica
15.
Sci Total Environ ; 926: 171546, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479527

RESUMO

Triazole fungicides are widely used to treat cereal seeds before sowing. Granivorous birds like the Red-legged Partridge (Alectoris rufa) have high exposure risk because they ingest treated seeds that remain on the field surface. As triazole fungicides can act as endocrine disruptors, affecting sterol synthesis and reproduction in birds several months after exposure, we hypothesized that these effects could also impact subsequent generations of exposed birds. To test this hypothesis, we exposed adult partridges (F0) to seeds treated at commercial doses with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two), simulating field exposure during late autumn sowing. During the subsequent reproductive season, two to four months after exposure, we examined compound allocation of steroid hormones, cholesterol, vitamins, and carotenoids in eggs laid by exposed birds (F1), as well as the expression of genes encoding enzymes involved in sterol biosynthesis in one-day-old chicks of this F1. One year later, F1 animals were paired again to investigate the expression of the same genes in the F2 chicks. We found changes in the expression of some genes for all treatments and both generations. Additionally, we observed an increase in estrone levels in eggs from partridges treated with flutriafol compared to controls, a decrease in tocopherol levels in partridges exposed to the mixture of tebuconazole and prothioconazole, and an increase in retinol levels in partridges exposed to prothioconazole. Despite sample size limitations, this study provides novel insights into the mechanisms of action of the previously observed effects of triazole fungicide-treated seeds on avian reproduction with evidence that the effects can persist beyond the exposure windows, affecting unexposed offspring of partridges fed with treated seeds. The results highlight the importance of considering long-term chronic effects when assessing pesticide risks to wild birds.


Assuntos
Fungicidas Industriais , Galliformes , Animais , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Codorniz , Galinhas , Triazóis/toxicidade , Triazóis/metabolismo , Expressão Gênica , Esteróis
16.
Sci Total Environ ; 926: 171771, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521260

RESUMO

Assessing the interactions between environmental pollutants and these mixtures is of paramount significance in understanding their negative effects on aquatic ecosystems. However, existing research often lacks comprehensive investigations into the physiological and biochemical mechanisms underlying these interactions. This study aimed to reveal the toxic mechanisms of cyproconazole (CYP), imazalil (IMA), and prochloraz (PRO) and corresponding these mixtures on Auxenochlorella pyrenoidosa by analyzing the interactions at physiological and biochemical levels. Higher concentrations of CYP, IMA, and PRO and these mixtures resulted in a reduction in chlorophyll (Chl) content and increased total protein (TP) suppression, and malondialdehyde (MDA) content exhibited a negative correlation with algal growth. The activity of catalase (CAT) and superoxide dismutase (SOD) decreased with increasing azole fungicides and their mixture concentrations, correlating positively with growth inhibition. Azole fungicides induced dose-dependent apoptosis in A. pyrenoidosa, with higher apoptosis rates indicative of greater pollutant toxicity. The results revealed concentration-dependent toxicity effects, with antagonistic interactions at low concentrations and synergistic effects at high concentrations within the CYP-IMA mixtures. These interactions were closely linked to the interactions observed in Chl-a, carotenoid (Car), CAT, and cellular apoptosis. The antagonistic effects of CYP-PRO mixtures on A. pyrenoidosa growth inhibition can be attributed to the antagonism observed in Chl-a, Chl-b, Car, TP, CAT, SOD, and cellular apoptosis. This study emphasized the importance of gaining a comprehensive understanding of the physiological and biochemical interactions within algal cells, which may help understand the potential mechanism of toxic interaction.


Assuntos
Clorófitas , Fungicidas Industriais , Poluentes Químicos da Água , Fungicidas Industriais/toxicidade , Azóis/toxicidade , Ecossistema , Clorófitas/metabolismo , Clorofila A , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
17.
Biomed Khim ; 70(1): 41-51, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450680

RESUMO

Pesticides represent a serious problem for agricultural workers due to their neurotoxic effects. The aim of this study was to evaluate the ability of pharmacological oxidative phosphorylation uncouplers to reduce the effect of the difenoconazole fungicide on mitochondrial DNA (mtDNA) of various organs in mice. Injections of difenoconazole caused cognitive deficits in mice, and the protonophore 2,4-dinitrophenol (2,4-DNP) and Azur I (AzI), a demethylated metabolite of methylene blue (MB), prevented the deterioration of cognitive abilities in mice induced by difenoconazole. Difenoconazole increased the rate of reactive oxygen species (ROS) production, likely through inhibition of complex I of the mitochondrial respiratory chain. After intraperitoneal administration of difenoconazole lungs, testes and midbrain were most sensitive to the accumulation of mtDNA damage. In contrast, the cerebral cortex and hippocampus were not tolerant to the effects of difenoconazole. The protonophore 2,4-DNP reduced the rate of ROS formation and significantly reduced the amount of mtDNA damage caused by difenoconazole in the midbrain, and partially, in the lungs and testes. MB, an alternative electron carrier capable of bypassing inhibited complex I, had no effect on the effect of difenoconazole on mtDNA, while its metabolite AzI, a demethylated metabolite of MB, was able to protect the mtDNA of the midbrain and testes. Thus, mitochondria-targeted therapy is a promising approach to reduce pesticide toxicity for agricultural workers.


Assuntos
Corantes Azur , Dioxolanos , Fungicidas Industriais , Triazóis , Animais , Camundongos , Fungicidas Industriais/toxicidade , 2,4-Dinitrofenol , Espécies Reativas de Oxigênio , Mitocôndrias , DNA Mitocondrial , Complexo I de Transporte de Elétrons
18.
Pestic Biochem Physiol ; 199: 105757, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458660

RESUMO

Fenhexamid are fungicides that act against plant pathogens by inhibiting sterol biosynthesis. Nonetheless, it can trigger endocrine disruption and promote breast cancer cell growth. In a recent study, we investigated the mechanism underlying the lipid accumulation induced by fenhexamid hydroxyanilide fungicides in 3 T3-L1 adipocytes. To examine the estrogen receptor alpha (ERα)-agonistic effect, ER transactivation assay using the ERα-HeLa-9903 cell line was applied, and fenhexamid-induced ERα agonist effect was confirmed. Further confirmation that ERα-dependent lipid accumulation occurred was provided by treating 3 T3-L1 adipocytes with Methyl-piperidino-pyrazole hydrate (MPP), an ERα-selective antagonist. Fenhexamid mimicked the actions of ERα agonists and impacted lipid metabolism, and its mechanism involves upregulation of the expression of transcription factors that facilitate adipogenesis and lipogenesis. Additionally, it stimulated the expression of peroxisome proliferator-activated receptor (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), and sterol regulatory element-binding protein 1 (SREBP1) and significantly elevated the expression of fatty acid-binding protein 4 (FABP4). In contrast, in combination with an ERα-selective antagonist, fenhexamid suppressed the expression of adipogenic/lipogenic transcription factors. These results suggest that fenhexamid affects the endocrine system and leads to lipid accumulation by interfering with processes influenced by ERα activation.


Assuntos
Amidas , Receptor alfa de Estrogênio , Fungicidas Industriais , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Adipócitos/metabolismo , Adipogenia , Metabolismo dos Lipídeos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Lipídeos , Células 3T3-L1 , PPAR gama/metabolismo
19.
Environ Pollut ; 347: 123678, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447649

RESUMO

Despite increasing evidence of off-site ecological impacts of pesticides and policy efforts worldwide, pesticide use is still far from being ecologically sustainable. Fungicides are among the most sold classes of pesticides and are crucial to ensure global food supply and security. This study aimed to identify potential gaps of knowledge and mismatches between research and usage data of fungicides by: (i) systematizing the current trends in global sales of fungicides, focusing on the European context in particular (where they are proportionally important); (ii) reviewing the scientific literature on the impacts of synthetic fungicides on non-target freshwater organisms. Sales data revealed important global and regional asymmetries in the relative importance of fungicides and the preferred active ingredients. The literature review on the ecological effects of fungicides disclosed a mismatch between the most studied and the most sold substances, as well as a bias towards the use of single species assays with standard test organisms. To ensure a proper evaluation, risk scenarios should focus on a regional scale, and research agendas must highlight sensitive aquatic ecorreceptors and improve the crosstalk between analytical and sales data.


Assuntos
Fungicidas Industriais , Praguicidas , Poluentes Químicos da Água , Fungicidas Industriais/toxicidade , Fungicidas Industriais/análise , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Água Doce
20.
Mar Pollut Bull ; 201: 116237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457881

RESUMO

Our laboratory study looked into how pesticides affect the foraminifera species Heterostegina depressa and their obligatory algal endosymbionts. We incubated the foraminifera separately with different types of pesticides at varying concentrations (1 %, 0.01 % and 0.0001 %); we included the insecticide Confidor© (active substance: imidacloprid), the fungicide Pronto©Plus (tebuconazole), and the herbicide Roundup© (glyphosate). Our evaluation focused on the symbiont's photosynthetically active area (PA), and the uptake of dissolved inorganic carbon (DIC) and nitrogen (nitrate) to determine the vitality of the foraminifera. Our findings showed that even the lowest doses of the fungicide and herbicide caused irreparable damage to the foraminifera and their symbionts. While the insecticide only deactivated the symbionts (PA = 0) at the highest concentration (1 %), the fungicide, and herbicide caused complete deactivation even at the lowest levels provided (0.0001 %). The fungicide had the strongest toxic effect on the foraminiferal host regarding reduced isotope uptake. In conclusion, all pesticides had a negative impact on the holosymbiont, with the host showing varying degrees of sensitivity towards different types of pesticides.


Assuntos
Foraminíferos , Fungicidas Industriais , Herbicidas , Inseticidas , Praguicidas , Recifes de Corais , Foraminíferos/fisiologia , Praguicidas/toxicidade , Fungicidas Industriais/toxicidade , Herbicidas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA