Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38664064

RESUMO

Thermo-acidic pretreatment of lignocellulosic biomass is required to make it amenable to microbial metabolism and results in generation of furfural due to breakdown of pentose sugars. Furfural is toxic to microbial metabolism and results in reduced microbial productivity and increased production costs. This study asks if deletion of yghZ gene which encodes a NADPH-dependent aldehyde reductase enzyme results in improved furfural tolerance in Escherichia coli host. The ∆yghZ strain-SSK201-was tested for tolerance to furfural in presence of 5% xylose as a carbon source in AM1 minimal medium. At 96 h and in presence of 1.0 g/L furfural, the culture harboring strain SSK201 displayed 4.5-fold higher biomass, 2-fold lower furfural concentration and 15.75-fold higher specific growth rate (µ) as compared to the parent strain SSK42. The furfural tolerance advantage of SSK201 was retained when the carbon source was switched to glucose in AM1 medium and was lost in rich LB medium. The findings have potential to be scaled up to a hydrolysate culture medium, which contains furan inhibitors and lack nutritionally rich components, under bioreactor cultivation and observe growth advantage of the ∆yghZ host. It harbors potential to generate robust industrial strains which can convert lignocellulosic carbon into metabolites of interest in a cost-efficient manner.


Assuntos
Carbono , Escherichia coli , Furaldeído , Xilose , Xilose/metabolismo , Furaldeído/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Carbono/metabolismo , Aldeído Redutase/metabolismo , Aldeído Redutase/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Deleção de Genes , Biomassa , Glucose/metabolismo
2.
Sci Total Environ ; 927: 171888, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531442

RESUMO

Lignocellulosic biomass is a pivotal renewable resource in biorefinery process, requiring pretreatment, primarily chemical pretreatment, for effective depolymerization and subsequent transformation. This process yields solid residue for saccharification and lignocellulosic pretreatment wastewater (LPW), which comprises sugars and inhibitors such as phenols and furans. This study explored the microalgal capacity to treat LPW, focusing on two key hydrolysate inhibitors: furfural and vanillin, which impact the growth of six green microalgae. Chlorella sorokiniana exhibited higher tolerance to furfural and vanillin. However, both inhibitors hindered the growth of C. sorokiniana and disrupted algal photosynthetic system, with vanillin displaying superior inhibition. A synergistic inhibitory effect (Q < 0.85) was observed with furfural and vanillin on algal growth. Furfural transformation to low-toxic furfuryl alcohol was rapid, yet the addition of vanillin hindered this process. Vanillin stimulated carbohydrate accumulation, with 50.48 % observed in the 0.1 g/L furfural + 0.1 g/L vanillin group. Additionally, vanillin enhanced the accumulation of C16: 0 and C18: 2, reaching 21.71 % and 40.36 %, respectively, with 0.1 g/L vanillin. This study proposed a microalgae-based detoxification and resource utilization approach for LPW, enhancing the comprehensive utilization of lignocellulosic components. The observed biomass modifications also suggested potential applications for biofuel production, contributing to the evolving landscape of sustainable biorefinery processes.


Assuntos
Lignina , Microalgas , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Lignina/metabolismo , Eliminação de Resíduos Líquidos/métodos , Benzaldeídos/metabolismo , Furaldeído/metabolismo , Biomassa , Poluentes Químicos da Água , Chlorella/metabolismo
3.
Chemistry ; 30(21): e202400269, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38329391

RESUMO

Recently, catalytic valorization of biomass-derived furans has received growing interest. 5-Aminomethyl-2-furancarboxylic acid (AMFC), a furan amino acid, holds great promise in the aeras of polymer and pharmaceutical, but its synthesis remains limited. In this work, we report a chemobiocatalytic route toward AMFC by combining laccase-TEMPO system and recombinant Escherichia coli (named E. coli_TAF) harboring ω-transaminase (TA), L-alanine dehydrogenase (L-AlaDH) and formate dehydrogenase (FDH), starting from 5-hydroxymethylfurfural (HMF). In the cascade, HMF is oxidized into 5-formyl-2-furancarboxylic acid (FFCA) by laccase-TEMPO system, and then the resulting intermediate is converted into AMFC by E. coli_TAF via transamination with cheap ammonium formate instead of costly organic amine donors, theoretically generating H2O and CO2 as by-products. The tandem process was run in a one-pot twostep manner, affording AMFC with approximately 81 % yield, together with 10 % 2,5-furandicarboxylic acid (FDCA) as by-product. In addition, the scale-up production of AMFC was demonstrated, with 0.41 g/L h productivity and 8.6 g/L titer. This work may pave the way for green manufacturing of the furan-containing amino acid.


Assuntos
Escherichia coli , Furaldeído/análogos & derivados , Lacase , Escherichia coli/metabolismo , Lacase/química , Aminoácidos , Furanos/química , Furaldeído/química , Furaldeído/metabolismo , Ácidos Dicarboxílicos/química
4.
Microb Cell Fact ; 22(1): 221, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891678

RESUMO

Lignocellulosic biomass represents a carbon neutral cheap and versatile source of carbon which can be converted to biofuels. A pretreatment step is frequently used to make the lignocellulosic carbon bioavailable for microbial metabolism. Dilute acid pretreatment at high temperature and pressure is commonly utilized to efficiently solubilize the pentose fraction by hydrolyzing the hemicellulose fibers and the process results in formation of furans-furfural and 5-hydroxymethyl furfural-and other inhibitors which are detrimental to metabolism. The presence of inhibitors in the medium reduce productivity of microbial biocatalysts and result in increased production costs. Furfural is the key furan inhibitor which acts synergistically along with other inhibitors present in the hydrolysate. In this review, the mode of furfural toxicity on microbial metabolism and metabolic strategies to increase tolerance is discussed. Shared cellular targets between furfural and acetic acid are compared followed by discussing further strategies to engineer tolerance. Finally, the possibility to use furfural as a model inhibitor of dilute acid pretreated lignocellulosic hydrolysate is discussed. The furfural tolerant strains will harbor an efficient lignocellulosic carbon to pyruvate conversion mechanism in presence of stressors in the medium. The pyruvate can be channeled to any metabolite of interest by appropriate modulation of downstream pathway of interest. The aim of this review is to emphasize the use of hydrolysate as a carbon source for bioproduction of biofuels and other compounds of industrial importance.


Assuntos
Furaldeído , Lignina , Furaldeído/farmacologia , Furaldeído/metabolismo , Lignina/metabolismo , Fermentação , Biocombustíveis , Carbono , Piruvatos
5.
Bioresour Technol ; 386: 129413, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37390935

RESUMO

Lignocellulose's hydrolysate, a significant renewable source, contains xylose and furfural, making it challenging for industrial production of oleaginous yeast. On xylose fermentation with furfural treatment, OE::DN7263 and OE::DN7661 increased lipid yield and furfural tolerance versus WT, while, which of OE::CreA were decreased owing to CreA regulating DN7263 and DN7661 negatively. OE::CreA generated reactive oxygen species (ROS) causing oxidative damage. OE::DN7263, OE::DN7661, and ΔCreA reduced furfural via NADH; while ΔCreA produced less ROS and OE::DN7263, and OE::DN7661 scavenged ROS quickly, minimizing oxidative damage. Overall, CreA knockout increased DN7263 and DN7661 expression to facilitate xylose assimilation, enhancing NADH generation and ROS clearance. Finally, with mixed sugar fermentation, ΔCreA and OE::DN7263's biomass and lipid yield rose without furfural addition, while that of ΔCreA remained higher than WT after furfural treatment. These findings revealed how oleaginous yeast zwy-2-3 resisted furfural stress and indicated ΔCreA and OE::DN7263 might develop into robust industrial chassis strains.


Assuntos
Furaldeído , Xilose , Xilose/metabolismo , Furaldeído/farmacologia , Furaldeído/metabolismo , Espécies Reativas de Oxigênio , NAD/metabolismo , Lipídeos
6.
Microb Cell Fact ; 22(1): 88, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37127628

RESUMO

Acetic acid and furfural (AF) are two major inhibitors of microorganisms during lignocellulosic ethanol production. In our previous study, we successfully engineered Zymomonas mobilis 532 (ZM532) strain by genome shuffling, but the molecular mechanisms of tolerance to inhibitors were still unknown. Therefore, this study investigated the responses of ZM532 and its wild-type Z. mobilis (ZM4) to AF using multi-omics approaches (transcriptomics, genomics, and label free quantitative proteomics). Based on RNA-Seq data, two differentially expressed genes, ZMO_RS02740 (up-regulated) and ZMO_RS06525 (down-regulated) were knocked out and over-expressed through CRISPR-Cas technology to investigate their roles in AF tolerance. Overall, we identified 1865 and 14 novel DEGs in ZM532 and wild-type ZM4. In contrast, 1532 proteins were identified in ZM532 and wild-type ZM4. Among these, we found 96 important genes in ZM532 involving acid resistance mechanisms and survival rates against stressors. Furthermore, our knockout results demonstrated that growth activity and glucose consumption of mutant strains ZM532∆ZMO_RS02740 and ZM4∆ZMO_RS02740 decreased with increased fermentation time from 42 to 55 h and ethanol production up to 58% in ZM532 than that in ZM532∆ZMO_RS02740. Hence, these findings suggest ZMO_RS02740 as a protective strategy for ZM ethanol production under stressful conditions.


Assuntos
Ácido Acético , Zymomonas , Ácido Acético/metabolismo , Zymomonas/genética , Furaldeído/metabolismo , Embaralhamento de DNA , Fermentação , Etanol/metabolismo
7.
Ecotoxicol Environ Saf ; 257: 114951, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116454

RESUMO

Modern agriculture has many environmental consequences, such as soil contamination, accumulation of toxic compounds in the environment or risk of adverse effects on nontarget organisms and for these reasons, scientists are seeking a more environmentally friendly alternative to synthetic insecticides. This study investigated the effects of four plant secondary metabolites classified as volatile organic compounds (VOCs), which have potential as bioinsecticides, (E)-2-decenal, furfural, 2-undecanone and (E,E)-2-4-decadienal, in concentrations 10-5 and 10-7 M, on female reproductive processes and larval hatchability of the Tenebrio molitor beetle. Our study indicates proper development of ovaries after application of compounds however the volume of terminal oocytes was significantly reduced, with the strongest effect of (E)- 2-decenal which reduced the volume approximately three times. The relative vitellogenin expression level was reduced, with the strongest effect observed after application of furfural, (E,E)- 2-4-decadienal and (E)- 2-decenal in concentration 10-7 M, at the same time patency index was significantly reduced up to 2-times after application of furfural at 10-7 M. What is more important morphological changes translated into physiological ones. The number of laid eggs was affected, with the strongest inhibition after application of furfural (∼43% reduction), (E,E)- 2-4-decadienal (∼33%) and (E)- 2-decenal at concentration 10-7 M (∼33%). Moreover, we observed up to 13% (in case of 2-undecanone) decrease in larval hatchability. Tested compounds exhibited a repellent effect and caused 60% reduction of insect survivability after (E)- 2-decenal at concentration 10-5 M. Altogether, VOCs seems like potential bioactive compounds in plant protection.


Assuntos
Besouros , Tenebrio , Compostos Orgânicos Voláteis , Animais , Besouros/metabolismo , Compostos Orgânicos Voláteis/toxicidade , Compostos Orgânicos Voláteis/metabolismo , Furaldeído/metabolismo , Furaldeído/farmacologia , Larva , Reprodução
8.
ACS Appl Mater Interfaces ; 15(10): 12855-12863, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36859767

RESUMO

The electroenzymatic valorization of biomass derivatives into valuable biochemicals has a promising outlook. However, bottlenecks including poor electron transfer between the electrode surface and oxidoreductase, inefficient regeneration of cofactors, and high cost of enzymes and electron mediators hindered the realistic applications of the technique. Herein, to address the above technical barriers, a novel bio-electrocatalytic system that integrates the electrochemical NADH regeneration and enzymatic reaction was constructed, using an orderly assembled composite bioelectrode consisting of an outer immobilized enzyme layer and a sandwiched redox mediator rhodium complex layer. The as-prepared composite bioelectrode was further applied for the highly selective hydrogenation of furfural into furfural alcohol. Results indicated that the enzyme activity was significantly improved, while the furfural valorization was promoted by effective interfacial electron transition and co-factor regeneration on the composite bioelectrode. Considerable high furfural conversion (96.4%) can be achieved accompanied by a furfural alcohol selectivity of 90.0% at -1.2 V (vs Ag/AgCl). The novel composite bioelectrode also showed good stability and reusability. Up to 85.1% of the original furfural alcohol selectivity can be preserved after 10 times of recycling. This work presents a promising green alternative for the valorization of furfural, which also shows great potential extending to the valorization of other biomass compounds.


Assuntos
Elétrons , Furaldeído , Furaldeído/química , Furaldeído/metabolismo , Furanos/química , Oxirredução
9.
Appl Microbiol Biotechnol ; 107(4): 1421-1438, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36651929

RESUMO

Kluyveromyces marxianus is a non-conventional yeast with outstanding physiological characteristics and a high potential for lignocellulosic ethanol production. However, achieving high ethanol productivity requires overcoming several biotechnological challenges due to the cellular inhibition caused by the inhibitors present in the medium. In this work, K. marxianus SLP1 was adapted to increase its tolerance to a mix of inhibitory compounds using the adaptive laboratory evolution strategy to study the adaptation and stress response mechanisms used by this non-Saccharomyces yeast. The fermentative and physiological parameters demonstrated that the adapted K. marxianus P8 had a better response against the synergistic effects of multiple inhibitors because it reduced the lag phase from 12 to 4 h, increasing the biomass by 40% and improving the volumetric ethanol productivity 16-fold than the parental K. marxianus SLP1. To reveal the effect of adaptation process in P8, transcriptome analysis was carried out; the result showed that the basal gene expression in P8 changed, suggesting the biological capability of K. marxianus to activate the adaptative prediction mechanism. Similarly, we carried out physiologic and transcriptome analyses to reveal the mechanisms involved in the stress response triggered by furfural, the most potent inhibitor in K. marxianus. Stress response studies demonstrated that P8 had a better physiologic response than SLP1, since key genes related to furfural transformation (ALD4 and ALD6) and stress response (STL1) were upregulated. Our study demonstrates the rapid adaptability of K. marxianus to stressful environments, making this yeast a promising candidate to produce lignocellulosic ethanol. KEY POINTS: • K. marxianus was adapted to increase its tolerance to a mix of inhibitory compounds • The basal gene expression of K. marxianus changed after the adaptation process • Adapted K. marxianus showed a better physiological response to stress by inhibitors • Transcriptome analyses revealed key genes involved in the stress response.


Assuntos
Furaldeído , Kluyveromyces , Furaldeído/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Perfilação da Expressão Gênica , Fermentação , Etanol/metabolismo
10.
Bioprocess Biosyst Eng ; 46(4): 589-597, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36670301

RESUMO

Pre-hydrolysate liquor, as an inevitable by-product, contains a large amount of xylose, and is therefore an inexpensive feedstock that can be upgraded to value-added chemical xylonic acid. However, inhibitors, simultaneously formed in lignocellulose pretreatment process, are regarded as the major obstacle for effectively bio-converting xylose in pre-hydrolysate into xylonic acid. In this study, Gluconobacter oxydans, with highly selective and efficient, was employed for xylonic acid production; the impacts of five typical toxic inhibitory compounds on xylonic acid productivity and the activity of the membrane-bound dehydrogenase were evaluated. The results revealed that the inhibitors showed different degrees of influence toward xylonic acid production, and the order of inhibitory effect for acidic inhibitors was formic acid > acetic acid > levulinic acid; the inhibitory effect of aldehyde inhibitors was furfural > 5-hydroxymethyl-furfural. This study provides an important basis of metabolic modification and detoxification process for enhancing inhibitor tolerance and xylonic acid productivity.


Assuntos
Gluconobacter oxydans , Fermentação , Gluconobacter oxydans/metabolismo , Xilose/metabolismo , Furaldeído/metabolismo , Ácidos
11.
Biotechnol Lett ; 44(12): 1431-1445, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36316512

RESUMO

PURPOSE: Second generation (2G) ethanol is produced using lignocellulosic biomass. However, the pre-treatment processes generate a variety of molecules (furanic compounds, phenolic compounds, and organic acids) that act as inhibitors of microbial metabolism, and thus, reduce the efficiency of the fermentation step in this process. In this context, the present study aimed to investigate the effect of furanic compounds on the physiology of lactic acid bacteria (LAB) strains that are potential contaminants in ethanol production. METHODOLOGY: Homofermentative and heterofermentative strains of laboratory LAB, and isolated from first generation ethanol fermentation, were used. LAB strains were challenged to grow in the presence of furfural and 5-hydroxymethyl furfural (HMF). RESULTS: We determined that the effect of HMF and furfural on the growth rate of LAB is dependent on the metabolic type, and the growth kinetics in the presence of these compounds is enhanced for heterofermentative LAB, whereas they are inhibitory to homofermentative LAB. Sugar consumption and product formation were also enhanced in the presence of furanic compounds for heterofermentative LAB, who displayed effective depletion kinetics when compared to the homofermentative LAB. CONCLUSION: Homo- and heterofermentative LAB are affected differently by furanic compounds, in a way that the latter type is more resistant to the toxic effects of these inhibitors. This knowledge is important to understand the potential effects of bacterial contamination in 2G bioprocesses.


Assuntos
Furaldeído , Lactobacillus , Fermentação , Lactobacillus/metabolismo , Furaldeído/farmacologia , Furaldeído/metabolismo , Biomassa , Etanol/metabolismo
12.
Microb Cell Fact ; 21(1): 105, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35643525

RESUMO

BACKGROUND: Various inhibitors coexist in the hydrolysate derived from lignocellulosic biomass. They inhibit the performance of Saccharomyces cerevisiae and further restrict the development of industrial bioethanol production. Transcription factors are regarded as targets for constructing robust S. cerevisiae by genetic engineering. The tolerance-related transcription factors have been successively reported, while their regulatory mechanisms are not clear. In this study, we revealed the regulation mechanisms of Haa1p and Tye7p that had outstanding contributions to the improvement of the fermentation performance and multiple inhibitor tolerance of S. cerevisiae. RESULTS: Comparative transcriptomic analyses were applied to reveal the regulatory mechanisms of Haa1p and Tye7p under mixed sugar fermentation conditions with mixed inhibitors [acetic acid and furfural (AFur)] or without inhibitor (C) using the original strain s6 (S), the HAA1-overexpressing strain s6H3 (H), and the TYE7-overexpressing strain s6T3 (T). The expression of the pathways related to carbohydrate, amino acid, transcription, translation, cofactors, and vitamins metabolism was enhanced in the strains s6H3 and s6T3. Compared to C_H vs. C_S group, the unique DEGs in AFur_H vs. AFur_S group were further involved in oxidative phosphorylation, purine metabolism, vitamin B6 metabolism, and spliceosome under the regulation of Haa1p. A similar pattern appeared under the regulation of Tye7p, and the unique DEGs in AFur_T vs. AFur_S group were also involved in riboflavin metabolism and spliceosome. The most significant difference between the regulations of Haa1p and Tye7p was the intracellular energy supply. Haa1p preferred to enhance oxidative phosphorylation, while Tye7p tended to upregulate glycolysis/gluconeogenesis. CONCLUSIONS: Global gene expressions could be rewired with the overexpression of HAA1 or TYE7. The positive perturbations of energy and amino acid metabolism were beneficial to the improvement of the fermentation performance of the strain. Furthermore, strengthening of key cofactor metabolism, and transcriptional and translational regulation were helpful in improving the strain tolerance. This work provides a novel and comprehensive understanding of the regulation mechanisms of Haa1p and Tye7p in S. cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae , Xilose , Ácidos/metabolismo , Aminoácidos/metabolismo , Furaldeído/metabolismo , Glucose/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/genética , Xilose/metabolismo
13.
Biochem J ; 479(10): 1045-1058, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35502833

RESUMO

While lignocellulose is a promising source of renewable sugars for microbial fermentations, the presence of inhibitory compounds in typical lignocellulosic feedstocks, such as furfural, has hindered their utilisation. In Escherichia coli, a major route of furfural toxicity is the depletion of NADPH pools due to its use as a substrate by the YqhD enzyme that reduces furfural to its less toxic alcohol form. Here, we examine the potential of exploiting benzyl alcohol dehydrogenases as an alternative means to provide this same catalytic function but using the more abundant reductant NADH, as a strategy to increase the capacity for furfural removal. We determine the biochemical properties of three of these enzymes, from Pseudomonas putida, Acinetobacter calcoaceticus, and Burkholderia ambifaria, which all demonstrate furfural reductase activity. Furthermore, we show that the P. putida and B. ambifaria enzymes are able to provide substantial increases in furfural tolerance in vivo, by allowing more rapid conversion to furfuryl alcohol and resumption of growth. The study demonstrates that methods to seek alternative cofactor dependent enzymes can improve the intrinsic robustness of microbial chassis to feedstock inhibitors.


Assuntos
Escherichia coli , Furaldeído , Álcoois Benzílicos/metabolismo , Escherichia coli/metabolismo , Etanol/metabolismo , Furaldeído/metabolismo , Furaldeído/farmacologia , NAD/metabolismo
14.
ChemSusChem ; 15(13): e202200501, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35438242

RESUMO

2,5-Furandicarboxylic acid (FDCA) is currently considered one of the most relevant bio-sourced building blocks, representing a fully sustainable competitor for terephthalic acid as well as the main component in green polymers such as poly(ethylene 2,5-furandicarboxylate) (PEF). The oxidation of biobased 5-hydroxymethylfurfural (HMF) represents the most straightforward approach to obtain FDCA, thus attracting the attention of both academia and industries, as testified by Avantium with the creation of a new plant expected to produce 5000 tons per year. Several approaches allow the oxidation of HMF to FDCA. Metal-mediated homogeneous and heterogeneous catalysis, metal-free catalysis, electrochemical approaches, light-mediated procedures, as well as biocatalytic processes share the target to achieve FDCA in high yield and mild conditions. This Review aims to give an up-to-date overview of the current developments in the main synthetic pathways to obtain FDCA from HMF, with a specific focus on process sustainability.


Assuntos
Ácidos Dicarboxílicos , Furaldeído , Furaldeído/análogos & derivados , Furaldeído/metabolismo , Furanos/metabolismo
15.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163804

RESUMO

NAD(H)/NADP(H)-dependent aldehyde/alcohol oxidoreductase (AAOR) participates in a wide range of physiologically important cellular processes by reducing aldehydes or oxidizing alcohols. Among AAOR substrates, furan aldehyde is highly toxic to microorganisms. To counteract the toxic effect of furan aldehyde, some bacteria have evolved AAOR that converts furan aldehyde into a less toxic alcohol. Based on biochemical and structural analyses, we identified Bacillus subtilis YugJ as an atypical AAOR that reduces furan aldehyde. YugJ displayed high substrate specificity toward 5-hydroxymethylfurfural (HMF), a furan aldehyde, in an NADPH- and Ni2+-dependent manner. YugJ folds into a two-domain structure consisting of a Rossmann-like domain and an α-helical domain. YugJ interacts with NADP and Ni2+ using the interdomain cleft of YugJ. A comparative analysis of three YugJ structures indicated that NADP(H) binding plays a key role in modulating the interdomain dynamics of YugJ. Noticeably, a nitrate ion was found in proximity to the nicotinamide ring of NADP in the YugJ structure, and the HMF-reducing activity of YugJ was inhibited by nitrate, providing insights into the substrate-binding mode of YugJ. These findings contribute to the characterization of the YugJ-mediated furan aldehyde reduction mechanism and to the rational design of improved furan aldehyde reductases for the biofuel industry.


Assuntos
Aldeído Redutase/química , Aldeído Redutase/metabolismo , Bacillus subtilis/enzimologia , Furaldeído/análogos & derivados , NADP/metabolismo , Níquel/metabolismo , Aldeído Redutase/genética , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Furaldeído/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Especificidade por Substrato
16.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443330

RESUMO

5-Hydroxymethylfurfural (5-HMF) is a harmful substance generated during the processing of black garlic. Our previous research demonstrated that impregnation of black garlic with epigallocatechin gallate (EGCG) could reduce the formation of 5-HMF. However, there is still a lack of relevant research on the mechanism and structural identification of EGCG inhibiting the production of 5-HMF. In this study, an intermediate product of 5-HMF, 3-deoxyglucosone (3-DG), was found to be decreased in black garlic during the aging process, and impregnation with EGCG for 24 h further reduced the formation of 3-DG by approximately 60% in black garlic compared with that in the untreated control. The aging-mimicking reaction system of 3-DG + EGCG was employed to determine whether the reduction of 3-DG was the underlying mechanism of decreased 5-HMF formation in EGCG-treated black garlic. The results showed that EGCG accelerated the decrease of 3-DG and further attenuated 5-HMF formation, which may be caused by an additional reaction with 3-DG, as evidenced by LC-MS/MS analysis. In conclusion, this study provides new insights regarding the role of EGCG in blocking 5-HMF formation.


Assuntos
Catequina/análogos & derivados , Desoxiglucose/análogos & derivados , Furaldeído/análogos & derivados , Alho/efeitos dos fármacos , Alho/metabolismo , Catequina/farmacologia , Desoxiglucose/biossíntese , Desoxiglucose/metabolismo , Relação Dose-Resposta a Droga , Furaldeído/metabolismo
17.
Nat Commun ; 12(1): 4946, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400632

RESUMO

5-Hydroxymethylfurfural (HMF) has emerged as a crucial bio-based chemical building block in the drive towards developing materials from renewable resources, due to its direct preparation from sugars and its readily diversifiable scaffold. A key obstacle in transitioning to bio-based plastic production lies in meeting the necessary industrial production efficiency, particularly in the cost-effective conversion of HMF to valuable intermediates. Toward addressing the challenge of developing scalable technology for oxidizing crude HMF to more valuable chemicals, here we report coordinated reaction and enzyme engineering to provide a galactose oxidase (GOase) variant with remarkably high activity toward HMF, improved O2 binding and excellent productivity (>1,000,000 TTN). The biocatalyst and reaction conditions presented here for GOase catalysed selective oxidation of HMF to 2,5-diformylfuran offers a productive blueprint for further development, giving hope for the creation of a biocatalytic route to scalable production of furan-based chemical building blocks from sustainable feedstocks.


Assuntos
Furaldeído/análogos & derivados , Furaldeído/metabolismo , Galactose Oxidase/genética , Galactose Oxidase/metabolismo , Engenharia de Proteínas , Biocatálise , Catálise , Domínio Catalítico , Furanos , Galactose Oxidase/química , Mutagênese , Oxirredução
18.
J Biosci Bioeng ; 132(1): 18-24, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33846091

RESUMO

2,5-Furandicarboxylic acid (FDCA) is a valuable compound that can be synthesized from biomass-derived hydroxymethylfurfural (HMF), and holds great potential as a promising replacement for petroleum-based terephthalic acid in the production of polyamides, polyesters, and polyurethanes used universally. However, an economical large-scale production strategy for HMF from lignocellulosic biomass is yet to be established. This study aimed to design a synthetic pathway that can yield FDCA from furfural, whose industrial production from lignocellulosic biomass has already been established. This artificial pathway consists of an oxidase and a prenylated flavin mononucleotide (prFMN)-dependent reversible decarboxylase, catalyzing furfural oxidation and carboxylation of 2-furoic acid, respectively. The prFMN-dependent reversible decarboxylase was identified in an isolated strain, Paraburkholderia fungorum KK1, whereas an HMF oxidase from Methylovorus sp. MP688 exhibited furfural oxidation activity and was used as a furfural oxidase. Using Escherichia coli cells coexpressing these proteins, as well as a flavin prenyltransferase, FDCA could be produced from furfural via 2-furoic acid in one pot.


Assuntos
Biocatálise , Ácidos Dicarboxílicos/metabolismo , Furaldeído/metabolismo , Furanos/metabolismo , Biomassa , Burkholderiaceae/enzimologia , Burkholderiaceae/metabolismo , Carboxiliases/metabolismo , Oxirredução , Oxirredutases/metabolismo
19.
Biotechnol Lett ; 43(5): 1043-1050, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33590377

RESUMO

OBJECTIVES: To determine furfural biotransformation capabilities of Acinetobacter baylyi ADP1 and Acinetobacter schindleri ACE. RESULTS: Acinetobacter baylyi ADP1 and A. schindleri ACE could not use furfural as sole carbon source but when acetate was used as substrate, ADP1 and ACE biotransformed 1 g furfural/l in 5 and 9 h, respectively. In both cases, the product of this biotransformation was difurfuryl-ether as shown by FT-IR and 1H and 13C NMR spectroscopy. The presence of furfural decreased the specific growth rate in acetate by 27% in ADP1 and 53% in ACE. For both strains, the MIC of furfural was 1.25 g/l. Nonetheless, ADP1 biotransformed 2 g furfural/l at a rate of 1 g/l/h in the stationary phase of growth. A transcriptional analysis of possible dehydrogenases involved in this biotransformation, identified that the areB and frmA genes were highly overexpressed after the exposure of ADP1 to furfural. The products of these genes are a benzyl-alcohol dehydrogenase and an alcohol dehydrogenase. CONCLUSIONS: Acinetobacter baylyi ADP1 is a candidate for the biological detoxification of furfural, a fermentation inhibitor present in lignocellulosic hydrolysates, with the possible direct involvement of the AreB and FrmA enzymes in the process.


Assuntos
Acinetobacter/metabolismo , Furaldeído/metabolismo , Acetatos/metabolismo , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Acinetobacter/crescimento & desenvolvimento , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotransformação , Furaldeído/farmacologia , Furanos/metabolismo , Furanos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
20.
Molecules ; 25(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937894

RESUMO

Citrus blend black teas are popular worldwide, due to its unique flavor and remarkable health benefits. However, the aroma characteristics, aroma profiles and key odorants of it remain to be distinguished and cognized. In this study, the aroma profiles of 12 representative samples with three different cultivars including citrus (Citrus reticulata), bergamot (Citrus bergamia), and lemon (Citrus limon) were determined by a novel approach combined head space-solid phase microextraction (HS-SPME) with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). A total of 348 volatile compounds, among which comprised esters (60), alkenes (55), aldehydes (45), ketones (45), alcohols (37), aromatic hydrocarbons (20), and some others were ultimately identified. The further partial least squares discrimination analysis (PLS-DA) certified obvious differences existed among the three groups with a screening result of 30 significant differential key volatile compounds. A total of 61 aroma-active compounds that mostly presented green, fresh, fruity, and sweet odors were determined in three groups with gas chromatography-olfactometry/mass spectrometry (GC-O/MS) assisted analysis. Heptanal, limonene, linalool, and trans-ß-ionone were considered the fundamental odorants associated with the flavors of these teas. Comprehensive analysis showed that limonene, ethyl octanoate, copaene, ethyl butyrate (citrus), benzyl acetate, nerol (bergamot) and furfural (lemon) were determined as the characterized odorants for each type.


Assuntos
Citrus/química , Odorantes/análise , Chá/química , Monoterpenos Acíclicos/metabolismo , Compostos de Benzil/química , Butiratos/química , Caprilatos/química , Furaldeído/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Análise dos Mínimos Quadrados , Limoneno/química , Olfatometria , Sesquiterpenos/química , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA