RESUMO
Fusobacterium nucleatum (F. nucleatum) is a Gram-negative anaerobic bacterium that plays a key role in the development of oral inflammation, such as periodontitis and gingivitis. In the last 10 years, F. nucleatum has been identified as a prevalent bacterium associated with colorectal adenocarcinoma and has also been linked to cancer progression, metastasis and poor disease outcome. While the role of F. nucleatum in colon carcinogenesis has been intensively studied, its role in gastric carcinogenesis is still poorly understood. Although Helicobacter pylori infection has historically been recognized as the strongest risk factor for the development of gastric cancer (GC), with recent advances in DNA sequencing technology, other members of the gastric microbial community, and F. nucleatum in particular, have received increasing attention. In this review, we summarize the existing knowledge on the involvement of F. nucleatum in gastric carcinogenesis and address the potential translational and clinical significance of F. nucleatum in GC.
Assuntos
Carcinogênese , Infecções por Fusobacterium , Fusobacterium nucleatum , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Fusobacterium nucleatum/patogenicidade , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/complicações , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/complicações , Helicobacter pylori/patogenicidade , Helicobacter pylori/genética , Fatores de Risco , Microbioma Gastrointestinal , Animais , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Estômago/microbiologia , Estômago/patologia , Adenocarcinoma/microbiologia , Adenocarcinoma/patologiaRESUMO
This study explores and verifies potential molecular targets through which KRAS mutations regulate the colonization of Fusobacterium nucleatum (FN) in colorectal cancer (CRC). This study combined multiple bioinformatics methods and biological assays. Through The Cancer Genome Atlas, Gene Expression Omnibus, Human Protein Atlas, immunohistochemistry, and co-culture assays, we further confirmed the differential expression of SERTAD4 in CRC. We delved deeper into examining how expression of SERTAD4 is linked with immune cell infiltration and the enrichment of potential pathways. Lastly, through bacterial phenotypic assays, we validated the function of SERTAD4. As a molecule associated with KRAS mutations and FN infection, the expression levels of SERTAD4 were downregulated in CRC. The diagnostic efficacy of SERTAD4 for CRC is not inferior to that of CEA. Low expression of SERTAD4 is associated with poorer overall survival in CRC. Correlation analysis found that increased expression of SERTAD4 is associated with various immune cell infiltrations and immune checkpoint genes. Finally, bacterial adhesion and invasion assays verify that SERTAD4 inhibits the adhesion and invasion abilities of FN in CRC. This study demonstrates that SERTAD4 exerts a protective role in CRC by inhibiting the colonization of FN.
Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Regulação Neoplásica da Expressão Gênica , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/patogenicidade , Humanos , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/genética , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/genética , Aderência Bacteriana , PrognósticoRESUMO
Radiotherapy resistance is the main cause of treatment failure among patients with nasopharyngeal carcinoma (NPC). Recently, increasing evidence has linked the presence of intratumoral Fusobacterium nucleatum (Fn) with the malignant progression and therapeutic resistance of multiple tumor types, but its influence on NPC has remained largely unknown. We found that Fn is prevalent in the tumor tissue of patients with NPC and is associated with radioresistance. Fn invaded and proliferated inside NPC cells and aggravated tumor progression. Mechanistically, Fn slowed mitochondrial dysfunction by promoting mitochondrial fusion and decreasing ROS generation, preventing radiation-induced oxidative damage. Fn inhibited PANoptosis by the SLC7A5/leucine-mTORC1 axis during irradiation stress, thus promoting radioresistance. Treatment with the mitochondria-targeted antibiotics or dietary restriction of leucine reduced intratumoral Fn load, resensitizing tumors to radiotherapy in vivo. These findings demonstrate that Fn has the potential to be a predictive marker for radioresistance and to help guide individualized treatment for patients with NPC.
Assuntos
Fusobacterium nucleatum , Leucina , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Tolerância a Radiação , Humanos , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/radioterapia , Fusobacterium nucleatum/patogenicidade , Leucina/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/microbiologia , Neoplasias Nasofaríngeas/radioterapia , Linhagem Celular Tumoral , Animais , Masculino , Progressão da Doença , Feminino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Camundongos , Camundongos Nus , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos da radiação , Pessoa de Meia-Idade , Camundongos Endogâmicos BALB CRESUMO
Fusobacterium nucleatum is an anaerobic commensal of the oral cavity recently reported to be associated with cancers of the gastrointestinal tract and oral squamous cell carcinoma (OSCC). In this study, we investigate the impact on oral keratinocytes of infection with a genetically diverse set of strains of F. nucleatum subsp. polymorphum recovered from patients with oral dysplasia (n=6). We employed H357 oral keratinocytes derived from a stage 1 OSCC and H376 cells derived from a stage 3 OSCC. Adhesion phenotypes were strain specific, with 3/6 clinical isolates examined exhibiting higher adherence to the stage 3 H376 cell line. Conversely, intracellular invasion was greatest in the H357 cells and was associated with specific transcriptional responses including autophagy and keratinization. Infection of both H357 and H376 cell lines induced transcriptional and cytokine responses linked to cancer cell migration and angiogenesis. F. nucleatum infection induced greater levels of MMP9 secretion in the H376 cell line which was associated with enhanced motility and invasion phenotypes. Additionally, the degree of F. nucleatum induced invasive growth by H376 cells varied between different clinical isolates of F. nucleatum subsp. polymorphum. Blockage of CCL5 signalling using the inhibitor metCCL5 resulted in reduced keratinocyte invasion. F. nucleatum infection also induced expression of the pro-angiogenic chemokine MCP-1 and the angiogenic growth factor VEGF-A resulting in increased capillary-like tube formation in HUVEC cells, most significantly in H376 cells. Treatment of HUVEC cells with resveratrol, a VEGF-A signalling inhibitor, significantly attenuated F. nucleatum induced tube formation. Our data indicate that the outcomes of F. nucleatum-oral cell interactions can vary greatly depending on the bacterial genotype and the malignant phenotype of the host cell.
Assuntos
Infecções por Fusobacterium , Fusobacterium nucleatum , Queratinócitos , Neoplasias Bucais , Humanos , Fusobacterium nucleatum/patogenicidade , Queratinócitos/microbiologia , Neoplasias Bucais/microbiologia , Neoplasias Bucais/patologia , Infecções por Fusobacterium/microbiologia , Linhagem Celular Tumoral , Movimento Celular , Aderência Bacteriana , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Neovascularização Patológica/microbiologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Citocinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Boca/microbiologiaRESUMO
Fusobacterium nucleatum (F. nucleatum), an anaerobic resident of the oral cavity, is increasingly recognized as a contributing factor to ulcerative colitis (UC). The adhesive properties of F. nucleatum are mediated by its key virulence protein, FadA adhesin. However, further investigations are needed to understand the pathogenic mechanisms of this oral pathogen in UC. The present study aimed to explore the role of the FadA adhesin in the colonization and invasion of oral F. nucleatum in dextran sulphate sodium (DSS)-induced colitis mice via molecular techniques. In this study, we found that oral inoculation of F. nucleatum strain carrying the FadA adhesin further exacerbated DSS-induced colitis, leading to elevated alveolar bone loss, disease severity, and mortality. Additionally, CDH1 gene knockout mice treated with DSS presented increases in body weight and alveolar bone density, as well as a reduction in disease severity. Furthermore, FadA adhesin adhered to its mucosal receptor E-cadherin, leading to the phosphorylation of ß-catenin and the degradation of IκBα, the activation of the NF-κB signalling pathway and the upregulation of downstream cytokines. In conclusion, this research revealed that oral inoculation with F. nucleatum facilitates experimental colitis via the secretion of the virulence adhesin FadA. Targeting the oral pathogen F. nucleatum and its virulence factor FadA may represent a promising therapeutic approach for a portion of UC patients.
Assuntos
Adesinas Bacterianas , Colite Ulcerativa , Infecções por Fusobacterium , Fusobacterium nucleatum , Animais , Humanos , Camundongos , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/genética , Aderência Bacteriana , Caderinas/metabolismo , Colite Ulcerativa/microbiologia , Sulfato de Dextrana , Modelos Animais de Doenças , Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/patogenicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismoRESUMO
Fusobacterium nucleatum can bind to host cells and potentiate intestinal tumorigenesis. Here we used a genome-wide screen to identify an adhesin, RadD, which facilitates the attachment of F. nucleatum to colorectal cancer (CRC) cells in vitro. RadD directly binds to CD147, a receptor overexpressed on CRC cell surfaces, which initiated a PI3K-AKT-NF-κB-MMP9 cascade, subsequently enhancing tumorigenesis in mice. Clinical specimen analysis showed that elevated radD gene levels in CRC tissues correlated positively with activated oncogenic signalling and poor patient outcomes. Finally, blockade of the interaction between RadD and CD147 in mice effectively impaired F. nucleatum attachment and attenuated F. nucleatum-induced oncogenic response. Together, our study provides insights into an oncogenic mechanism driven by F. nucleatum RadD and suggests that the RadD-CD147 interaction could be a potential therapeutic target for CRC.
Assuntos
Adesinas Bacterianas , Aderência Bacteriana , Basigina , Carcinogênese , Neoplasias Colorretais , Fusobacterium nucleatum , Fusobacterium nucleatum/patogenicidade , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/fisiologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Animais , Humanos , Camundongos , Basigina/metabolismo , Basigina/genética , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/complicações , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Transdução de Sinais , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , FemininoRESUMO
Sialic acid metabolism in oral bacteria is a complex process involving nutrient acquisition, immune evasion, cell surface modification, and the production of metabolites that contribute to bacterial persistence and virulence in the oral cavity. In addition to causing various periodontal diseases, certain oral pathogenic bacteria, such as Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum, can induce inflammatory reactions and influence the immunity of host cells. These associations with host cells are linked to various diseases, particularly colorectal cancer and Alzheimer's disease. Sialic acid can be found in the host oral mucosa, saliva, or food residues in the oral cavity, and it may promote the colonization of oral bacteria and contribute to disease development. This review aims to summarize the role of sialic acid metabolism in oral bacteria and discuss its effect on the pathogenesis of colorectal cancer and Alzheimer's disease.
Assuntos
Doença de Alzheimer , Neoplasias Colorretais , Ácido N-Acetilneuramínico , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/microbiologia , Ácido N-Acetilneuramínico/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Boca/microbiologia , Bactérias/metabolismo , Bactérias/patogenicidade , Fusobacterium nucleatum/metabolismo , Fusobacterium nucleatum/patogenicidade , AnimaisRESUMO
OBJECTIVES: Periodontitis is associated with Fusobacterium nucleatum (F.n) infection. Although the colonization of renal tissue by F.n is well documented, its specific role in kidney disease has yet to be determined. This study aimed to investigate the potential association between F.n-induced periodontitis and renal interstitial fibrosis. METHODS: The rat gingival sulcus was injected with F.n suspension, while the control group (NC) was injected with PBS. The levels of total protein (TP), albumin (ALB), creatinine, and urea nitrogen (BUN) in rat serum and/or urine were quantified using the appropriate kits. Renal interstitial fibrosis and epithelial-mesenchymal transition (EMT) were evaluated in rats using Masson staining, Periodic Schiff-Methenamine (PASM) staining, and immunohistochemical staining. The levels of fibrosis- and EMT-related proteins and the TGF-ß/SMAD2/3 and ß-catenin signaling pathways were determined using Western blot analysis. F.n in the kidney tissues was quantitatively determined using bacterial 16S rRNA technology. RESULTS: Serum levels of TP, ALB, creatinine, and BUN were not significantly decreased in F.n-infected rats with periodontitis. The levels of creatinine and ALB in the urine were not statistically different between two groups. Masson and PASM staining showed that F.n-induced periodontitis could promote renal interstitial fibrosis in rats. The levels of collagen I, fibronectin (FN), vimentin, and α-SMA were upregulated in the kidney tissues of rats with F.n-induced periodontitis and in F.n-treated HK-2 cells. However, E-cadherin levels were reduced. F.n promoted renal interstitial and HK-2 cell fibrosis in rats by modulating the TGF-ß/SMAD2/3 and ß-catenin signaling pathways. F.n colonization increased renal interstitial fibrosis in rats. CONCLUSION: F.n-induced periodontitis promoted EMT by activating the TGF-ß/SMAD2/3 and ß-catenin signaling pathways, thus promoting renal interstitial fibrosis in rats.
Assuntos
Transição Epitelial-Mesenquimal , Fibrose , Fusobacterium nucleatum , Rim , Periodontite , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta , beta Catenina , Animais , Fusobacterium nucleatum/patogenicidade , beta Catenina/metabolismo , Ratos , Periodontite/microbiologia , Periodontite/complicações , Periodontite/patologia , Periodontite/metabolismo , Masculino , Fator de Crescimento Transformador beta/metabolismo , Proteína Smad3/metabolismo , Rim/patologia , Rim/metabolismo , Proteína Smad2/metabolismo , Nefropatias/metabolismo , Nefropatias/microbiologia , Nefropatias/patologia , Nefropatias/etiologia , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/metabolismo , Ratos Sprague-DawleyRESUMO
Fusobacterium nucleatum (F. nucleatum) is closely correlated with tumorigenesis in colorectal cancer (CRC). We aimed to investigate the effects of host norepinephrine on the carcinogenicity of F. nucleatum in CRC and reveal the underlying mechanism. The results revealed that both norepinephrine and bacterial quorum sensing (QS) molecule auto-inducer-2 (AI-2) were positively associated with the progression of F. nucleatum related CRC (p < 0.01). In vitro studies, norepinephrine induced upregulation of QS-associated genes and promoted the virulence and proliferation of F. nucleatum. Moreover, chronic stress significantly increased the colon tumour burden of ApcMin/+ mice infected with F. nucleatum (p < 0.01), which was decreased by a catecholamine inhibitor (p < 0.001). Our findings suggest that stress-induced norepinephrine may promote the progression of F. nucleatum related CRC via bacterial QS signalling. These preliminary data provide a novel strategy for the management of pathogenic bacteria by targeting host hormones-bacterial QS inter-kingdom signalling.
Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Norepinefrina , Percepção de Quorum , Transdução de Sinais , Percepção de Quorum/efeitos dos fármacos , Fusobacterium nucleatum/patogenicidade , Fusobacterium nucleatum/efeitos dos fármacos , Fusobacterium nucleatum/fisiologia , Animais , Neoplasias Colorretais/microbiologia , Norepinefrina/farmacologia , Camundongos , Humanos , Progressão da Doença , Infecções por Fusobacterium/microbiologia , Virulência , Homosserina/análogos & derivados , Homosserina/metabolismo , Camundongos Endogâmicos C57BL , Masculino , LactonasRESUMO
Fusobacterium nucleatum, a gram-negative oral bacterium, has been consistently validated as a strong contributor to the progression of several types of cancer, including colorectal (CRC) and pancreatic cancer. While previous in vitro studies have shown that intracellular F. nucleatum enhances malignant phenotypes such as cell migration, the dependence of this regulation on features of the tumor microenvironment (TME) such as oxygen levels are wholly uncharacterized. Here we examine the influence of hypoxia in facilitating F. nucleatum invasion and its effects on host responses focusing on changes in the global epigenome and transcriptome. Using a multiomic approach, we analyze epigenomic alterations of H3K27ac and global transcriptomic alterations sustained within a hypoxia and normoxia conditioned CRC cell line HCT116 at 24 h following initial infection with F. nucleatum. Our findings reveal that intracellular F. nucleatum activates signaling pathways and biological processes in host cells similar to those induced upon hypoxia conditioning in the absence of infection. Furthermore, we show that a hypoxic TME favors F. nucleatum invasion and persistence and therefore infection under hypoxia may amplify malignant transformation by exacerbating the effects induced by hypoxia alone. These results motivate future studies to investigate host-microbe interactions in tumor tissue relevant conditions that more accurately define parameters for targeted cancer therapies.
Assuntos
Neoplasias Colorretais , Epigenoma , Infecções por Fusobacterium , Fusobacterium nucleatum , Oxigênio , Transcriptoma , Humanos , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/fisiologia , Fusobacterium nucleatum/patogenicidade , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células HCT116 , Infecções por Fusobacterium/genética , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/metabolismo , Oxigênio/metabolismo , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão GênicaRESUMO
Periodontitis is linked to the onset and progression of oral squamous cell carcinoma (OSCC), an epidemiologically frequent and clinically aggressive malignancy. In this context, Fusobacterium (F.) nucleatum and Porphyromonas (P.) gingivalis, two bacteria that cause periodontitis, are found in OSCC tissues as well as in oral premalignant lesions, where they exert pro-tumorigenic activities. Since the two bacteria are present also in endodontic diseases, playing a role in their pathogenesis, here we analyze the literature searching for information on the impact that endodontic infection by P. gingivalis or F. nucleatum could have on cellular and molecular events involved in oral carcinogenesis. Results from the reviewed papers indicate that infection by P. gingivalis and/or F. nucleatum triggers the production of inflammatory cytokines and growth factors in dental pulp cells or periodontal cells, affecting the survival, proliferation, invasion, and differentiation of OSCC cells. In addition, the two bacteria and the cytokines they induce halt the differentiation and stimulate the proliferation and invasion of stem cells populating the dental pulp or the periodontium. Although most of the literature confutes the possibility that bacteria-induced endodontic inflammatory diseases could impact on oral carcinogenesis, the papers we have analyzed and discussed herein recommend further investigations on this topic.
Assuntos
Infecções por Fusobacterium , Fusobacterium nucleatum , Neoplasias Bucais , Porphyromonas gingivalis , Humanos , Porphyromonas gingivalis/patogenicidade , Fusobacterium nucleatum/patogenicidade , Neoplasias Bucais/microbiologia , Neoplasias Bucais/patologia , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/complicações , Carcinogênese , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/complicações , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/patologia , Periodontite/microbiologia , Animais , Citocinas/metabolismoRESUMO
Gynecological and obstetric infectious diseases are crucial to women's health. There is growing evidence that links the presence of Fusobacterium nucleatum (F. nucleatum), an anaerobic oral commensal and potential periodontal pathogen, to the development and progression of various human diseases, including cancers. While the role of this opportunistic oral pathogen has been extensively studied in colorectal cancer in recent years, research on its epidemiological evidence and mechanistic link to gynecological diseases (GDs) is still ongoing. Thus, the present review, which is the first of its kind, aims to undertake a comprehensive and critical reappraisal of F. nucleatum, including the genetics and mechanistic role in promoting adverse pregnancy outcomes (APOs) and various GDs, including cancers. Additionally, this review discusses new conceptual advances that link the immunomodulatory role of F. nucleatum to the development and progression of breast, ovarian, endometrial, and cervical carcinomas through the activation of various direct and indirect signaling pathways. However, further studies are needed to explore and elucidate the highly dynamic process of host-F. nucleatum interactions and discover new pathways, which will pave the way for the development of better preventive and therapeutic strategies against this pathobiont.
Assuntos
Fusobacterium nucleatum , Resultado da Gravidez , Humanos , Feminino , Fusobacterium nucleatum/patogenicidade , Gravidez , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/microbiologia , Doenças dos Genitais Femininos/microbiologia , Neoplasias/microbiologiaRESUMO
Fusobacterium (F.) nucleatum is a carcinogenesis microbiota in colorectal cancer (CRC). Growing evidence shows that F. nucleatum contributes to chemoresistance. Ferroptosis is reported to restore the susceptibility of resistant cells to chemotherapy. However, the role of gut microbiota affecting ferroptosis in chemoresistance remains unclear. Here, we examined the CRC tissues of patients using 16S rRNA sequencing to investigate the possible connection between gut microbiota dysbiosis and the relapse of CRC. We found that a high abundance of F. nucleatum in CRC tissue is associated with relapse. We further demonstrated that F. nucleatum induced oxaliplatin resistance in vitro and in vivo. The transcriptome of an F. nucleatum-infected cell revealed ferroptosis was associated with F. nucleatum infection. We perform malondialdehyde, ferrous iron, and glutathione assays to verify the effect of F. nucleatum on ferroptosis under oxaliplatin treatment in vivo and in vitro. Mechanistically, F. nucleatum promoted oxaliplatin resistance by overexpressing GPX4 and then inhibiting ferroptosis. E-cadherin/ß-catenin/TCF4 pathway conducted the GPX4 overexpression effect of F. nucleatum. The chromatin immuno-precipitation quantitative PCR (CHIP-qPCR) and dual-luciferase reporter assay showed that F. nucleatum promoted TCF4 binding with GPX4. We also determined the E-cadherin/ß-catenin/TCF4/GPX4 axis related to tumor tissue F. nucleatum status and CRC relapse clinically. Here, we revealed the contribution of F. nucleatum to oxaliplatin resistance by inhibiting ferroptosis in CRC. Targeting F. nucleatum and ferroptosis will provide valuable insight into chemoresistance management and may improve outcomes for patients with CRC.
Assuntos
Caderinas , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Fusobacterium nucleatum , Microbioma Gastrointestinal , Oxaliplatina , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , beta Catenina , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Caderinas/metabolismo , Caderinas/genética , Oxaliplatina/farmacologia , beta Catenina/metabolismo , beta Catenina/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Animais , Fusobacterium nucleatum/patogenicidade , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Antígenos CD/metabolismo , Antígenos CD/genética , Feminino , Linhagem Celular Tumoral , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/tratamento farmacológico , Infecções por Fusobacterium/metabolismo , Infecções por Fusobacterium/genética , Infecções por Fusobacterium/patologia , Disbiose/microbiologia , Fator de Transcrição 4/metabolismo , Fator de Transcrição 4/genética , Camundongos NusAssuntos
Neoplasias Colorretais , Infecções por Fusobacterium , Fusobacterium nucleatum , Humanos , Neoplasias Colorretais/complicações , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Microbioma Gastrointestinal , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/isolamento & purificação , Fusobacterium nucleatum/patogenicidade , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/genética , Infecções por Fusobacterium/microbiologiaRESUMO
Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.
Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Animais , Humanos , Camundongos , Adenoma/microbiologia , Estudos de Casos e Controles , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Fezes/microbiologia , Fusobacterium nucleatum/classificação , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/isolamento & purificação , Fusobacterium nucleatum/patogenicidade , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Genoma Bacteriano/genética , Boca/microbiologia , FemininoRESUMO
BACKGROUND: Cancer impacts millions of lives globally each year, with approximately 10 million cancer-related deaths recorded worldwide in 2020. Mounting research has recognised the human microbiome as a key area of interest in the pathophysiology of various human diseases including cancer tumorigenesis, progression and in disease outcome. It is suggested that approximately 20% of human cancers may be linked to microbes. Certain residents of the human microbiome have been identified as potentially playing a role, including: Helicobacter pylori, Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis and Porphyromonas gingivalis. MAIN BODY: In this review, we explore the current evidence that indicate a link between the human microbiome and cancer. Microbiome compositional changes have been well documented in cancer patients. Furthermore, pathogenic microbes harbouring specific virulence factors have been implicated in driving the carcinogenic activity of various malignancies including colorectal, gastric and pancreatic cancer. The associated genetic mechanisms with possible roles in cancer will be outlined. It will be indicated which microbes have a potential direct link with cancer cell proliferation, tumorigenesis and disease progression. Recent studies have also linked certain microbial cytotoxins and probiotic strains to cancer cell death, suggesting their potential to target the tumour microenvironment given that cancer cells are integral to its composition. Studies pertaining to such cytotoxic activity have suggested the benefit of microbial therapies in oncological treatment regimes. It is also apparent that bacterial pathogenic protein products encoded for by certain loci may have potential as oncogenic therapeutic targets given their possible role in tumorigenesis. CONCLUSION: Research investigating the impact of the human microbiome in cancer has recently gathered pace. Vast amounts of evidence indicate the human microbiome as a potential player in tumorigenesis and progression. Promise in the development of cancer biomarkers and in targeted oncological therapies has also been demonstrated, although more studies are needed. Despite extensive in vitro and in vivo research, clinical studies involving large cohorts of human patients are lacking. The current literature suggests that further intensive research is necessary to validate both the role of the human microbiome in cancer, and the use of microbiome modification in cancer therapy.
Assuntos
Carcinogênese/genética , Neoplasias Colorretais/terapia , Microbiota/genética , Animais , Bacteroides fragilis/genética , Bacteroides fragilis/patogenicidade , Carcinogênese/patologia , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/patogenicidade , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Camundongos , Microbiota/fisiologia , Probióticos , Microambiente Tumoral , Fatores de VirulênciaRESUMO
Fusobacterium nucleatum, found in the oral cavity, influences the progression of gastrointestinal cancers. Additionally, our previous results suggested that F. nucleatum is associated with poor patient prognosis in esophageal squamous cell carcinoma (ESCC). However, the mechanism by which F. nucleatum affects aggressive tumor behavior has yet to be elucidated. We have conducted this clinical, in vitro, and in vivo study to clarify the mechanism of ESCC progression induced by F. nucleatum. Transmission electron microscopy revealed that F. nucleatum invaded and occupied ESCC cells and impacted gene and protein expression. Comprehensive mRNA expression and pathway enrichment analyses of F. nucleatum-treated ESCC cells identified the "NF-κB" and "NOD-like receptor" signaling pathways as enriched. We confirmed the relationship between the presence of F. nucleatum and NF-κB activation in resected ESCC tissues. Furthermore, F. nucleatum-treated ESCC cells demonstrated enhanced growth ability, and NF-κB activation, as well as overexpression of NOD1 and phosphorylated RIPK2. Furthermore, treated cells showed accelerated tumor growth, with NF-κB activation in xenograft models. F. nucleatum invaded ESCC cells and induced the NF-κB pathway through the NOD1/RIPK2 pathway, leading to tumor progression.
Assuntos
Neoplasias Esofágicas/microbiologia , Carcinoma de Células Escamosas do Esôfago/microbiologia , Infecções por Fusobacterium/metabolismo , Fusobacterium nucleatum/patogenicidade , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/fisiologiaRESUMO
Periodontitis is prevalent in half of the adult population and raises critical health concerns as it has been recently associated with an increased risk of cancer. While information about the topic remains somewhat scarce, a deeper understanding of the underlying mechanistic pathways promoting neoplasia in periodontitis patients is of fundamental importance. This manuscript presents the literature as well as a panel of tables and figures on the molecular mechanisms of Porphyromonas gingivalis and Fusobacterium nucleatum, two main oral pathogens in periodontitis pathology, involved in instigating tumorigenesis. We also present evidence for potential links between the RANKL-RANK signaling axis as well as circulating cytokines/leukocytes and carcinogenesis. Due to the nonconclusive data associating periodontitis and cancer reported in the case and cohort studies, we examine clinical trials relevant to the topic and summarize their outcome.
Assuntos
Neoplasias Bucais/microbiologia , Doenças Periodontais/microbiologia , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Citocinas/metabolismo , Progressão da Doença , Fusobacterium nucleatum/patogenicidade , Regulação da Expressão Gênica , Humanos , Neoplasias Bucais/metabolismo , Doenças Periodontais/metabolismo , Porphyromonas gingivalis/patogenicidade , Transdução de SinaisRESUMO
OBJECTIVE: Uncontrolled production of Interleukin-1ß (IL-1ß), a major proinflammatory cytokine, is associated with tissue destruction in periodontal disease. IL-1ß production is controlled by inflammasomes which are multiprotein regulatory complexes. The current study aimed to elucidate potential regulatory pathways by monitoring the effects of periodontal pathogens Fusobacterium nucleatum (Fn) and Porphyromonas gingivalis (Pg) on inflammasomes and their regulators in human gingival fibroblasts (HGFs) in vitro. METHODS: HGFs were exposed to Fn and Pg alone or in combination for 24 hr at a multiplicity of infection of 100, ±30 min exposure with 5 mM adenosine triphosphate (ATP) incubation. Gene expression of NLRP3 and AIM2, inflammasome regulatory proteins POP1, CARD16 and TRIM16, and inflammasome components ASC and CASPASE 1, and IL-1ß, were evaluated by RT-PCR. Pro- and mature IL-1ß levels were monitored intracellularly by immunocytochemistry and extracellularly by ELISA. RESULTS: Fn + ATP significantly upregulated NLRP3, AIM2, IL-1ß, ASC, and CASPASE 1; however, it downregulated POP1 and TRIM16. Pg + ATP downregulated NLRP3, ASC, POP1, but upregulated IL-1ß and CARD16. Pg + Fn+ATP significantly upregulated AIM2, IL-1ß and CARD16, and downregulated POP1, TRIM16, and CASPASE 1. Pg + ATP exposure significantly increased pro- and mature IL-1ß production. CONCLUSION: Bacterial exposure with ATP may deregulate IL-1ß by dysregulating inflammasomes and their regulators in HGFs.
Assuntos
Fibroblastos/imunologia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Células Cultivadas , Fibroblastos/microbiologia , Fusobacterium nucleatum/patogenicidade , Gengiva/citologia , Humanos , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Porphyromonas gingivalis/patogenicidadeRESUMO
As a potential biomarker, there is increasing evidence showing that Fusobacterium nucleatum is positively correlated with the occurrence and development of colorectal cancer. Although antibiotics were expected to eliminate F. nucleatum, the side effects associated with gut microbiotal disorders have to be considered. Here, by performing shotgun metagenomic and transcriptome sequencing, we systematically evaluated the antagonistic effects of probiotic Lactiplantibacillus plantarum HNU082 (Lp082) on F. nucleatum in vivo and in vitro. The results showed that the F. nucleatum invasion significantly altered the host intestinal microbiome including the microbial composition, specific species, metabolic pathways and metabolites, as well as impacted the transcriptome of the intestinal epithelial cells. Moreover, the F. nucleatum invasion triggered inflammatory cytokines and inflammatory responses in the intestine but did not develop into colorectal cancer. Excitingly, the Lp082 intervention inhibited the growth of F. nucleatum both in vivo and in vitro and alleviated the inflammatory response introduced by F. nucleatum invasion. Further network-based mechanism exploration demonstrated that Lp082, which negatively correlated to F. nucleatum, maintained the intestinal microbiome homeostasis and prompted the production of beneficial metabolites in the intestine which decreased the expression of inflammatory cytokines in a mouse model. The present research suggested a feasible probiotic intervention strategy for F. nucleatum antagonism in vivo, which may prevent colorectal cancer at the early stage.