RESUMO
Type I spiral ganglion neurons are peripheral neurons essential for hearing perception. While they can be subdivided in mice based on characteristic gene expression patterns, detailed examinations of these subtypes in primates and humans are lacking. In this study, we investigated the developmental subtypes of spiral ganglion neurons in the common marmoset (Callithrix jacchus). We confirmed that Type I spiral ganglion can be divided based on the characteristic gene expression patterns of several marker genes. However, some combinations of these genes differ from those in rodents, suggesting common marmoset's suitability for advancing our understanding of human cochlear development. Additionally, identifying the essential time points for subtype specifications and subsequent maturation will aid in studying the primate-specific developmental biology of the inner ear. This could lead to new treatment strategies for hearing loss in humans and be valuable for studying age-related hearing loss, as well as designing regenerative therapies.
Assuntos
Callithrix , Neurônios , Especificidade da Espécie , Gânglio Espiral da Cóclea , Animais , Gânglio Espiral da Cóclea/citologia , Neurônios/citologia , Neurônios/metabolismo , Modelos Animais , Camundongos , HumanosRESUMO
Spiral ganglion neurons (SGNs) are primary sensory afferent neurons that relay acoustic information from the cochlear inner hair cells (IHCs) to the brainstem. The response properties of different SGNs diverge to represent a wide range of sound intensities in an action-potential code. This biophysical heterogeneity is established during pre-hearing stages of development, a time when IHCs fire spontaneous Ca2+ action potentials that drive glutamate release from their ribbon synapses onto the SGN terminals. The role of spontaneous IHC activity in the refinement of SGN characteristics is still largely unknown. Using pre-hearing otoferlin knockout mice (Otof-/-), in which Ca2+-dependent exocytosis in IHCs is abolished, we found that developing SGNs fail to upregulate low-voltage-activated K+-channels and hyperpolarisation-activated cyclic-nucleotide-gated channels. This delayed maturation resulted in hyperexcitable SGNs with immature firing characteristics. We have also shown that SGNs that synapse with the pillar side of the IHCs selectively express a resurgent K+ current, highlighting a novel biophysical marker for these neurons. RNA-sequencing showed that several K+ channels are downregulated in Otof-/- mice, further supporting the electrophysiological recordings. Our data demonstrate that spontaneous Ca2+-dependent activity in pre-hearing IHCs regulates some of the key biophysical and molecular features of the developing SGNs. KEY POINTS: Ca2+-dependent exocytosis in inner hair cells (IHCs) is otoferlin-dependent as early as postnatal day 1. A lack of otoferlin in IHCs affects potassium channel expression in SGNs. The absence of otoferlin is associated with SGN hyperexcitability. We propose that type I spiral ganglion neuron functional maturation depends on IHC exocytosis.
Assuntos
Células Ciliadas Auditivas Internas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas de Membrana , Camundongos Knockout , Gânglio Espiral da Cóclea , Animais , Células Ciliadas Auditivas Internas/fisiologia , Células Ciliadas Auditivas Internas/metabolismo , Gânglio Espiral da Cóclea/fisiologia , Gânglio Espiral da Cóclea/metabolismo , Camundongos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Regulação para Cima , Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Camundongos Endogâmicos C57BL , Exocitose/fisiologia , Potenciais de Ação/fisiologiaRESUMO
Sensorineural hearing loss is one of the most prevalent sensory deficits. Spiral ganglion neurons (SGNs) exhibit very limited regeneration capacity and their degeneration leads to profound hearing loss. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) have been demonstrated to repair tissue damage in various degenerative diseases. However, the effects of MSC-sEV on SGN degeneration remain unclear. In this study, we investigated the efficacy of MSC-sEV for protection against ouabain-induced SGN degeneration. MSC-sEV were derived from rat bone marrow and their components related to neuron growth were determined by proteomic analysis. In primary culture SGNs, MSC-sEV significantly promoted neurite growth and growth cone development. The RNA-Seq analysis of SGNs showed that enriched pathways include neuron development and axon regeneration, consistent with proteomics. In ouabain induced SGN degeneration rat model, MSC-sEV administration via intratympanic injection significantly enhanced SGN survival and mitigated hearing loss. Furthermore, after ouabain treatment, SGNs displayed evident signs of apoptosis, including nuclei condensation and fragmentation, with numerous cells exhibiting TUNEL-positive. However, administration of MSC-sEV effectively decreased the number of TUNEL-positive cells and reduced caspase-3 activation. In conclusion, our findings demonstrate the potential of MSC-sEV in preventing SGN degeneration and promoting neural growth, suggesting intratympanic injection of MSC-sEV is a specific and efficient strategy for neural hearing loss.
Assuntos
Vesículas Extracelulares , Injeção Intratimpânica , Células-Tronco Mesenquimais , Ouabaína , Ratos Sprague-Dawley , Gânglio Espiral da Cóclea , Animais , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/patologia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Ouabaína/farmacologia , Ratos , Masculino , Apoptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Degeneração Neural/patologia , Células Cultivadas , Modelos Animais de Doenças , Perda Auditiva Neurossensorial/patologiaRESUMO
Sound is encoded by action potentials in spiral ganglion neurons (SGNs), the auditory afferents from the cochlea. Rapid action potential transmission along SGNs is crucial for quick reactions to sounds, and binaural differences in action potential arrival time at the SGN output synapses enable sound localization based on interaural time or phase differences. SGN myelination increases conduction speed but other cellular changes may contribute. We show that nodes of Ranvier along peripherally and centrally directed SGN neurites form around hearing onset, but peri-somatic nodes mature later. There follows an adjustment of nodal geometry, notably a decrease in length and increase in diameter. Computational modeling predicts this increases conduction speed by >4%, and that four additional myelin wraps would be required on internodes to achieve the same conduction speed increase. We propose that nodal geometry changes optimize signal conduction for mature sound coding and decrease the energy needed for myelination.
Assuntos
Potenciais de Ação , Nós Neurofibrosos , Gânglio Espiral da Cóclea , Animais , Nós Neurofibrosos/metabolismo , Gânglio Espiral da Cóclea/citologia , Potenciais de Ação/fisiologia , Bainha de Mielina/metabolismo , Camundongos , Masculino , Cóclea/fisiologia , FemininoRESUMO
Cisplatin is a chemotherapeutic agent widely used to treat solid tumors. However, it can also be highly ototoxic, resulting in high-frequency hearing loss. Cisplatin causes degeneration of hair cells (HCs) and spiral ganglion neurons (SGNs) in the inner ear, which are essential components of the hearing process and cannot be regenerated in mammals. As the affected cells primarily die by apoptosis, we tested several anti-apoptotic small molecules to protect these cells from drug-induced toxicity. We found that the general caspase inhibitor Emricasan could significantly counteract the toxic effects of cisplatin in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells, phoenix auditory cells, and primary SGNs. Importantly, the anti-cytotoxic effect in neuronal cells was even more pronounced than the effect of sodium thiosulfate (STS), which is currently the only approved prevention option for cisplatin-induced ototoxicity. Finally, we tested the protective effect of Emricasan treatment in the context of another ototoxic drug, i.e., the aminoglycoside antibiotic neomycin, and again found a significant increase in cell viability when the cultures were co-treated with Emricasan. These results suggest a promising strategy to prevent ototoxicity in patients by temporarily blocking the apoptotic pathway when applying cisplatin or aminoglycoside antibiotics. KEY MESSAGES: Anti-apoptotic small molecules can reduce cisplatin-induced toxicity. Emricasan can effectively exert its anti-apoptotic effect on cochlear cells. Strong protection from cisplatin- and neomycin-induced cytotoxicity with Emricasan. Sodium thiosulfate and Emricasan provide similar protective effects to cisplatin-treated cells. Emricasan is more potent than sodium thiosulfate in reducing neomycin-induced cytotoxicity.
Assuntos
Inibidores de Caspase , Cisplatino , Neomicina , Cisplatino/efeitos adversos , Cisplatino/toxicidade , Cisplatino/farmacologia , Animais , Neomicina/farmacologia , Neomicina/toxicidade , Inibidores de Caspase/farmacologia , Camundongos , Apoptose/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Cóclea/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Gânglio Espiral da Cóclea/efeitos dos fármacos , Ototoxicidade/etiologia , Ototoxicidade/prevenção & controle , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular , Células CultivadasRESUMO
Mammalian cochlea spiral ganglion neurons (SGNs) are crucial for sound transmission, they can be damaged by chemotherapy drug cisplatin and lead to irreversible sensorineural hearing loss (SNHL), while such damage can also render cochlear implants ineffective. However, the mechanisms underlying cisplatin-induced SGNs damage and subsequent SNHL are still under debate and there is no currently effective clinical treatment. Here, this study demonstrates that ferroptosis is triggered in SGNs following exposure to cisplatin. Inhibiting ferroptosis protects against cisplatin-induced SGNs damage and hearing loss, while inducing ferroptosis intensifies these effects. Furthermore, cisplatin prompts nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in SGNs, while knocking down NCOA4 mitigates cisplatin-induced ferroptosis and hearing loss. Notably, the upstream regulator of NCOA4 is identified and transcription factor forkhead box O1 (FOXO1) is shown to directly suppress NCOA4 expression in SGNs. The knocking down of FOXO1 amplifies NCOA4-mediated ferritinophagy, increases ferroptosis and lipid peroxidation, while disrupting the interaction between FOXO1 and NCOA4 in NCOA4 knock out mice prevents the cisplatin-induced SGN ferroptosis and hearing loss. Collectively, this study highlights the critical role of the FOXO1-NCOA4 axis in regulating ferritinophagy and ferroptosis in cisplatin-induced SGNs damage, offering promising therapeutic targets for SNHL mitigation.
Assuntos
Cisplatino , Ferroptose , Proteína Forkhead Box O1 , Coativadores de Receptor Nuclear , Gânglio Espiral da Cóclea , Animais , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Camundongos , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/genética , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Camundongos Knockout , Modelos Animais de Doenças , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Cóclea/metabolismo , Cóclea/efeitos dos fármacos , Ferritinas/metabolismo , Ferritinas/genética , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismoRESUMO
Afferent synapses between inner hair cells (IHCs) and the type I spiral ganglion neurons (SGNs) in the cochlea provide over 95% of sensory signals for auditory perception in the brain. However, these afferent synapses are particularly vulnerable to damage, for example from excitotoxicity, and exposure to noise in the environment which often leads to noise-induced cochlear synaptopathy (NICS). In this study, we simulated excitotoxic trauma by incubating kainic acid, a non-desensitizing agonist for AMPA type glutamate receptors on cultured cochleae. The possible protective effects of amitriptyline against NICS were examined. We found that, in IHCs, amitriptyline reversed the decrease of Ca2+ current and exocytosis caused by excitotoxic trauma. In SGNs, amitriptyline promoted the recovery of neurite loss caused by excitotoxic trauma. Furthermore, we found that the protective effects of amitriptyline are likely mediated by suppressing apoptosis factors that were upregulated during excitotoxic trauma. In conclusion, our results suggest that amitriptyline could protect afferent synapses in the cochlea from NICS, making it a potential drug candidate for hearing protection.
Assuntos
Amitriptilina , Cóclea , Ácido Caínico , Gânglio Espiral da Cóclea , Sinapses , Animais , Amitriptilina/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Ácido Caínico/farmacologia , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Internas/metabolismo , Células Cultivadas , Cálcio/metabolismo , Receptores de AMPA/metabolismo , Exocitose/efeitos dos fármacosRESUMO
The degeneration of spiral ganglion neurons (SGNs), which convey auditory signals from hair cells to the brain, can be a primary cause of sensorineural hearing loss (SNHL) or can occur secondary to hair cell loss. Emerging therapies for SNHL include the replacement of damaged SGNs using stem cell-derived otic neuronal progenitors (ONPs). However, the availability of renewable, accessible, and patient-matched sources of human stem cells is a prerequisite for successful replacement of the auditory nerve. In this study, we derived ONP and SGN-like cells by a reliable and reproducible stepwise guidance differentiation procedure of self-renewing human dental pulp stem cells (hDPSCs). This in vitro differentiation protocol relies on the modulation of BMP and TGFß pathways using a free-floating 3D neurosphere method, followed by differentiation on a Geltrex-coated surface using two culture paradigms to modulate the major factors and pathways involved in early otic neurogenesis. Gene and protein expression analyses revealed efficient induction of a comprehensive panel of known ONP and SGN-like cell markers during the time course of hDPSCs differentiation. Atomic force microscopy revealed that hDPSC-derived SGN-like cells exhibit similar nanomechanical properties as their in vivo SGN counterparts. Furthermore, spiral ganglion neurons from newborn rats come in close contact with hDPSC-derived ONPs 5 days after co-culturing. Our data demonstrate the capability of hDPSCs to generate SGN-like neurons with specific lineage marker expression, bipolar morphology, and the nanomechanical characteristics of SGNs, suggesting that the neurons could be used for next-generation cochlear implants and/or inner ear cell-based strategies for SNHL.
Assuntos
Diferenciação Celular , Polpa Dentária , Neurônios , Gânglio Espiral da Cóclea , Polpa Dentária/citologia , Humanos , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/metabolismo , Animais , Ratos , Neurônios/metabolismo , Neurônios/citologia , Células Cultivadas , Nervo Coclear/citologia , Nervo Coclear/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , NeurogêneseRESUMO
Mammalian hair cells (HCs) are arranged spirally along the cochlear axis and correspond to different frequency ranges. Serving as primary sound detectors, HCs spatially segregate component frequencies into a topographical map. HCs display significant diversity in anatomical and physiological characteristics, yet little is known about the organization of the cochleotopic map of HCs or the molecules involved in this process. Using single-cell RNA sequencing, we determined the distinct molecular profiles of inner hair cells and outer hair cells, and we identified numerous position-dependent genes that were expressed as gradients. Newly identified genes such as Ptn, Rxra, and Nfe2l2 were found to be associated with tonotopy. We employed the SCENIC algorithm to predict the transcription factors that potentially shape these tonotopic gradients. Furthermore, we confirmed that Nfe2l2, a tonotopy-related transcription factor, is critical in mice for sensing low-to-medium sound frequencies in vivo. the analysis of cell-cell communication revealed potential receptor-ligand networks linking inner hair cells to spiral ganglion neurons, including pathways such as BDNF-Ntrk and PTN-Scd4, which likely play essential roles in tonotopic maintenance. Overall, these findings suggest that molecular gradients serve as the organizing principle for maintaining the selection of sound frequencies by HCs.
Assuntos
Análise de Célula Única , Transcriptoma , Animais , Camundongos , Células Ciliadas Auditivas Internas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Cóclea/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/fisiologia , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/citologia , Comunicação Celular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiologiaRESUMO
Blast wave exposure, a leading cause of hearing loss and balance dysfunction among military personnel, arises primarily from direct mechanical damage to the mechanosensory hair cells and supporting structures or indirectly through excessive oxidative stress. We previously reported that HK-2, an orally active, multifunctional redox modulator (MFRM), was highly effective in reducing both hearing loss and hair cells loss in rats exposed to a moderate intensity workday noise that likely damages the cochlea primarily from oxidative stress versus direct mechanical trauma. To determine if HK-2 could also protect cochlear and vestibular cells from damage caused primarily from direct blast-induced mechanical trauma versus oxidative stress, we exposed rats to six blasts of 186 dB peak SPL. The rats were divided into four groups: (B) blast alone, (BEP) blast plus earplugs, (BHK-2) blast plus HK-2 and (BEPHK-2) blast plus earplugs plus HK-2. HK-2 was orally administered at 50 mg/kg/d from 7-days before to 30-day after the blast exposure. Cochlear and vestibular tissues were harvested 60-d post-exposure and evaluated for loss of outer hair cells (OHC), inner hair cells (IHC), auditory nerve fibers (ANF), spiral ganglion neurons (SGN) and vestibular hair cells in the saccule, utricle and semicircular canals. In the untreated blast-exposed group (B), massive losses occurred to OHC, IHC, ANF, SGN and only the vestibular hair cells in the striola region of the saccule. In contrast, rats treated with HK-2 (BHK-2) sustained significantly less OHC (67%) and IHC (57%) loss compared to the B group. OHC and IHC losses were smallest in the BEPHK-2 group, but not significantly different from the BEP group indicating lack of protective synergy between EP and HK-2. There was no loss of ANF, SGN or saccular hair cells in the BHK-2, BEP and BEPHK-2 groups. Thus, HK-2 not only significantly reduced OHC and IHC damage, but completely prevented loss of ANF, SGN and saccule hair cells. The powerful protective effects of this oral MFRM make HK-2 an extremely promising candidate for human clinical trials.
Assuntos
Traumatismos por Explosões , Células Ciliadas Vestibulares , Gânglio Espiral da Cóclea , Animais , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/patologia , Ratos , Traumatismos por Explosões/prevenção & controle , Células Ciliadas Vestibulares/efeitos dos fármacos , Células Ciliadas Vestibulares/metabolismo , Masculino , Oxirredução , Ratos Sprague-Dawley , Cóclea/efeitos dos fármacos , Cóclea/patologia , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/patologia , Estresse Oxidativo/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/prevenção & controle , Perda Auditiva Provocada por Ruído/patologiaRESUMO
Although cochlear implants have become a well-established method for patients with sensory neural hearing loss, clinical results indicate that in some cases, corrosion of electrode contacts leads to high impedance that interferes with successful stimulation of the auditory nerve. As it is unclear whether corrosion products induce cell damage, we focused on cell culture models of the organ of Corti cell line (HEI-OC1), rat spiral ganglion cells (SGC) and rat organ of Corti explant (OCex) cultivated from neonatal rat cochleae to characterize the cytotoxicity of sodium hexachloroplatinate (IV) (Na2(PtCl6)). The oxidative activity in HEI-OC1 cells decreased with increasing Na2(PtCl6) concentrations between 8 and 16 ng/µl, and live cell staining with Calcein acetoxymethyl/Ethidium homodimer III revealed an increasing number of cells with disrupted membranes. Ultrastructural evidence of mitophagy followed by necroptosis was detected. Additionally, exposure of the SGC to 15-35 ng/µl Na2(PtCl6) dose-dependently reduced neuronal survival and neuritogenesis, as determined by neurofilament antigen staining. In parallel, staining glial cells and fibroblasts with specific antibodies confirmed the dose-dependent induction of cell death by Na2(PtCl6). Exposure of the OCex to 25-45 ng/µl Na2(PtCl6) resulted in severe concentration-dependent hair cell loss. Our data show for the first time that Na2(PtCl6) induces cell death in a concentration-dependent manner in inner ear cell types and tissues.
Assuntos
Morte Celular , Órgão Espiral , Gânglio Espiral da Cóclea , Animais , Ratos , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/citologia , Órgão Espiral/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacosRESUMO
Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing "synaptopathy" and hearing loss. Cocultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that, when P3-5 denervated organs of Corti are cocultured with SGNs, newly formed IHC/SGN synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When using older organs of Corti at P10-11, synaptic activity probed by deconvolution showed more mature release properties, closer to the specialized mode of IHC synaptic transmission crucial for coding the sound signal. This functional assessment of newly formed IHC synapses developed here, provides a powerful tool for testing approaches to improve synapse regeneration.
Assuntos
Gânglio Espiral da Cóclea , Sinapses , Animais , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/fisiologia , Sinapses/fisiologia , Camundongos , Células Ciliadas Auditivas Internas/fisiologia , Células Ciliadas Auditivas Internas/metabolismo , Transmissão Sináptica/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo , Regeneração/fisiologia , Células Ciliadas Auditivas/fisiologia , Técnicas de Cocultura/métodos , Optogenética/métodos , Regeneração Nervosa/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Órgão Espiral/fisiologia , Órgão Espiral/citologia , Órgão Espiral/metabolismoRESUMO
Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.
Assuntos
Regeneração Nervosa , Gânglio Espiral da Cóclea , Engenharia Tecidual , Alicerces Teciduais , Gânglio Espiral da Cóclea/citologia , Humanos , Engenharia Tecidual/métodos , Animais , Alicerces Teciduais/química , Neurônios , Implantes Cocleares , Células-Tronco/citologia , Diferenciação CelularRESUMO
Gasdermin E (GSDME), a member of the gasdermin protein family, is associated with post-lingual hearing loss. All GSDME pathogenic mutations lead to skipping exon 8; however, the molecular mechanisms underlying hearing loss caused by GSDME mutants remain unclear. GSDME was recently identified as one of the mediators of programmed cell death, including apoptosis and pyroptosis. Therefore, in this study, we injected mice with GSDME mutant (MT) and examined the expression levels to assess its effect on hearing impairment. We observed loss of hair cells in the organ of Corti and spiral ganglion neurons. Further, the N-terminal release from the GSDME mutant in HEI-OC1 cells caused pyroptosis, characterized by cell swelling and rupture of the plasma membrane, releasing lactate dehydrogenase and cytokines such as interleukin-1ß. We also observed that the N-terminal release from GSDME mutants could permeabilize the mitochondrial membrane, releasing cytochromes and activating the mitochondrial apoptotic pathway, thereby generating possible positive feedback on the cleavage of GSDME. Furthermore, we found that treatment with disulfiram or dimethyl fumarate might inhibit pyroptosis and apoptosis by inhibiting the release of GSDME-N from GSDME mutants. In conclusion, this study elucidated the molecular mechanism associated with hearing loss caused by GSDME gene mutations, offering novel insights for potential treatment strategies.
Assuntos
Apoptose , Piroptose , Piroptose/genética , Animais , Camundongos , Mutação com Ganho de Função , Perda Auditiva/genética , Perda Auditiva/patologia , Humanos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Órgão Espiral/metabolismo , Órgão Espiral/patologia , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , GasderminasRESUMO
Sensorineural hearing loss (SNHL) is mainly caused by injury or loss of hair cells (HCs) and associated spiral ganglion neurons (SGNs) in the inner ear. At present, there is still no effective treatment for SNHL in clinic. Recently, advances in organoid bring a promising prospect for research and treatment of SNHL. Meanwhile, three-dimensional (3D) printing provides a tremendous opportunity to construct versatile organoids for tissue engineering and regenerative medicine. In this study, gelatin (Gel), sodium alginate (SA), and polyvinyl alcohol (PVA) were used to fabricate biomimetic scaffold through 3D printing. The organ of Corti derived from neonatal mice inner ear was seeded on the PVA/Gel/SA scaffold to construct organ of Corti organoid. Then, the organ of Corti organoid was used to study the potential protective effects of berberine sulfate on neomycin-juried auditory HCs and SGNs. The results showed that the PVA/Gel/SA biomimetic 3D scaffolds had good cytocompatibilities and mechanical properties. The constructed organoid could maintain organ of Corti activity well in vitro. In addition, the injury intervention results showed that berberine sulfate could significantly inhibit neomycin-induced HC and SGN damage. This study suggests that the fabricated organoid is highly biomimetic to the organ of Corti, which may provide an effective model for drug development, cell and gene therapy for SNHL.
Assuntos
Berberina , Órgão Espiral , Alicerces Teciduais , Animais , Órgão Espiral/efeitos dos fármacos , Camundongos , Berberina/farmacologia , Berberina/química , Alicerces Teciduais/química , Organoides/metabolismo , Organoides/efeitos dos fármacos , Impressão Tridimensional , Alginatos/química , Alginatos/farmacologia , Gelatina/química , Gelatina/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Engenharia Tecidual , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , Perda Auditiva Neurossensorial , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismoRESUMO
Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.
Assuntos
Células Ciliadas Auditivas Internas , Neurotrofina 3 , Sinapses , Animais , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Sinapses/metabolismo , Sinapses/fisiologia , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Camundongos , Limiar Auditivo , Potenciais Evocados Auditivos/fisiologia , Reflexo de Sobressalto/fisiologia , Percepção Auditiva/fisiologia , Gânglio Espiral da Cóclea/metabolismo , Feminino , Masculino , Perda Auditiva OcultaRESUMO
Transforming growth factor-ß (TGF-ß) signaling plays a significant role in multiple biological processes, including inflammation, immunity, and cell death. However, its specific impact on the cochlea remains unclear. In this study, we aimed to investigate the effects of TGF-ß signaling suppression on auditory function and cochlear pathology in mice with kanamycin-induced ototoxicity. Kanamycin and furosemide (KM-FS) were systemically administered to 8-week-old C57/BL6 mice, followed by immediate topical application of a TGF-ß receptor inhibitor (TGF-ßRI) onto the round window membrane. Results showed significant TGF-ß receptor upregulation in spiral ganglion neurons (SGNs) after KM-FA ototoxicity, whereas expression levels in the TGF-ßRI treated group remained unchanged. Interestingly, despite no significant change in cochlear TGF-ß expression after KM-FS ototoxicity, TGF-ßRI treatment resulted in a significant decrease in TGF-ß signaling. Regarding auditory function, TGF-ßRI treatment offered no therapeutic effects on hearing thresholds and hair cell survival following KM-FS ototoxicity. However, SGN loss and macrophage infiltration were significantly increased with TGF-ßRI treatment. These results imply that inhibition of TGF-ß signaling after KM-FS ototoxicity promotes cochlear inflammation and SGN degeneration.
Assuntos
Canamicina , Ototoxicidade , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Camundongos , Cóclea/metabolismo , Cóclea/efeitos dos fármacos , Cóclea/patologia , Furosemida/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Canamicina/toxicidade , Camundongos Endogâmicos C57BL , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Ototoxicidade/patologia , Transdução de Sinais/efeitos dos fármacos , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Fator de Crescimento Transformador beta/metabolismoRESUMO
Delayed loss of residual acoustic hearing after cochlear implantation is a common but poorly understood phenomenon due to the scarcity of relevant temporal bone tissues. Prior histopathological analysis of one case of post-implantation hearing loss suggested there were no interaural differences in hair cell or neural degeneration to explain the profound loss of low-frequency hearing on the implanted side (Quesnel et al., 2016) and attributed the threshold elevation to neo-ossification and fibrosis around the implant. Here we re-evaluated the histopathology in this case, applying immunostaining and improved microscopic techniques for differentiating surviving hair cells from supporting cells. The new analysis revealed dramatic interaural differences, with a > 80 % loss of inner hair cells in the cochlear apex on the implanted side, which can account for the post-implantation loss of residual hearing. Apical degeneration of the stria further contributed to threshold elevation on the implanted side. In contrast, spiral ganglion cell survival was reduced in the region of the electrode on the implanted side, but apical counts in the two ears were similar to that seen in age-matched unimplanted control ears. Almost none of the surviving auditory neurons retained peripheral axons throughout the basal half of the cochlea. Relevance to cochlear implant performance is discussed.
Assuntos
Limiar Auditivo , Implante Coclear , Implantes Cocleares , Gânglio Espiral da Cóclea , Implante Coclear/instrumentação , Implante Coclear/efeitos adversos , Humanos , Gânglio Espiral da Cóclea/patologia , Gânglio Espiral da Cóclea/fisiopatologia , Células Ciliadas Auditivas Internas/patologia , Fatores de Tempo , Sobrevivência Celular , Masculino , Audição , Perda Auditiva/fisiopatologia , Perda Auditiva/patologia , Perda Auditiva/cirurgia , Perda Auditiva/etiologia , Feminino , Células Ciliadas Auditivas/patologia , Idoso , Degeneração Neural , Pessoa de Meia-Idade , Osso Temporal/patologia , Osso Temporal/cirurgiaRESUMO
The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 µg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.
Assuntos
Cóclea , Molécula 1 de Adesão Intercelular , Ruído , Estresse Oxidativo , Ficocianina , Sinapses , Animais , Estresse Oxidativo/efeitos dos fármacos , Cobaias , Ficocianina/farmacologia , Ficocianina/uso terapêutico , Cóclea/metabolismo , Cóclea/efeitos dos fármacos , Cóclea/patologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ruído/efeitos adversos , Molécula 1 de Adesão Intercelular/metabolismo , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/patologia , Espécies Reativas de Oxigênio/metabolismo , Masculino , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Peróxido de Hidrogênio/metabolismo , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Antioxidantes/farmacologia , Linhagem Celular , Perda Auditiva OcultaRESUMO
Type I spiral ganglion neurons (SGNs) convey sound information to the central auditory pathway by forming synapses with inner hair cells (IHCs) in the mammalian cochlea. The molecular mechanisms regulating the formation of the post-synaptic density (PSD) in the SGN afferent terminals are still unclear. Here, we demonstrate that brain-specific angiogenesis inhibitor 1 (BAI1) is required for the clustering of AMPA receptors GluR2-4 (glutamate receptors 2-4) at the PSD. Adult Bai1-deficient mice have functional IHCs but fail to transmit information to the SGNs, leading to highly raised hearing thresholds. Despite the almost complete absence of AMPA receptor subunits, the SGN fibers innervating the IHCs do not degenerate. Furthermore, we show that AMPA receptors are still expressed in the cochlea of Bai1-deficient mice, highlighting a role for BAI1 in trafficking or anchoring GluR2-4 to the PSDs. These findings identify molecular and functional mechanisms required for sound encoding at cochlear ribbon synapses.