Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.232
Filtrar
1.
Pol J Vet Sci ; 25(3): 483-487, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36155594

RESUMO

Combined retrograde tracing and double-labelling immunofluorescence were used to investigate the distribution and chemical coding of neurons in testicular (TG) and aorticoerenal (ARG) ganglia supplying the urinary bladder trigone (UBT) in juvenile male pigs (n=4, 12 kg. of body weight). Retrograde fluorescent tracer Fast Blue (FB) was injected into the wall of the bladder trigone under pentobarbital anesthesia. After three weeks all the pigs were deeply anesthetized and transcardially perfused with 4% buffered paraformaldehyde. TG and ARG, were collected and processed for double-labelling immunofluorescence. The expression of tyrosine hydroxylase (TH) or dopamine beta-hydroxylase (DBH), neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL), nitric oxide synthase (NOS) and vesicular acetylcholine transporter (VAChT) were investigated. The cryostat sections were examined with a Zeiss LSM 710 confocal microscope equipped with adequate filter blocks. The TG and ARG were found to contain many FB-positive neurons projecting to the UBT (UBT-PN). The UBT-PN were distributed in both TG and ARG. The majority of them were found in the right ganglia, mostly in TG. Immunohistochemistry disclosed that the vast majority of UBT-PN were noradrenergic (TH- and/or DBH-positive). Many noradrenergic neurons contained also immunoreactivity to NPY, SOM or GAL. Most of the UBT-PN were supplied with VAChT-, or NOS- IR (immunoreactive) varicose nerve fibres. This study has revealed a relatively large population of differently coded prevertebral neurons projecting to the porcine urinary bladder. As judged from their neurochemical organization these nerve cells constitute an important element of the complex neuro-endocrine system involved in the regulation of the porcine urogenital organ function.


Assuntos
Galanina , Bexiga Urinária , Animais , Dopamina beta-Hidroxilase/metabolismo , Galanina/metabolismo , Gânglios/fisiologia , Masculino , Neurônios/fisiologia , Neuropeptídeo Y/metabolismo , Óxido Nítrico Sintase/metabolismo , Pentobarbital/metabolismo , Somatostatina/metabolismo , Suínos , Tirosina 3-Mono-Oxigenase/metabolismo , Bexiga Urinária/inervação , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
2.
Int J Biochem Cell Biol ; 135: 105981, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33895353

RESUMO

The airways receive a dense supply of sensory nerve fibers that are responsive to damaging or potentially injurious stimuli. These airway nociceptors are mainly derived from the jugular and nodose vagal ganglia, and when activated they induce a range of reflexes and sensations that play an essential role in airway protection. Jugular nociceptors differ from nodose nociceptors in their embryonic origins, molecular profile and termination patterns in the airways and the brain, and recent discoveries suggest that excessive activity in jugular nociceptors may be central to the development of chronic cough. For these reasons, targeting jugular airway nociceptor signaling processes at different levels of the neuraxis may be a promising target for therapeutic development. In this focused review, we present the current understanding of jugular ganglia nociceptors, how they may contribute to chronic cough and mechanisms that could be targeted to bring about cough suppression.


Assuntos
Tosse/terapia , Gânglios/fisiologia , Veias Jugulares/fisiologia , Neurônios/fisiologia , Nociceptividade/fisiologia , Nociceptores/metabolismo , Mucosa Respiratória/fisiologia , Nervo Vago/fisiologia , Animais , Humanos
3.
Elife ; 102021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587033

RESUMO

Dorsal Excitor motor neuron DE-3 in the medicinal leech plays three very different dynamical roles in three different behaviors. Without rewiring its anatomical connectivity, how can a motor neuron dynamically switch roles to play appropriate roles in various behaviors? We previously used voltage-sensitive dye imaging to record from DE-3 and most other neurons in the leech segmental ganglion during (fictive) swimming, crawling, and local-bend escape (Tomina and Wagenaar, 2017). Here, we repeated that experiment, then re-imaged the same ganglion using serial blockface electron microscopy and traced DE-3's processes. Further, we traced back the processes of DE-3's presynaptic partners to their respective somata. This allowed us to analyze the relationship between circuit anatomy and the activity patterns it sustains. We found that input synapses important for all the behaviors were widely distributed over DE-3's branches, yet that functional clusters were different during (fictive) swimming vs. crawling.


Assuntos
Sanguessugas/fisiologia , Neurônios Motores/fisiologia , Animais , Comportamento Animal , Gânglios/química , Gânglios/fisiologia , Sanguessugas/anatomia & histologia , Sanguessugas/química , Sanguessugas/citologia , Locomoção , Coloração e Rotulagem
4.
Brain Res ; 1751: 147201, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33171152

RESUMO

The identity of sensory neurons innervating the heart tissue and the extent of information reported to the brain via these neurons are poorly understood. In order to evaluate the multidimensional distribution and abundance of the cardiac spinal and vagal afferents, we assessed the retrograde labeling efficiency of various tracers, and mapped the cardiac afferents qualitatively and quantitatively at the bilateral nodose ganglia (NGs) and dorsal root ganglia (DRGs). From the five different retrograde tracers evaluated, Di-8-ANEPPQ yielded reproducibly the highest labeling efficiency of cardiac afferents. We demonstrated specific cardiac afferents at NGs and C4 to T11 DRG segments. Next, the 2D reconstruction of the tissue sections and 3D imaging of the whole NGs and DRGs revealed homogeneous and bilateral distribution of cardiac afferents. The quantitative analyses of the labeled cardiac afferents demonstrated approximately 5-6% of the soma in NGs that were equally distributed bilaterally. The neuronal character of Di-8-ANEPPQ labeled cells were validated by coimmunostaning with pan-neuronal marker Tuj-1. In addition, the cell diameters of labeled cardiac sensory neurons were found smaller than 20 µm, implying the nociceptor phenotype confirmed by co-labeling with TRPV1 and Di-8-ANEPPQ. Importantly, co-labeling with two distinct tracers Di-8-ANEPPQ and WGA-647 demonstrated exclusively the same cardiac afferents in DRGs and NGs, validating our findings. Collectively, our findings revealed the cardiac afferents in NGs bilaterally and DRGs with the highest labeling efficiency reported, spatial distribution and quantitation at both 2D and 3D levels, furthering our understanding of this novel neuron population.


Assuntos
Coração/inervação , Células Receptoras Sensoriais/citologia , Coloração e Rotulagem/métodos , Animais , Feminino , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Gânglios/fisiologia , Gânglios Espinais/fisiologia , Coração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neurônios Aferentes/fisiologia , Nociceptores/fisiologia , Gânglio Nodoso/fisiologia , Nervo Vago
5.
Artigo em Inglês | MEDLINE | ID: mdl-31838572

RESUMO

The butterfly Papilio xuthus has acute tetrachromatic color vision. Its eyes are furnished with eight spectral classes of photoreceptors, situated in three types of ommatidia, randomly distributed in the retinal mosaic. Here, we investigated early chromatic information processing by recording spectral, angular, and polarization sensitivities of photoreceptors and lamina monopolar cells (LMCs). We identified three spectral classes of LMCs whose spectral sensitivities corresponded to weighted linear sums of the spectral sensitivities of the photoreceptors present in the three ommatidial types. In ~ 25% of the photoreceptor axons, the spectral sensitivities differed from those recorded at the photoreceptor cell bodies. These axons showed spectral opponency, most likely mediated by chloride ion currents through histaminergic interphotoreceptor synapses. The opponency was most prominent in the processes of the long visual fibers in the medulla. We recalculated the wavelength discrimination function using the noise-limited opponency model to reflect the new spectral sensitivity data and found that it matched well with the behaviorally determined function. Our results reveal opponency at the first stage of Papilio's visual system, indicating that spectral information is preprocessed with signals from photoreceptors within each ommatidium in the lamina, before being conveyed downstream by the long visual fibers and the LMCs.


Assuntos
Borboletas/fisiologia , Canais de Cloreto/metabolismo , Percepção de Cores , Visão de Cores , Gânglios/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Borboletas/citologia , Borboletas/metabolismo , Cloretos/metabolismo , Potenciais Evocados Visuais , Feminino , Gânglios/citologia , Gânglios/metabolismo , Histamina/metabolismo , Ativação do Canal Iônico/genética , Masculino , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/metabolismo , Sinapses/fisiologia , Vias Visuais/fisiologia
6.
Proc Natl Acad Sci U S A ; 116(45): 22833-22843, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636217

RESUMO

Birdsong, like human speech, consists of a sequence of temporally precise movements acquired through vocal learning. The learning of such sequential vocalizations depends on the neural function of the motor cortex and basal ganglia. However, it is unknown how the connections between cortical and basal ganglia components contribute to vocal motor skill learning, as mammalian motor cortices serve multiple types of motor action and most experimentally tractable animals do not exhibit vocal learning. Here, we leveraged the zebra finch, a songbird, as an animal model to explore the function of the connectivity between cortex-like (HVC) and basal ganglia (area X), connected by HVC(X) projection neurons with temporally precise firing during singing. By specifically ablating HVC(X) neurons, juvenile zebra finches failed to copy tutored syllable acoustics and developed temporally unstable songs with less sequence consistency. In contrast, HVC(X)-ablated adults did not alter their learned song structure, but generated acoustic fluctuations and responded to auditory feedback disruption by the introduction of song deterioration, as did normal adults. These results indicate that the corticobasal ganglia input is important for learning the acoustic and temporal aspects of song structure, but not for generating vocal fluctuations that contribute to the maintenance of an already learned vocal pattern.


Assuntos
Comunicação Animal , Córtex Cerebral/fisiologia , Gânglios/fisiologia , Aprendizagem , Neurônios/fisiologia , Aves Canoras/fisiologia , Animais , Córtex Cerebral/citologia , Gânglios/citologia
7.
Pol J Vet Sci ; 22(2): 427-430, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31269360

RESUMO

Combined retrograde tracing and double-labelling immunofluorescence were used to investigate the distribution and chemical coding of neurons in aorticoerenal (ARG) and testicular (TG) ganglia supplying the urinary bladder apex (UBA) in the juvenile male pig (n=4, 12 kg. body weight). Retrograde fluorescent tracer Fast Blue (FB) was injected into the wall of the bladder apex under pentobarbital anesthesia. After three weeks all the pigs were deeply anesthetized and transcardially perfused with 4% buffered paraformaldehyde. TG and ARG were collected and processed for double-labelling immunofluorescence. The presence of tyrosine hydroxylase (TH) or dopamine beta-hydroxylase (DBH), neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL), nitric oxide synthase (NOS) and vesicular acetylcholine transporter (VAChT) were investigated. The cryostat sections were examined with a Zeiss LSM 710 confocal microscope equipped with adequate filter blocks. The TG and ARG were found to contain many FB-positive neurons projecting to the UBA (UBA-PN). The UBA-PN were distributed in both TG and ARG. The majority were found in the left ganglia, mostly in TG. Immunohistochemistry disclosed that the vast majority of UBA-PN were noradrenergic (TH- and/or DBH-positive). Many noradrenergic neurons also contained immunoreactivity to NPY, SOM or GAL. Most of the UBA-PN were supplied with varicose VAChT-, or NOS- IR (immunoreactive) nerve fibres. This study has revealed a relatively large population of differently coded ARG and TG neurons projecting to the porcine urinary bladder. As judged from their neurochemical organization these nerve cells constitute an important element of the complex neuro-endocrine system involved in the regulation of the porcine urogenital organ function.


Assuntos
Aorta/inervação , Gânglios/citologia , Rim/inervação , Suínos , Testículo/inervação , Bexiga Urinária/inervação , Animais , Gânglios/fisiologia , Masculino
8.
J Exp Biol ; 222(Pt 8)2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30910833

RESUMO

Large insects actively ventilate their tracheal system even at rest, using abdominal pumping movements, which are controlled by a central pattern generator (CPG) in the thoracic ganglia. We studied the effects of respiratory gases on the ventilatory rhythm by isolating the thoracic ganglia and perfusing its main tracheae with various respiratory gas mixtures. Fictive ventilation activity was recorded from motor nerves controlling spiracular and abdominal ventilatory muscles. Both hypoxia and hypercapnia increased the ventilation rate, with the latter being much more potent. Sub-threshold hypoxic and hypercapnic levels were still able to modulate the rhythm as a result of interactions between the effects of the two respiratory gases. Additionally, changing the oxygen levels in the bathing saline affected ventilation rate, suggesting a modulatory role for haemolymph oxygen. Central sensing of both respiratory gases as well as interactions of their effects on the motor output of the ventilatory CPG reported here indicate convergent evolution of respiratory control among terrestrial animals of distant taxa.


Assuntos
Gafanhotos/fisiologia , Animais , Gânglios/fisiologia , Masculino , Atividade Motora , Respiração
9.
PLoS One ; 14(1): e0210414, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30645610

RESUMO

Photoperiod plays an important role in individual growth, development, and metabolism in crustaceans. The growth and reproduction of crabs are closely related to the photoperiod. However, as of yet, there are still no transcriptomic reports of eyestalk ganglions treated under different photoperiods in the Chinese mitten crab (Eriocheir sinensis), which is a benthonic crab with high commercial value in Asia. In this study, we collected the eyestalk ganglions of crabs that were reared under different photoperiods, including a control group (L: D = 12 h: 12 h, named CC), a constant light group (L: D = 24 h: 0 h, named LL) and a constant darkness group (L: D = 0 h: 24 h, named DD). RNA sequencing was performed on these tissues in order to examine the effects of different photoperiods. The total numbers of clean reads from the CC, LL and DD groups were 48,772,584 bp, 53,943,281 bp and 53,815,178 bp, respectively. After de novo assembly, 161,380 unigenes were obtained and were matched with different databases. The DEGs were significantly enriched in phototransduction and energy metabolism pathways. Results from RT-qPCR showed that TRP channel protein (TRP) in the phototransduction pathway had a significantly higher level of expression in LL and DD groups than in the CC group. We found that the downregulation of the pyruvate dehydrogenase complex (PDC) gene and the upregulation phosphoenolpyruvate carboxykinase (PPC) gene were involved in energy metabolism processes in LL or DD. In addition, we also found that the upregulation of the expression level of the genes Gαq, pyruvate kinase (PK), NADH peroxidase (NADH) and ATPase is involved in phototransduction and energy metabolism. These results may shed some light on the molecular mechanism underlying the effect of photoperiod in physiological activity of E. sinensis.


Assuntos
Braquiúros/genética , Braquiúros/fisiologia , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/fisiologia , Gânglios/fisiologia , Expressão Gênica , Perfilação da Expressão Gênica , Ontologia Genética , Redes e Vias Metabólicas , Modelos Biológicos , Fotoperíodo , Células Fotorreceptoras de Invertebrados/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transcriptoma , Visão Ocular/genética , Visão Ocular/fisiologia
10.
Clin Anat ; 32(2): 272-276, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30300460

RESUMO

To examine the origin and development of the renal plexus and its relationship to the renal vessels in embryos and early human fetuses. Serial sections of 34 human embryos (stages 16 to 23 of Carnegie, 4 or 5-8 weeks) and 38 fetuses (9-19 weeks) were analyzed. Throughout the embryonic period, the kidney was not innervated by the renal plexus. Those nerves appeared at the beginning of the early fetal period (9 weeks) as branches given off by the immature autonomic abdominal plexus. The renal nerves started to approach to the kidney during the early fetal period at 9-10 weeks of development. They were distributed in close proximity to the renal arteries and their branches. They were observed first with the settlement of the renal veins. The renal artery is present as a branch of the abdominal aorta at stage 19 (between 6 and 7 weeks) prior to development of the renal plexus. The renal veins were not present during the embryonic period but appeared at the start of the fetal period, along with the renal nerves that emerged from segmented sympathetic para-aortic bodies (SPBs). Clin. Anat. 32:272-276, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Desenvolvimento Fetal/fisiologia , Rim/embriologia , Rim/inervação , Artéria Renal/embriologia , Gânglios/anatomia & histologia , Gânglios/fisiologia , Idade Gestacional , Humanos
11.
J Comp Neurol ; 527(6): 1027-1038, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30444529

RESUMO

In this study, we describe a cluster of tyraminergic/octopaminergic neurons in the lateral dorsal deutocerebrum of desert locusts (Schistocerca gregaria) with descending axons to the abdominal ganglia. In the locust, these neurons synthesize octopamine from tyramine stress-dependently. Electrophysiological recordings in locusts reveal that they respond to mechanosensory touch stimuli delivered to various parts of the body including the antennae. A similar cluster of tyraminergic/octopaminergic neurons was also identified in the American cockroach (Periplaneta americana) and the pink winged stick insect (Sipyloidea sipylus). It is suggested that these neurons release octopamine in the ventral nerve cord ganglia and, most likely, convey information on arousal and/or stressful stimuli to neuronal circuits thus contributing to the many actions of octopamine in the central nervous system.


Assuntos
Encéfalo/citologia , Gafanhotos/anatomia & histologia , Neurônios Eferentes/citologia , Octopamina , Tiramina , Animais , Encéfalo/fisiologia , Gânglios/citologia , Gânglios/fisiologia , Gafanhotos/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios Eferentes/fisiologia , Periplaneta/citologia , Periplaneta/fisiologia
12.
Behav Brain Res ; 360: 341-353, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528940

RESUMO

Although it is well documented that exposure to aversive stimuli induces modulation of neural circuits and subsequent behavioral changes, the means by which an aversive stimulus concomitantly alters behaviors of different natures (e.g., defensive and appetitive) remains unclear. Here, we addressed this issue by using the learning-induced concurrent modulation of defensive and appetitive behaviors that occurs when the mollusk Aplysia is exposed to aversive stimuli. In Aplysia, aversive stimuli concomitantly enhance withdrawal reflexes (i.e., sensitization) and suppress feeding. Sensitization and feeding suppression, which are expressed in the short term and long term, depending on the training protocol, are accompanied by increased excitability of the tail sensory neurons (TSNs) controlling the withdrawal reflexes, and by decreased excitability of feeding decision-making neuron B51, respectively. Serotonin (5-HT) has been shown to mediate sensitization, but not feeding suppression. In this study, we examined which other neurotransmitter might be responsible for feeding suppression and its underlying cellular changes. Our results indicate that nitric oxide (NO) contributes to both short-term and long-term feeding suppression, as well as to the underlying decreased B51 excitability. NO was also necessary for the induction of long-term sensitization and for the expression of short-term increased TSN excitability in vitro, revealing a previously undocumented interaction between 5-HT and NO signaling cascades in sensitization. Overall, these results revealed a scenario in which multiple modulators contribute to the widespread changes induced by sensitizing stimuli in Aplysia.


Assuntos
Aprendizagem da Esquiva/fisiologia , Comportamento Alimentar/fisiologia , Neurônios/fisiologia , Óxido Nítrico/metabolismo , Reflexo/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Aplysia , Aprendizagem da Esquiva/efeitos dos fármacos , Estimulação Elétrica/efeitos adversos , Inibidores Enzimáticos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Gânglios/citologia , Gânglios/efeitos dos fármacos , Gânglios/fisiologia , Técnicas In Vitro , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Técnicas de Patch-Clamp , S-Nitroso-N-Acetilpenicilamina/farmacologia , Serotonina/farmacologia , Estatísticas não Paramétricas
13.
Elife ; 72018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30325308

RESUMO

The Large Cell (LC) motor neurons of the crab cardiac ganglion have variable membrane conductance magnitudes even within the same individual, yet produce identical synchronized activity in the intact network. In a previous study we blocked a subset of K+ conductances across LCs, resulting in loss of synchronous activity (Lane et al., 2016). In this study, we hypothesized that this same variability of conductances makes LCs vulnerable to desynchronization during neuromodulation. We exposed the LCs to serotonin (5HT) and dopamine (DA) while recording simultaneously from multiple LCs. Both amines had distinct excitatory effects on LC output, but only 5HT caused desynchronized output. We further determined that DA rapidly increased gap junctional conductance. Co-application of both amines induced 5HT-like output, but waveforms remained synchronized. Furthermore, DA prevented desynchronization induced by the K+ channel blocker tetraethylammonium (TEA), suggesting that dopaminergic modulation of electrical coupling plays a protective role in maintaining network synchrony.


Assuntos
Crustáceos/fisiologia , Dopamina/metabolismo , Gânglios/fisiologia , Junções Comunicantes/metabolismo , Neurônios Motores/fisiologia , Potenciais de Ação , Animais , Gânglios/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Técnicas de Patch-Clamp , Serotonina/metabolismo
14.
Dev Biol ; 442(1): 115-126, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29990475

RESUMO

The homeobox gene Gsx2 has previously been shown to inhibit oligodendroglial specification in dorsal lateral ganglionic eminence (dLGE) progenitors of the ventral telencephalon. The precocious specification of oligodendrocyte progenitor cells (OPCs) observed in Gsx2 mutants, however, is transient and begins to normalize by late stages of embryogenesis. Interestingly, this normalization correlates with the expansion of Gsx1, a close homolog of Gsx2, in a subset of progenitors in the Gsx2 mutant LGE. Here, we interrogated the mechanisms underlying oligodendroglial specification in Gsx2 mutants in relation to Gsx1. We found that Gsx1/2 double mutant embryos exhibit a more robust expansion of Olig2+ cells (i.e. OPCs) in the subventricular zone (SVZ) of the dLGE than Gsx2 mutants. Moreover, misexpression of Gsx1 throughout telencephalic VZ progenitors from E15 and onward resulted in a significant reduction of cortical OPCs. These results demonstrate redundant roles of Gsx1 and Gsx2 in suppressing early OPC specification in LGE VZ progenitors. However, Gsx1/2 mutants did not show a significant increase in adjacent cortical OPCs at later stages compared to Gsx2 mutants. This is likely due to reduced proliferation of OPCs within the SVZ of the Gsx1/2 double mutant LGE, suggesting a novel role for Gsx1 in expansion of migrating OPCs in the ventral telencephalon. We further investigated the glial specification mechanisms downstream of Gsx2 by generating Olig2/Gsx2 double mutants. Consistent with the known essential role for Olig2 in OPC specification, ectopic production of cortical OPCs observed in Gsx2 mutants disappeared in Olig2/Gsx2 double mutants. These mutants, however, maintained the expanded expression of gliogenic markers Zbtb20 and Bcan in the VZ of the LGE similarly to Gsx2 single mutants, suggesting that Gsx2 suppresses gliogenesis via Olig2-dependent and -independent mechanisms.


Assuntos
Proteínas de Homeodomínio/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Embrião de Mamíferos/metabolismo , Gânglios/metabolismo , Gânglios/fisiologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neuroglia/metabolismo , Neuroglia/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Telencéfalo/metabolismo , Fatores de Transcrição
15.
Mar Genomics ; 41: 19-30, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30031746

RESUMO

Whether cardiac output in decapod crustaceans is under circadian control has long been debated, with mixed evidence for and against the hypothesis. Moreover, the locus of the clock system controlling cardiac activity, if it is under circadian control, is unknown. However, a report that the crayfish heart in organ culture maintains a circadian oscillation in heartbeat frequency suggests the presence of a peripheral pacemaker within the cardiac neuromuscular system itself. Because the decapod heart is neurogenic, with contractions controlled by the five motor and four premotor neurons that make up the cardiac ganglion (CG), a likely locus for a circadian clock is the CG itself. Here, a CG-specific transcriptome was generated for the lobster, Homarus americanus, and was used to assess the presence/absence of transcripts encoding putative clock-related proteins in the ganglion. Using known Homarus brain/eyestalk ganglia clock-related proteins as queries, BLAST searches of the CG transcriptome were conducted for the five proteins that form the core clock, i.e., clock, cryptochrome 2, cycle, period and timeless, as well as for a variety of clock-associated, clock input pathway and clock output pathway proteins. With the exception of pigment dispersing hormone receptor [PDHR], a putative clock output pathway protein, one or more transcripts encoding each of the proteins searched for were identified from the CG assembly; no PDHR-encoding transcripts were found. RT-PCR confirmed the expression of all core clock transcripts in multiple independent CG cDNAs; RNA-Seq data suggest that both the motor and premotor neurons could contribute to the cellular locus of a pacemaker. These data provide support for the possible existence of an intrinsic circadian clock in the H. americanus CG, and form a foundation for guiding future anatomical, molecular and physiological investigations of circadian signaling in the lobster cardiac neuromuscular system.


Assuntos
Relógios Circadianos/genética , Nephropidae/genética , Animais , Proteínas CLOCK/genética , Gânglios/fisiologia , Nephropidae/fisiologia , Transcriptoma
16.
Zoolog Sci ; 35(3): 276-280, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29882499

RESUMO

In the central nervous system of insects, motor patterns are generated in the thoracic ganglia under the control of brain, where sensory information is integrated and behavioral decisions are made. Previously, we established neural activity-mapping methods using an immediate early gene, BmHr38, as a neural activity marker in the brain of male silkmoth Bombyx mori. In the present study, to gain insights into neural mechanisms of motor-pattern generation in the thoracic ganglia, we investigated expression of BmHr38 in response to sex pheromone-induced courtship behavior. Levels of BmHr38 expression were strongly correlated between the brain and thoracic ganglia, suggesting that neural activity in the thoracic ganglia is tightly controlled by the brain. In situ hybridization of BmHr38 revealed that 20-30% of thoracic neurons are activated by courtship behavior. Using serial sections, we constructed a comprehensive map of courtship behaviorinduced activity in the thoracic ganglia. These results provide important clues into how complex courtship behavior is generated in the neural circuits of thoracic ganglia.


Assuntos
Bombyx/fisiologia , Gânglios/fisiologia , Regulação da Expressão Gênica/fisiologia , Genes Precoces/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Gânglios/citologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
17.
Elife ; 72018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29893686

RESUMO

The lateral-line neuromast of the zebrafish displays a restricted, consistent pattern of innervation that facilitates the comparison of microcircuits across individuals, developmental stages, and genotypes. We used serial blockface scanning electron microscopy to determine from multiple specimens the neuromast connectome, a comprehensive set of connections between hair cells and afferent and efferent nerve fibers. This analysis delineated a complex but consistent wiring pattern with three striking characteristics: each nerve terminal is highly specific in receiving innervation from hair cells of a single directional sensitivity; the innervation is redundant; and the terminals manifest a hierarchy of dominance. Mutation of the canonical planar-cell-polarity gene vangl2, which decouples the asymmetric phenotypes of sibling hair-cell pairs, results in randomly positioned, randomly oriented sibling cells that nonetheless retain specific wiring. Because larvae that overexpress Notch exhibit uniformly oriented, uniformly innervating hair-cell siblings, wiring specificity is mediated by the Notch signaling pathway.


Assuntos
Vias Aferentes/fisiologia , Vias Eferentes/fisiologia , Células Ciliadas Auditivas/fisiologia , Sistema da Linha Lateral/fisiologia , Vias Neurais/fisiologia , Peixe-Zebra/fisiologia , Vias Aferentes/citologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Polaridade Celular , Vias Eferentes/citologia , Embrião não Mamífero , Gânglios/citologia , Gânglios/fisiologia , Expressão Gênica , Células Ciliadas Auditivas/ultraestrutura , Larva/anatomia & histologia , Larva/fisiologia , Sistema da Linha Lateral/citologia , Sistema da Linha Lateral/inervação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Fibras Nervosas/fisiologia , Fibras Nervosas/ultraestrutura , Vias Neurais/ultraestrutura , Imagem Óptica , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Peixe-Zebra/anatomia & histologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Mar Genomics ; 40: 25-44, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29655930

RESUMO

Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity. Moreover, the location of the crustacean central clock has not been firmly established, although both the brain and eyestalk ganglia have been hypothesized as loci. The American lobster, Homarus americanus, is known to exhibit multiple circadian rhythms, and immunodetection data suggest that its central clock is located within the eyestalk ganglia rather than in the brain. Here, brain- and eyestalk ganglia-specific transcriptomes were generated and used to assess the presence/absence of transcripts encoding the commonly recognized protein components of arthropod circadian signaling systems in these two regions of the lobster central nervous system. Transcripts encoding putative homologs of the core clock proteins clock, cryptochrome 2, cycle, period and timeless were found in both the brain and eyestalk ganglia assemblies, as were transcripts encoding similar complements of putative clock-associated, clock input pathway and clock output pathway proteins. The presence and identity of transcripts encoding core clock proteins in both regions were confirmed using PCR. These findings suggest that both the brain and eyestalk ganglia possess all of the molecular components needed for the establishment of a circadian signaling system. Whether the brain and eyestalk clocks are independent of one another or represent a single timekeeping system remains to be determined. Interestingly, while most of the proteins deduced from the identified transcripts are shared by both the brain and eyestalk ganglia, assembly-specific isoforms were also identified, e.g., several period variants, suggesting the possibility of region-specific variation in clock function, especially if the brain and eyestalk clocks represent independent oscillators.


Assuntos
Encéfalo/fisiologia , Proteínas CLOCK/fisiologia , Ritmo Circadiano/fisiologia , Gânglios/fisiologia , Nephropidae/fisiologia , Transcriptoma , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/fisiologia , Alinhamento de Sequência
19.
J Neurosci Res ; 96(3): 436-448, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28941260

RESUMO

Recombinant adeno-associated viral (AAV)-mediated therapeutic gene transfer to dorsal root ganglia (DRG) is an effective and safe tool for treating chronic pain. However, AAV with various constitutively active promoters leads to transgene expression predominantly to neurons, while glial cells are refractory to AAV transduction in the peripheral nervous system. The present study evaluated whether in vivo satellite glial cell (SGC) transduction in the DRG can be enhanced by the SGC-specific GFAP promoter and by using shH10 and shH19, which are engineered capsid variants with Müller glia-prone transduction. Titer-matched AAV6 (as control), AAVshH10, and AAVshH19, all encoding the EGFP driven by the constitutively active CMV promoter, as well as AAV6-EGFP and AAVshH10-EGFP driven by a GFAP promoter (AAV6-GFAP-EGFP and AAVshH10-GFAP-EGFP), were injected into DRG of adult male rats. Neurotropism of gene expression was determined and compared by immunohistochemistry. Results showed that injection of AAV6- and AAVshH10-GFAP-EGFP induces robust EGFP expression selectively in SGCs, whereas injection of either AAVshH10-CMV-EGFP or AAVshH19-CMV-EGFP into DRG resulted in a similar in vivo transduction profile to AAV6-CMV-EGFP, all showing efficient transduction of sensory neurons without significant transduction of glial cell populations. Coinjection of AAV6-CMV-mCherry and AAV6-GFAP-EGFP induces transgene expression in neurons and SGCs separately. This report, together with our prior studies, demonstrates that the GFAP promoter rather than capsid tropism determines selective gene expression in SGCs following intraganglionic AAV delivery in adult rats. A dual AAV system, one with GFAP promoter and the other with CMV promoter, can efficiently express transgenes selectively in neurons versus SGCs.


Assuntos
Dependovirus/fisiologia , Proteína Glial Fibrilar Ácida/genética , Neuroglia/metabolismo , Transgenes , Animais , Dependovirus/genética , Gânglios/fisiologia , Gânglios/virologia , Gânglios Espinais/fisiologia , Gânglios Espinais/virologia , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Transdução Genética , Tropismo
20.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627638

RESUMO

The Drosophila giant fiber (GF) escape circuit is an extensively studied model for neuron connectivity and function. Researchers have long taken advantage of the simple linear neuronal pathway, which begins at peripheral sensory modalities, travels through the central GF interneuron (GFI) to motor neurons, and terminates on wing/leg muscles. This circuit is more complex than it seems, however, as there exists a complex web of coupled neurons connected to the GFI that widely innervates the thoracic ganglion. Here, we define four new neuron clusters dye coupled to the central GFI, which we name GF coupled (GFC) 1-4. We identify new transgenic Gal4 drivers that express specifically in these neurons, and map both neuronal architecture and synaptic polarity. GFC1-4 share a central site of GFI connectivity, the inframedial bridge, where the neurons each form electrical synapses. Targeted apoptotic ablation of GFC1 reveals a key role for the proper development of the GF circuit, including the maintenance of GFI connectivity with upstream and downstream synaptic partners. GFC1 ablation frequently results in the loss of one GFI, which is always compensated for by contralateral innervation from a branch of the persisting GFI axon. Overall, this work reveals extensively coupled interconnectivity within the GF circuit, and the requirement of coupled neurons for circuit development. Identification of this large population of electrically coupled neurons in this classic model, and the ability to genetically manipulate these electrically synapsed neurons, expands the GF system capabilities for the nuanced, sophisticated circuit dissection necessary for deeper investigations into brain formation.


Assuntos
Sinapses Elétricas/fisiologia , Gânglios/fisiologia , Rede Nervosa/fisiologia , Sistema Nervoso/citologia , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Dextrinas/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Gânglios/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Rodaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA