Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Viruses ; 13(11)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34835095

RESUMO

Primary varicella-zoster virus (VZV) infection leads to varicella and the establishment of lifelong latency in sensory ganglion neurons. Reactivation of latent VZV causes herpes zoster, which is frequently associated with chronic pain. Latent viral gene expression is restricted to the VZV latency-associated transcript (VLT) and VLT-ORF63 (VLT63) fusion transcripts. Since VLT and VLT63 encode proteins that are expressed during lytic infection, we investigated whether pVLT and pVLT-ORF63 are essential for VZV replication by performing VZV genome mutagenesis using CRISPR/Cas9 and BAC technologies. We first established that CRISPR/Cas9 can efficiently mutate VZV genomes in lytically VZV-infected cells through targeting non-essential genes ORF8 and ORF11 and subsequently show recovery of viable mutant viruses. By contrast, the VLT region was markedly resistant to CRISPR/Cas9 editing. Whereas most mutants expressed wild-type or N-terminally altered versions of pVLT and pVLT-ORF63, only a minority of the resulting mutant viruses lacked pVLT and pVLT-ORF63 coding potential. Growth curve analysis showed that pVLT/pVLT-ORF63 negative viruses were viable, but impaired in growth in epithelial cells. We confirmed this phenotype independently using BAC-derived pVLT/pVLT-ORF63 negative and repaired viruses. Collectively, these data demonstrate that pVLT and/or pVLT-ORF63 are dispensable for lytic VZV replication but promote efficient VZV infection in epithelial cells.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 3/genética , Proteínas Virais/genética , Latência Viral/genética , Sistemas CRISPR-Cas , Linhagem Celular , Gânglios/patologia , Gânglios/virologia , Humanos , Mutagênese , Neurônios/patologia , Neurônios/virologia , Fases de Leitura Aberta/genética , Transcrição Gênica/efeitos dos fármacos , Proteínas Virais/metabolismo , Fenômenos Fisiológicos Virais
2.
J Virol ; 94(3)2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31694955

RESUMO

The molecular mechanisms of pain associated with alphaherpesvirus latency are not clear. We hypothesize that the voltage-gated sodium channels (VGSC) on the dorsal root ganglion (DRG) neurons controlling electrical impulses may have abnormal activity during latent viral infection and reactivation. We used herpes simplex virus 1 (HSV-1) to infect the human DRG-derived neuronal cell line HD10.6 in order to study the establishment and maintenance of viral latency, viral reactivation, and changes in the functional expression of VGSCs. Differentiated cells exhibited robust tetrodotoxin (TTX)-sensitive sodium currents, and acute infection significantly reduced the functional expression of VGSCs within 24 h and completely abolished VGSC activity within 3 days. A quiescent state of infection mimicking latency can be achieved in the presence of acyclovir (ACV) for 7 days followed by 5 days of ACV washout, and then the viruses can remain dormant for another 3 weeks. It was noted that during the establishment of HSV-1 latency, the loss of VGSC activity caused by HSV-1 infection could not be blocked by ACV treatment. However, neurons with continued ACV treatment for another 4 days showed a gradual recovery of VGSC functional expression. Furthermore, the latently infected neurons exhibited higher VGSC activity than controls. The overall regulation of VGSCs by HSV-1 during quiescent infection was proved by increased transcription and possible translation of Nav1.7. Together, these observations demonstrated a very complex pattern of electrophysiological changes during HSV infection of DRG neurons, which may have implications for understanding of the mechanisms of virus-mediated pain linked to latency and reactivation.IMPORTANCE The reactivation of herpesviruses, most commonly varicella-zoster virus (VZV) and pseudorabies virus (PRV), may cause cranial nerve disorder and unbearable pain. Clinical studies have also reported that HSV-1 causes postherpetic neuralgia and chronic occipital neuralgia in humans. The current work meticulously studies the functional expression profile changes of VGSCs during the processes of HSV-1 latency establishment and reactivation using human dorsal root ganglion-derived neuronal HD10.6 cells as an in vitro model. Our results indicated that VGSC activity was eliminated upon infection but steadily recovered during latency establishment and that latent neurons exhibited even higher VGSC activity. This finding advances our knowledge of how ganglion neurons generate uncharacteristic electrical impulses due to abnormal VGSC functional expression influenced by the latent virus.


Assuntos
Aciclovir/farmacologia , Gânglios Espinais/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Neurônios/virologia , Linhagem Celular , Gânglios/virologia , Regulação Viral da Expressão Gênica , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidade , Herpesvirus Suídeo 1/fisiologia , Humanos , Neuralgia Pós-Herpética , Transcriptoma , Ativação Viral/fisiologia , Latência Viral/efeitos dos fármacos , Latência Viral/fisiologia , Replicação Viral
3.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462572

RESUMO

Upon replication in mucosal epithelia and transmission to nerve endings, capsids of herpes simplex virus 1 (HSV-1) travel retrogradely within axons to peripheral ganglia, where life-long latent infections are established. A capsid-bound tegument protein, pUL37, is an essential effector of retrograde axonal transport and also houses a deamidase activity that antagonizes innate immune signaling. In this report, we examined whether the deamidase of HSV-1 pUL37 contributes to the neuroinvasive retrograde axonal transport mechanism. We conclude that neuroinvasion is enhanced by the deamidase, but the critical contribution of pUL37 to retrograde axonal transport functions independently of this activity.IMPORTANCE Herpes simplex virus 1 invades the nervous system by entering nerve endings and sustaining long-distance retrograde axonal transport to reach neuronal nuclei in ganglia of the peripheral nervous system. The incoming viral particle carries a deamidase activity on its surface that antagonizes antiviral responses. We examined the contribution of the deamidase to the hallmark neuroinvasive property of this virus.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas Estruturais Virais/metabolismo , Animais , Transporte Axonal/fisiologia , Axônios/virologia , Capsídeo/metabolismo , Linhagem Celular , Chlorocebus aethiops , Gânglios/metabolismo , Gânglios/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/metabolismo , Humanos , Mucosa Intestinal , Neurônios/virologia , Células Vero , Proteínas Estruturais Virais/genética , Vírion/metabolismo
4.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462576

RESUMO

Immune regulation of alphaherpesvirus latency and reactivation is critical for the control of virus pathogenesis. This is evident for herpes simplex virus 1 (HSV-1), where cytotoxic T lymphocytes (CTLs) prevent viral reactivation independent of apoptosis induction. This inhibition of HSV-1 reactivation has been attributed to granzyme B cleavage of HSV infected cell protein 4 (ICP4); however, it is unknown whether granzyme B cleavage of ICP4 can directly protect cells from CTL cytotoxicity. Varicella zoster virus (VZV) is closely related to HSV-1; however, it is unknown whether VZV proteins contain granzyme B cleavage sites. Natural killer (NK) cells play a central role in VZV and HSV-1 pathogenesis and, like CTLs, utilize granzyme B to kill virally infected target cells. However, whether alphaherpesvirus granzyme B cleavage sites could modulate NK cell-mediated cytotoxicity has yet to be established. This study aimed to identify novel HSV-1 and VZV gene products with granzyme B cleavage sites and assess whether they could protect cells from NK cell-mediated cytotoxicity. We have demonstrated that HSV ICP27, VZV open reading frame 62 (ORF62), and VZV ORF4 are cleaved by granzyme B. However, in an NK cell cytotoxicity assay, only VZV ORF4 conferred protection from NK cell-mediated cytotoxicity. The granzyme B cleavage site in ORF4 was identified via site-directed mutagenesis and, surprisingly, the mutation of this cleavage site did not alter the ability of ORF4 to modulate NK cell cytotoxicity, suggesting that ORF4 has a novel immunoevasive function that is independent from the granzyme B cleavage site.IMPORTANCE HSV-1 causes oral and genital herpes and establishes life-long latency in sensory ganglia. HSV-1 reactivates multiple times in a person's life and can cause life-threatening disease in immunocompromised patients. VZV is closely related to HSV-1, causes chickenpox during primary infection, and establishes life-long latency in ganglia, from where it can reactivate to cause herpes zoster (shingles). Unlike HSV-1, VZV only infects humans, and there are limited model systems; thus, little is known concerning how VZV maintains latency and why VZV reactivates. Through studying the link between immune cell cytotoxic functions, granzyme B, and viral gene products, an increased understanding of viral pathogenesis will be achieved.


Assuntos
Granzimas/genética , Granzimas/metabolismo , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 3/metabolismo , Células Matadoras Naturais/imunologia , Linhagem Celular , Varicela/virologia , Gânglios/virologia , Células HEK293 , Herpes Zoster/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 3/genética , Humanos , Proteínas Imediatamente Precoces/metabolismo , Células Matadoras Naturais/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Proteínas Virais/genética , Latência Viral
5.
Viruses ; 11(6)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159224

RESUMO

Varicella-zoster virus (VZV), an exclusively human herpesvirus, causes chickenpox and establishes a latent infection in ganglia, reactivating decades later to produce zoster and associated neurological complications. An understanding of VZV neurotropism in humans has long been hampered by the lack of an adequate animal model. For example, experimental inoculation of VZV in small animals including guinea pigs and cotton rats results in the infection of ganglia but not a rash. The severe combined immune deficient human (SCID-hu) model allows the study of VZV neurotropism for human neural sub-populations. Simian varicella virus (SVV) infection of rhesus macaques (RM) closely resembles both human primary VZV infection and reactivation, with analyses at early times after infection providing valuable information about the extent of viral replication and the host immune responses. Indeed, a critical role for CD4 T-cell immunity during acute SVV infection as well as reactivation has emerged based on studies using RM. Herein we discuss the results of efforts from different groups to establish an animal model of VZV neurotropism.


Assuntos
Modelos Animais de Doenças , Gânglios/virologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 3/patogenicidade , Tropismo Viral , Animais , Varicela/virologia , Cobaias , Herpes Zoster/virologia , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/imunologia , Macaca mulatta , Sigmodontinae , Carga Viral , Replicação Viral
6.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996085

RESUMO

The cellular insulator protein CTCF plays a role in herpes simplex virus 1 (HSV-1) latency through the establishment and regulation of chromatin boundaries. We previously found that the CTRL2 regulatory element downstream from the latency-associated transcript (LAT) enhancer was bound by CTCF during latency and underwent CTCF eviction at early times postreactivation in mice latently infected with 17syn+ virus. We also showed that CTRL2 was a functional enhancer-blocking insulator in both epithelial and neuronal cell lines. We hypothesized that CTRL2 played a direct role in silencing lytic gene expression during the establishment of HSV-1 latency. To test this hypothesis, we used a recombinant virus with a 135-bp deletion spanning only the core CTRL2 insulator domain (ΔCTRL2) in the 17syn+ background. Deletion of CTRL2 resulted in restricted viral replication in epithelial cells but not neuronal cells. Following ocular infection, mouse survival decreased in the ΔCTRL2-infected cohort, and we found a significant decrease in the number of viral genomes in mouse trigeminal ganglia (TG) infected with ΔCTRL2, indicating that the CTRL2 insulator was required for the efficient establishment of latency. Immediate early (IE) gene expression significantly increased in the number of ganglia infected with ΔCTRL2 by 31 days postinfection relative to the level with 17syn+ infection, indicating that deletion of the CTRL2 insulator disrupted the organization of chromatin domains during HSV-1 latency. Finally, chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) analyses of TG from ΔCTRL2-infected mice confirmed that the distribution of the repressive H3K27me3 (histone H3 trimethylated at K27) mark on the ΔCTRL2 recombinant genomes was altered compared to that of the wild type, indicating that the CTRL2 site modulates the repression of IE genes during latency.IMPORTANCE It is becoming increasingly clear that chromatin insulators play a key role in the transcriptional control of DNA viruses. The gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) utilize chromatin insulators to order protein recruitment and dictate the formation of three-dimensional DNA loops that spatially control transcription and latency. The contribution of chromatin insulators in alphaherpesvirus transcriptional control is less well understood. The work presented here begins to bridge that gap in knowledge by showing how one insulator site in HSV-1 modulates lytic gene transcription and heterochromatin deposition as the HSV-1 genome establishes latency.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Herpesvirus Humano 1/metabolismo , Heterocromatina/metabolismo , Latência Viral/fisiologia , Animais , Fator de Ligação a CCCTC/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Epigenômica , Infecções Oculares/virologia , Gânglios/virologia , Regulação Viral da Expressão Gênica , Inativação Gênica , Genoma Viral , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ativação Viral , Replicação Viral
7.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894469

RESUMO

Herpes simplex virus 2 (HSV-2) can be transmitted in the presence or absence of lesions, allowing efficient spread among the general population. Recurrent HSV genital lesions are thought to arise from reactivated latent virus in sensory cell bodies of the dorsal root ganglia (DRG). However, HSV-2 has also been found latent in autonomic ganglia. Spontaneous reactivation or a low level of chronic infection could theoretically also occur in these peripheral nervous tissues, contributing to the presence of infectious virus in the periphery and to viral transmission. Use of a recently described, optimized virus with a monomeric mNeonGreen protein fused to viral capsid protein 26 (VP26) permitted detection of reactivating virus in explanted ganglia and cryosections of DRG and the sacral sympathetic ganglia (SSG) from latently infected guinea pigs. Immediate early, early, and late gene expression were quantified by droplet digital reverse transcription-PCR (ddRT-PCR), providing further evidence of viral reactivation not only in the expected DRG but also in the sympathetic SSG. These findings indicate that viral reactivation from autonomic ganglia is a feature of latent viral infection and that these reactivations likely contribute to viral pathogenesis.IMPORTANCE HSV-2 is a ubiquitous important human pathogen that causes recurrent infections for the life of its host. We hypothesized that the autonomic ganglia have important roles in viral reactivation, and this study sought to determine whether this is correct in the clinically relevant guinea pig vaginal infection model. Our findings indicate that sympathetic ganglia are sources of reactivating virus, helping explain how the virus causes lifelong recurrent disease.


Assuntos
Gânglios Autônomos/metabolismo , Herpesvirus Humano 2/metabolismo , Ativação Viral/fisiologia , Animais , Gânglios/virologia , Gânglios Autônomos/fisiologia , Gânglios Autônomos/virologia , Gânglios Espinais/virologia , Gânglios Simpáticos/metabolismo , Gânglios Simpáticos/virologia , Regulação Viral da Expressão Gênica/genética , Cobaias , Herpes Simples/virologia , Latência Viral/fisiologia , Replicação Viral
8.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30404798

RESUMO

Rhesus macaques intrabronchially inoculated with simian varicella virus (SVV), the counterpart of human varicella-zoster virus (VZV), developed primary infection with viremia and rash, which resolved upon clearance of viremia, followed by the establishment of latency. To assess the role of CD4 T cell immunity in reactivation, monkeys were treated with a single 50-mg/kg dose of a humanized monoclonal anti-CD4 antibody; within 1 week, circulating CD4 T cells were reduced from 40 to 60% to 5 to 30% of the total T cell population and remained low for 2 months. Very low viremia was seen only in some of the treated monkeys. Zoster rash developed after 7 days in the monkey with the most extensive CD4 T cell depletion (5%) and in all other monkeys at 10 to 49 days posttreatment, with recurrent zoster in one treated monkey. SVV DNA was detected in the lung from two of five monkeys, in bronchial lymph nodes from one of the five monkeys, and in ganglia from at least two dermatomes in three of five monkeys. Immunofluorescence analysis of skin rash, lungs, lymph nodes, and ganglia revealed SVV ORF63 protein at the following sites: sweat glands in skin; type II cells in lung alveoli, macrophages, and dendritic cells in lymph nodes; and the neuronal cytoplasm of ganglia. Detection of SVV antigen in multiple tissues upon CD4 T cell depletion and virus reactivation suggests a critical role for CD4 T cell immunity in controlling varicella virus latency.IMPORTANCE Reactivation of latent VZV in humans can result in serious neurological complications. VZV-specific cell-mediated immunity is critical for the maintenance of latency. Similar to VZV in humans, SVV causes varicella in monkeys, establishes latency in ganglia, and reactivates to produce shingles. Here, we show that depletion of CD4 T cells in rhesus macaques results in SVV reactivation, with virus antigens found in zoster rash and SVV DNA and antigens found in lungs, lymph nodes, and ganglia. These results suggest the critical role of CD4 T cell immunity in controlling varicella virus latency.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Depleção Linfocítica , Pele/imunologia , Varicellovirus/isolamento & purificação , Ativação Viral/imunologia , Latência Viral/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Modelos Animais de Doenças , Feminino , Gânglios/citologia , Gânglios/imunologia , Gânglios/virologia , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Linfonodos/citologia , Linfonodos/imunologia , Linfonodos/virologia , Macaca mulatta , Masculino , Pele/citologia , Pele/virologia
9.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514910

RESUMO

Herpes simplex virus 1 (HSV-1) establishes a lifelong latent infection in host peripheral neurons, including the neurons of the trigeminal ganglia (TG). HSV-1 can reactivate from neurons to cause recurrent infection. During latency, the insulator protein CTCF occupies DNA binding sites on the HSV-1 genome, and these sites have been previously characterized as functional enhancer-blocking insulators. Previously, CTCF was found to be dissociated from wild-type virus postreactivation but not in mutants that do not reactivate, indicating that CTCF eviction may also be an important component of reactivation. To further elucidate the role of CTCF in reactivation of HSV-1, we used recombinant adeno-associated virus (rAAV) vectors to deliver a small interfering RNA targeting CTCF to peripheral neurons latent with HSV-1 in rabbit TG. Our data show that CTCF depletion resulted in long-term and persistent shedding of infectious virus in the cornea and increased ICP0 expression in the ganglia, indicating that CTCF depletion facilitates HSV-1 reactivation.IMPORTANCE Increasing evidence has shown that the insulator protein CTCF regulates gene expression of DNA viruses, including the gammaherpesviruses. While CTCF occupation and insulator function control gene expression in DNA viruses, CTCF eviction has been correlated to increased lytic gene expression and the dissolution of transcriptional domains. Our previous data have shown that in the alphaherpesvirus HSV-1, CTCF was found to be dissociated from the HSV-1 genome postreactivation, further indicating a global role for CTCF eviction in the transition from latency to reactivation in HSV-1 genomes. Using an rAAV8, we targeted HSV-1-infected peripheral neurons for CTCF depletion to show that CTCF depletion precedes the shedding of infectious virus and increased lytic gene expression in vivo, providing the first evidence that CTCF depletion facilitates HSV-1 reactivation.


Assuntos
Fator de Ligação a CCCTC/genética , Técnicas de Inativação de Genes/métodos , Herpes Simples/genética , Herpesvirus Humano 1/fisiologia , Células 3T3 , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , Córnea/virologia , Modelos Animais de Doenças , Gânglios/virologia , Genoma Viral , Herpes Simples/virologia , Herpesvirus Humano 1/química , Camundongos , Coelhos , Ativação Viral , Latência Viral , Eliminação de Partículas Virais
10.
J Neurosci Res ; 96(3): 436-448, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28941260

RESUMO

Recombinant adeno-associated viral (AAV)-mediated therapeutic gene transfer to dorsal root ganglia (DRG) is an effective and safe tool for treating chronic pain. However, AAV with various constitutively active promoters leads to transgene expression predominantly to neurons, while glial cells are refractory to AAV transduction in the peripheral nervous system. The present study evaluated whether in vivo satellite glial cell (SGC) transduction in the DRG can be enhanced by the SGC-specific GFAP promoter and by using shH10 and shH19, which are engineered capsid variants with Müller glia-prone transduction. Titer-matched AAV6 (as control), AAVshH10, and AAVshH19, all encoding the EGFP driven by the constitutively active CMV promoter, as well as AAV6-EGFP and AAVshH10-EGFP driven by a GFAP promoter (AAV6-GFAP-EGFP and AAVshH10-GFAP-EGFP), were injected into DRG of adult male rats. Neurotropism of gene expression was determined and compared by immunohistochemistry. Results showed that injection of AAV6- and AAVshH10-GFAP-EGFP induces robust EGFP expression selectively in SGCs, whereas injection of either AAVshH10-CMV-EGFP or AAVshH19-CMV-EGFP into DRG resulted in a similar in vivo transduction profile to AAV6-CMV-EGFP, all showing efficient transduction of sensory neurons without significant transduction of glial cell populations. Coinjection of AAV6-CMV-mCherry and AAV6-GFAP-EGFP induces transgene expression in neurons and SGCs separately. This report, together with our prior studies, demonstrates that the GFAP promoter rather than capsid tropism determines selective gene expression in SGCs following intraganglionic AAV delivery in adult rats. A dual AAV system, one with GFAP promoter and the other with CMV promoter, can efficiently express transgenes selectively in neurons versus SGCs.


Assuntos
Dependovirus/fisiologia , Proteína Glial Fibrilar Ácida/genética , Neuroglia/metabolismo , Transgenes , Animais , Dependovirus/genética , Gânglios/fisiologia , Gânglios/virologia , Gânglios Espinais/fisiologia , Gânglios Espinais/virologia , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Transdução Genética , Tropismo
11.
J Microbiol Immunol Infect ; 51(5): 587-592, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28711432

RESUMO

BACKGROUND: Inactivated Orf virus (iORFV) has been used as a preventative as well as a therapeutic immunomodulator in veterinary medicine in different species. iORFV elicits strong effects on cytokine secretion in mice and human immune cells leading to an auto-regulated loop of initial up-regulation of inflammatory and Th1-related cytokines followed by Th2-related cytokines that attenuate immunopathology. The therapeutic potential of iORFV has been recognized in several models for difficult-to-treat disease areas such as chronic viral diseases, liver fibrosis or various forms of cancer. METHODS: Guinea pigs were infected with Human Herpesvirus (HSV)-2 strain MS and treated with iORFV, Acyclovir (ACV) or placebo, respectively. Clinical score of herpes lesions and viral shedding was assessed over a period of 40 days. In addition, viral DNA in dorsal root ganglia was quantified at the end of the study. RESULTS: Disease symptoms were minimal or absent in iORFV-treated guinea pigs but tended to be severe in animals treated with either ACV or placebo. The cumulated disease score was significantly reduced in iORFV-treated but not in ACV- or placebo-treated guinea pigs. In addition, treatment with iORFV, but not ACV or placebo, led to significant reduction of viral DNA load in dorsal root ganglia. CONCLUSION: iORFV effectively suppressed recurrences in guinea pigs experimentally infected with HSV. iORFV did not only reduce recurrent disease episodes but was, compared with ACV, more effective in reducing latency as measured by viral DNA detected in dorsal root ganglia of infected animals.


Assuntos
Antivirais/imunologia , Modelos Animais de Doenças , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/efeitos dos fármacos , Vírus do Orf/imunologia , Prevenção Secundária/métodos , Vacinas Virais/imunologia , Animais , Antivirais/administração & dosagem , DNA Viral/análise , Feminino , Gânglios/virologia , Cobaias , Herpes Genital/virologia , Herpesvirus Humano 2/fisiologia , Humanos , Imunomodulação , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/administração & dosagem , Eliminação de Partículas Virais/efeitos dos fármacos
12.
PLoS Pathog ; 13(12): e1006741, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29216315

RESUMO

A hallmark property of the neurotropic alpha-herpesvirinae is the dissemination of infection to sensory and autonomic ganglia of the peripheral nervous system following an initial exposure at mucosal surfaces. The peripheral ganglia serve as the latent virus reservoir and the source of recurrent infections such as cold sores (herpes simplex virus type I) and shingles (varicella zoster virus). However, the means by which these viruses routinely invade the nervous system is not fully understood. We report that an internal virion component, the pUL37 tegument protein, has a surface region that is an essential neuroinvasion effector. Mutation of this region rendered herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) incapable of spreading by retrograde axonal transport to peripheral ganglia both in culture and animals. By monitoring the axonal transport of individual viral particles by time-lapse fluorescence microscopy, the mutant viruses were determined to lack the characteristic sustained intracellular capsid motion along microtubules that normally traffics capsids to the neural soma. Consistent with the axonal transport deficit, the mutant viruses did not reach sites of latency in peripheral ganglia, and were avirulent. Despite this, viral propagation in peripheral tissues and in cultured epithelial cell lines remained robust. Selective elimination of retrograde delivery to the nervous system has long been sought after as a means to develop vaccines against these ubiquitous, and sometimes devastating viruses. In support of this potential, we find that HSV-1 and PRV mutated in the effector region of pUL37 evoked effective vaccination against subsequent nervous system challenges and encephalitic disease. These findings demonstrate that retrograde axonal transport of the herpesviruses occurs by a virus-directed mechanism that operates by coordinating opposing microtubule motors to favor sustained retrograde delivery of the virus to the peripheral ganglia. The ability to selectively eliminate the retrograde axonal transport mechanism from these viruses will be useful in trans-synaptic mapping studies of the mammalian nervous system, and affords a new vaccination paradigm for human and veterinary neurotropic herpesviruses.


Assuntos
Transporte Axonal/fisiologia , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Suídeo 1/fisiologia , Herpesvirus Suídeo 1/patogenicidade , Proteínas Estruturais Virais/fisiologia , Sequência de Aminoácidos , Animais , Transporte Axonal/genética , Axônios/virologia , Gânglios/virologia , Genes Virais , Herpesvirus Humano 1/genética , Herpesvirus Suídeo 1/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Modelos Moleculares , Mutação , Neurônios/virologia , Ratos , Ratos Long-Evans , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Vacinas Virais/genética , Virulência/genética , Virulência/fisiologia , Liberação de Vírus/genética , Liberação de Vírus/fisiologia
13.
PLoS One ; 12(11): e0187797, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29121071

RESUMO

Parrot bornaviruses (PaBVs) are the causative agents of proventricular dilatation disease, however key aspects of its pathogenesis, such as route of infection, viral spread and distribution, and target cells remain unclear. Our study aimed to track the viral spread and lesion development at 5, 10, 20, 25, 35, 40, 60, 80, 95 and 114 dpi using histopathology, immunohistochemistry, and RT-PCR. After intramuscular inoculation of parrot bornavirus 2 (PaBV-2) in the pectoral muscle of cockatiels, this virus was first detected in macrophages and lymphocytes in the inoculation site and adjacent nerves, then reached the brachial plexus, centripetally spread to the thoracic segment of the spinal cord, and subsequently invaded the other spinal segments and brain. After reaching the central nervous system (CNS), PaBV-2 centrifugally spread out the CNS to the ganglia in the gastrointestinal (GI) system, adrenal gland, heart, and kidneys. At late points of infection, PaBV-2 was not only detected in nerves and ganglia but widespread in the smooth muscle and/or scattered epithelial cells of tissues such as crop, intestines, proventriculus, kidneys, skin, and vessels. Despite the hallmark lesion of PaBVs infection being the dilation of the proventriculus, our results demonstrate PaBV-2 first targets the CNS, before migrating to peripheral tissues such as the GI system.


Assuntos
Bornaviridae/fisiologia , Encéfalo/virologia , Cacatuas/virologia , Gânglios/virologia , Trato Gastrointestinal/virologia , Animais , Doenças das Aves/virologia , Encéfalo/patologia , Gânglios/patologia , Trato Gastrointestinal/patologia , Infecções por Mononegavirales/patologia , Fatores de Tempo
14.
J Virol ; 91(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28637763

RESUMO

Herpes simplex virus (HSV) infection is widespread in the human population. Following orofacial infection, HSV establishes latency in innervating sensory neurons, primarily located in the trigeminal ganglia. A central feature of HSV pathogenesis is the ability to periodically reactivate in those neurons and be transported back to the body surface. Both transmission and disease, such as keratitis, encephalitis, and neurodegeneration, have been linked to reactivation. Despite invaluable insights obtained from model systems, interactions between viral and host functions that regulate reactivation are still incompletely understood. Various assays are used for measuring reactivation in animal models, but there have been limited comparisons between methods and the accuracy of detecting the timing of reactivation and the corresponding amount of infectious virus produced in the ganglia per reactivation event. Here, we directly compare two approaches for measuring reactivation in latently infected explanted ganglia by sampling media from the explanted cultures or by homogenization of the ganglia and compare the results to viral protein expression in the whole ganglia. We show that infectious virus detection by direct homogenization of explanted ganglia correlates with viral protein expression, but detection of infectious virus in medium samples from explanted cultures does not occur until extensive spread of virus is observed in the ganglia. The medium-sampling method is therefore not reflective of the initial timing of reactivation, and the additional variables influencing spread of virus in the ganglia should be considered when interpreting results obtained using this method.IMPORTANCE The development of treatments to prevent and/or treat HSV infection rely upon understanding viral and host factors that influence reactivation. Progress is dependent on experimental methods that accurately measure the frequency and timing of reactivation in latently infected neurons. In this study, two methods for detecting reactivation using the explant model are compared. We show through direct tissue homogenization that reactivation occurs much earlier than can be detected by the indirect method of sampling media from explanted cultures. Thus, the sampling method does not detect the initial timing of reactivation, and results obtained using this method are subject to additional variables with the potential to obscure reactivation outcomes.


Assuntos
Gânglios/virologia , Técnicas de Cultura de Órgãos/métodos , Simplexvirus/fisiologia , Ativação Viral , Animais , Camundongos
15.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28446678

RESUMO

Controversy still surrounds both the etiology and pathophysiology of vestibular neuritis (VN). Especially uncertain is why the superior vestibular nerve (SVN) is more frequently affected than the inferior vestibular nerve (IVN), which is partially or totally spared. To address this question, we developed an improved method for preparing human vestibular ganglia (VG) and nerve. Subsequently, macro- and microanatomical as well as PCR studies were performed on 38 human ganglia from 38 individuals. The SVN was 2.4 mm longer than the IVN, and in 65% of the cases, the IVN ran in two separate bony canals, which was not the case for the SVN. Anastomoses between the facial and cochlear nerves were more common for the SVN (14/38 and 9/38, respectively) than for the IVN (7/38 and 2/38, respectively). Using reverse transcription-quantitative PCR (RT-qPCR), we found only a few latently herpes simplex virus 1 (HSV-1)-infected VG (18.4%). In cases of two separate neuronal fields, infected neurons were located in the superior part only. In summary, these PCR and micro- and macroanatomical studies provide possible explanations for the high frequency of SVN infection in vestibular neuritis.IMPORTANCE Vestibular neuritis is known to affect the superior part of the vestibular nerve more frequently than the inferior part. The reason for this clinical phenomenon remains unclear. Anatomical differences may play a role, or if latent HSV-1 infection is assumed, the etiology may be due to the different distribution of the infection. To shed further light on this subject, we conducted different macro- and microanatomical studies. We also assessed the presence of HSV-1 in VG and in different sections of the VG. Our findings add new information on the macro- and microanatomy of the VG as well as the pathophysiology of vestibular neuritis. We also show that latent HSV-1 infection of VG neurons is less frequent than previously reported.


Assuntos
Gânglios/virologia , Herpesvirus Humano 1/fisiologia , Nervo Vestibular/virologia , Neuronite Vestibular/patologia , Neuronite Vestibular/virologia , Latência Viral , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
16.
Virology ; 497: 323-327, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27518540

RESUMO

IFN responses control acute HSV infection, but their role in regulating HSV latency is poorly understood. To address this we used mice lacking IFN signaling specifically in neural tissues. These mice supported a higher acute viral load in nervous tissue and delayed establishment of latency. While latent HSV-1 genome copies were equivalent, ganglia from neuronal IFN signaling-deficient mice unexpectedly supported reduced reactivation. IFNß promoted survival of primary sensory neurons after infection with HSV-1, indicating a role for IFN signaling in sustaining neurons. We observed higher levels of latency associated transcripts (LATs) per HSV genome in mice lacking neuronal IFN signaling, consistent with a role for IFN in regulating LAT expression. These data show that neuronal IFN signaling modulates the expression of LAT and may conserve the pool of neurons available to harbor latent HSV-1 genome. The data also show that neuronal IFN signaling is dispensable for the establishment of latency.


Assuntos
Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Interferons/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Transdução de Sinais , Latência Viral , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Gânglios/metabolismo , Gânglios/virologia , Herpes Simples/mortalidade , Camundongos , Camundongos Knockout , Fator de Transcrição STAT1/deficiência , Carga Viral , Replicação Viral
17.
PLoS One ; 11(6): e0155124, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27285483

RESUMO

A signature feature of HIV infection is poor control of herpes virus infections, which reactivate from latency and cause opportunistic infections. While the general mechanism underlying this observation is deficient CD4+T-cell function, it is unknown whether increased severity of herpes virus infections is due primarily to poor immune control in latent or lytic sites of infection, or whether CD4+ immunodeficiency leads to more critical downstream deficits in humoral or cell-mediated immunologic responses. Here we compare genital shedding patterns of herpes simplex virus-2 (HSV-2) in 98 HIV infected and 98 HIV uninfected men matched on length of infection, HSV-1 serostatus and nationality. We demonstrate that high copy HSV-2 shedding is more frequent in HIV positive men, particularly in participants with CD4+ T-cell count <200/µL. Genital shedding is more frequent due to higher rate of shedding episodes, as well as a higher proportion of prolonged shedding episodes. Peak episode viral load was not found to differ between HIV infected and uninfected participants regardless of CD4+ T-cell count. We simulate a mathematical model which recapitulates these findings and identifies that rate of HSV-2 release from neural tissue increases, duration of mucosal cytolytic immune protection decreases, and cell-free viral lifespan increases in HIV infected participants. These results suggest that increased HSV-2 shedding in HIV infected persons may be caused by impaired immune function in both latent and lytic tissue compartments, with deficits in clearance of HSV-2 infected cells and extracellular virus.


Assuntos
Gânglios , Genitália Masculina , Infecções por HIV/virologia , Herpes Simples/virologia , Herpesvirus Humano 2/fisiologia , Modelos Teóricos , Eliminação de Partículas Virais/fisiologia , Infecções Oportunistas Relacionadas com a AIDS/diagnóstico , Infecções Oportunistas Relacionadas com a AIDS/imunologia , Infecções Oportunistas Relacionadas com a AIDS/virologia , Adulto , Idoso , Estudos de Casos e Controles , Coinfecção/diagnóstico , Coinfecção/virologia , Gânglios/imunologia , Gânglios/virologia , Genitália Masculina/imunologia , Genitália Masculina/virologia , Infecções por HIV/diagnóstico , Infecções por HIV/imunologia , HIV-1 , Herpes Simples/diagnóstico , Herpes Simples/imunologia , Humanos , Hospedeiro Imunocomprometido/imunologia , Masculino , Pessoa de Meia-Idade , Mucosa/imunologia , Mucosa/virologia , Prognóstico
18.
Cell Host Microbe ; 19(6): 788-99, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27281569

RESUMO

Herpes simplex virus 1 (HSV-1), a leading cause of genital herpes, infects oral or genital mucosal epithelial cells before infecting the peripheral sensory nervous system. The spread of HSV-1 beyond the sensory nervous system and the resulting broader spectrum of disease are not well understood. Using a mouse model of genital herpes, we found that HSV-1-infection-associated lethality correlated with severe fecal and urinary retention. No inflammation or infection of the brain was evident. Instead, HSV-1 spread via the dorsal root ganglia to the autonomic ganglia of the enteric nervous system (ENS) in the colon. ENS infection led to robust viral gene transcription, pathological inflammatory responses, and neutrophil-mediated destruction of enteric neurons, ultimately resulting in permanent loss of peristalsis and the development of toxic megacolon. Laxative treatment rescued mice from lethality following genital HSV-1 infection. These results reveal an unexpected pathogenesis of HSV associated with ENS infection.


Assuntos
Sistema Nervoso Entérico/virologia , Herpes Genital/virologia , Herpesvirus Humano 1/patogenicidade , Megacolo Tóxico/virologia , Neurônios/virologia , Doenças Vaginais/virologia , Animais , Modelos Animais de Doenças , Sistema Nervoso Entérico/patologia , Feminino , Gânglios/patologia , Gânglios/ultraestrutura , Gânglios/virologia , Gânglios Espinais/patologia , Gânglios Espinais/virologia , Genoma Viral , Herpes Genital/patologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Intestinos/virologia , Megacolo Tóxico/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Neutrófilos/virologia , Nociceptores/virologia , Vagina/virologia , Doenças Vaginais/patologia , Replicação Viral/fisiologia
19.
Adv Virus Res ; 94: 53-80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26997590

RESUMO

Alphaherpesviruses infect a variety of species from sea turtles to man and can cause significant disease in mammals including humans and livestock. These viruses are characterized by a lytic and latent state in nerve ganglia, with the ability to establish a lifelong latent infection that is interrupted by periodic reactivation. Previously, it was accepted that latency was a dominant state and that only during relatively infrequent reactivation episodes did latent genomes within ganglia become transcriptionally active. Here, we review recent data, focusing mainly on Herpes Simplex Virus type 1 which indicate that the latent state is more dynamic than recently appreciated.


Assuntos
Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/fisiologia , Transcrição Gênica , Ativação Viral , Latência Viral , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Gânglios/virologia , Herpesvirus Humano 1/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA