Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 853
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(33): e2118501119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35943985

RESUMO

Pain and itch are distinct sensations arousing evasion and compulsive desire for scratching, respectively. It's unclear whether they could invoke different neural networks in the brain. Here, we use the type 1 herpes simplex virus H129 strain to trace the neural networks derived from two types of dorsal root ganglia (DRG) neurons: one kind of polymodal nociceptors containing galanin (Gal) and one type of pruriceptors expressing neurotensin (Nts). The DRG microinjection and immunosuppression were performed in transgenic mice to achieve a successful tracing from specific types of DRG neurons to the primary sensory cortex. About one-third of nuclei in the brain were labeled. More than half of them were differentially labeled in two networks. For the ascending pathways, the spinothalamic tract was absent in the network derived from Nts-expressing pruriceptors, and the two networks shared the spinobulbar projections but occupied different subnuclei. As to the motor systems, more neurons in the primary motor cortex and red nucleus of the somatic motor system participated in the Gal-containing nociceptor-derived network, while more neurons in the nucleus of the solitary tract (NST) and the dorsal motor nucleus of vagus nerve (DMX) of the emotional motor system was found in the Nts-expressing pruriceptor-derived network. Functional validation of differentially labeled nuclei by c-Fos test and chemogenetic inhibition suggested the red nucleus in facilitating the response to noxious heat and the NST/DMX in regulating the histamine-induced scratching. Thus, we reveal the organization of neural networks in a DRG neuron type-dependent manner for processing pain and itch.


Assuntos
Galanina , Gânglios Espinais , Rede Nervosa , Neurotensina , Nociceptores , Dor , Prurido , Animais , Galanina/metabolismo , Gânglios Espinais/ultraestrutura , Herpesvirus Humano 1 , Camundongos , Camundongos Transgênicos , Rede Nervosa/ultraestrutura , Neurotensina/metabolismo , Nociceptores/metabolismo , Dor/fisiopatologia , Prurido/fisiopatologia , Núcleo Solitário/ultraestrutura
2.
J Neuroinflammation ; 18(1): 209, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530852

RESUMO

BACKGROUND: Toll-like receptor 7 (TLR7) is an innate immune receptor that detects viral single-stranded RNA and triggers the production of proinflammatory cytokines and type 1 interferons in immune cells. TLR7 agonists also modulate sensory nerve function by increasing neuronal excitability, although studies are conflicting whether sensory neurons specifically express TLR7. This uncertainty has confounded the development of a mechanistic understanding of TLR7 function in nervous tissues. METHODS: TLR7 expression was tested using in situ hybridization with species-specific RNA probes in vagal and dorsal root sensory ganglia in wild-type and TLR7 knockout (KO) mice and in guinea pigs. Since TLR7 KO mice were generated by inserting an Escherichia coli lacZ gene in exon 3 of the mouse TLR7 gene, wild-type and TLR7 (KO) mouse vagal ganglia were also labeled for lacZ. In situ labeling was compared to immunohistochemistry using TLR7 antibody probes. The effects of influenza A infection on TLR7 expression in sensory ganglia and in the spleen were also assessed. RESULTS: In situ probes detected TLR7 in the spleen and in small support cells adjacent to sensory neurons in the dorsal root and vagal ganglia in wild-type mice and guinea pigs, but not in TLR7 KO mice. TLR7 was co-expressed with the macrophage marker Iba1 and the satellite glial cell marker GFAP, but not with the neuronal marker PGP9.5, indicating that TLR7 is not expressed by sensory nerves in either vagal or dorsal root ganglia in mice or guinea pigs. In contrast, TLR7 antibodies labeled small- and medium-sized neurons in wild-type and TLR7 KO mice in a TLR7-independent manner. Influenza A infection caused significant weight loss and upregulation of TLR7 in the spleens, but not in vagal ganglia, in mice. CONCLUSION: TLR7 is expressed by macrophages and satellite glial cells, but not neurons in sensory ganglia suggesting TLR7's neuromodulatory effects are mediated indirectly via activation of neuronally-associated support cells, not through activation of neurons directly. Our data also suggest TLR7's primary role in neuronal tissues is not related to antiviral immunity.


Assuntos
Gânglios Espinais/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/biossíntese , Neuroglia/metabolismo , Células Receptoras Sensoriais/metabolismo , Receptor 7 Toll-Like/biossíntese , Animais , Feminino , Gânglios Espinais/ultraestrutura , Expressão Gênica , Cobaias , Macrófagos/ultraestrutura , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Receptor 7 Toll-Like/genética
3.
Dev Biol ; 478: 1-12, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34147472

RESUMO

Dorsal root ganglion (DRG) neurons are the predominant cell type that innervates the vertebrate skin. They are typically described as pseudounipolar cells that have central and peripheral axons branching from a single root exiting the cell body. The peripheral axon travels within a nerve to the skin, where free sensory endings can emerge and branch into an arbor that receives and integrates information. In some immature vertebrates, DRG neurons are preceded by Rohon-Beard (RB) neurons. While the sensory endings of RB and DRG neurons function like dendrites, we use live imaging in zebrafish to show that they have axonal plus-end-out microtubule polarity at all stages of maturity. Moreover, we show both cell types have central and peripheral axons with plus-end-out polarity. Surprisingly, in DRG neurons these emerge separately from the cell body, and most cells never acquire the signature pseudounipolar morphology. Like another recently characterized cell type that has multiple plus-end-out neurites, ganglion cells in Nematostella, RB and DRG neurons maintain a somatic microtubule organizing center even when mature. In summary, we characterize key cellular and subcellular features of vertebrate sensory neurons as a foundation for understanding their function and maintenance.


Assuntos
Gânglios Espinais/ultraestrutura , Microtúbulos/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Pele/inervação , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Axônios/ultraestrutura , Corpo Celular/ultraestrutura , Polaridade Celular , Dendritos/fisiologia , Drosophila/citologia , Drosophila/crescimento & desenvolvimento , Gânglios Espinais/fisiologia , Centro Organizador dos Microtúbulos/ultraestrutura , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/crescimento & desenvolvimento , Anêmonas-do-Mar/ultraestrutura , Células Receptoras Sensoriais/fisiologia , Peixe-Zebra
4.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302507

RESUMO

Direct intercellular communication via gap junctions has an important role in the development of the nervous system, ranging from cell migration and neuronal differentiation to the formation of neuronal activity patterns. This study characterized and compared the specific spatio-temporal expression patterns of connexins (Cxs) 37, 43 and 45 during early human developmental stages (since the 5th until the 10th developmental week) in the spinal cord (SC) and dorsal root ganglia (DRG) using double immunofluorescence and transmission electron microscopy. We found the expression of all three investigated Cxs during early human development in all the areas of interest, in the SC, DRG, developing paravertebral ganglia of the sympathetic trunk, notochord and all three meningeal layers, with predominant expression of Cx37. Comparing the expression of different Cxs between distinct developmental periods, we did not find significant differences. Specific spatio-temporal pattern of Cxs expression might reflect their relevance in the development of all areas of interest via cellular interconnectivity and synchronization during the late embryonic and early fetal period of human development.


Assuntos
Conexinas/genética , Gânglios Espinais/metabolismo , Tubo Neural/metabolismo , Medula Espinal/metabolismo , Conexinas/metabolismo , Gânglios Espinais/embriologia , Gânglios Espinais/ultraestrutura , Humanos , Tubo Neural/embriologia , Tubo Neural/ultraestrutura , Medula Espinal/embriologia , Medula Espinal/ultraestrutura
5.
Cell Commun Signal ; 18(1): 162, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076927

RESUMO

BACKGROUND: Recent physiological and experimental data highlight the role of the sensory nervous system in bone repair, but its precise role on angiogenesis in a bone regeneration context is still unknown. Our previous work demonstrated that sensory neurons (SNs) induce the osteoblastic differentiation of mesenchymal stem cells, but the influence of SNs on endothelial cells (ECs) was not studied. METHODS: Here, in order to study in vitro the interplay between SNs and ECs, we used microfluidic devices as an indirect co-culture model. Gene expression analysis of angiogenic markers, as well as measurements of metalloproteinases protein levels and enzymatic activity, were performed. RESULTS: We were able to demonstrate that two sensory neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP), were involved in the transcriptional upregulation of angiogenic markers (vascular endothelial growth factor, angiopoietin 1, type 4 collagen, matrix metalloproteinase 2) in ECs. Co-cultures of ECs with SNs also increased the protein level and enzymatic activity of matrix metalloproteinases 2 and 9 (MMP2/MMP9) in ECs. CONCLUSIONS: Our results suggest a role of sensory neurons, and more specifically of CGRP and SP, in the remodelling of endothelial cells extracellular matrix, thus supporting and enhancing the angiogenesis process. Video abstract.


Assuntos
Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Gânglios Espinais/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Células Endoteliais/ultraestrutura , Matriz Extracelular/ultraestrutura , Feminino , Gânglios Espinais/ultraestrutura , Regulação da Expressão Gênica , Metaloproteinases da Matriz/biossíntese , Microfluídica , Modelos Biológicos , Neuritos/metabolismo , Osteogênese , Ratos Wistar , Células Receptoras Sensoriais/ultraestrutura , Substância P/metabolismo
6.
J Anat ; 237(5): 988-997, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32579747

RESUMO

Dorsal root ganglia (DRGs) host the somata of sensory neurons which convey information from the periphery to the central nervous system. These neurons have heterogeneous size and neurochemistry, and those of small-to-medium size, which play an important role in nociception, form two distinct subpopulations based on the presence (peptidergic) or absence (non-peptidergic) of transmitter neuropeptides. Few investigations have so far addressed the spatial relationship between neurochemically different subpopulations of DRG neurons and glia. We used a whole-mount mouse lumbar DRG preparation, confocal microscopy and computer-aided 3D analysis to unveil that IB4+ non-peptidergic neurons form small clusters of 4.7 ± 0.26 cells, differently from CGRP+ peptidergic neurons that are, for the most, isolated (1.89 ± 0.11 cells). Both subpopulations of neurons are ensheathed by a thin layer of satellite glial cells (SGCs) that can be observed after immunolabeling with the specific marker glutamine synthetase (GS). Notably, at the ultrastructural level we observed that this glial layer was discontinuous, as there were patches of direct contact between the membranes of two adjacent IB4+ neurons. To test whether this cytoarchitectonic organization was modified in the diabetic neuropathy, one of the most devastating sensory pathologies, mice were made diabetic by streptozotocin (STZ). In diabetic animals, cluster organization of the IB4+ non-peptidergic neurons was maintained, but the neuro-glial relationship was altered, as STZ treatment caused a statistically significant increase of GS staining around CGRP+ neurons but a reduction around IB4+ neurons. Ultrastructural analysis unveiled that SGC coverage was increased at the interface between IB4+ cluster-forming neurons in diabetic mice, with a 50% reduction in the points of direct contacts between cells. These observations demonstrate the existence of a structural plasticity of the DRG cytoarchitecture in response to STZ.


Assuntos
Diabetes Mellitus Experimental/patologia , Gânglios Espinais/ultraestrutura , Neuroglia/ultraestrutura , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gânglios Espinais/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glicoproteínas/metabolismo , Masculino , Camundongos , Neuroglia/enzimologia
7.
Epigenomics ; 12(10): 843-857, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212929

RESUMO

Aim: To study the expression pattern of circular RNAs in diabetic peripheral neuropathy. Materials & methods: Transmission electron microscopy was used to observe the ultrastructure of sciatic nerves and dorsal root ganglion (DRGs). circRNAs in DRGs were identified with high-throughput RNA sequencing. Whole-genome mRNAs were detected by a chip scan. Results: The ultrastructure of sciatic nerves and DRGs in diabetes mellitus mice changed significantly. A total of 11,004 circRNAs and 15 differentially expressed circRNAs, as well as 35,368 mRNAs and 133 differentially expressed mRNAs were identified in DRGs between wild-type and diabetes mellitus mice. 11 circRNAs and 14 mRNAs have a significant correlation using strict coexpression analysis. The expression of circRNA.4614 was validated to be upregulated significantly. Conclusion: Our study suggested that circRNAs might be involved in the regulation of mRNA expressions in diabetic peripheral neuropathy.


Assuntos
Neuropatias Diabéticas/genética , RNA Circular/genética , RNA Mensageiro/genética , Animais , Gânglios Espinais/ultraestrutura , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Nervo Isquiático/ultraestrutura
8.
Cell Tissue Res ; 381(1): 25-34, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32215722

RESUMO

There is considerable interest in understanding how contents within the gut wall (including microbiome) can activate sensory nerve endings in the gut that project to the central nervous system. However, we have only recently begun to understand the location and characteristics of extrinsic spinal afferent nerve endings that innervate the lower gastrointestinal (GI) tract. Our aim is to identify the nerve endings in the mouse distal colon that arise from single spinal afferent neurons. C57BL/6 mice were anaesthetised and single dorsal root ganglia (DRG) between lumbosacral L6-S1 were injected with dextran biotin. Mice recovered for 7 days. Animals were then euthanized and whole colons removed, fixed and stained for calcitonin-gene-related-peptide (CGRP). Single spinal afferent nerve axons were identified entering the distal colon that ramified along many rows of myenteric ganglia, often giving rise to varicose nerve endings. These same axons bifurcated in the circular muscle giving rise to 4-5 groups of branching-type intramuscular endings, where each group of endings was separated by ~ 370 µm in the rostro-caudal axis and projected 1.2 mm around the circumference. As spinal afferent axons bifurcated, their axons often showed dramatic reductions in diameter. Here, we identified in the distal colon, the characteristics of nerve endings that arise from single colorectal-projecting axons with cell bodies in DRG. These findings suggest that a population of sensory neurons in DRG can potentially detect sensory stimuli simultaneously via different morphological types of endings that lie in both colonic smooth muscle and myenteric ganglia.


Assuntos
Colo/inervação , Gânglios Espinais/ultraestrutura , Músculo Liso/inervação , Neurônios Aferentes/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Animais , Camundongos , Camundongos Endogâmicos C57BL
9.
Methods Mol Biol ; 2060: 355-364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31617190

RESUMO

Transmission immunoelectron microscopy allows for the ultrastructural detection and localization of herpes simplex virus-1 (HSV-1) particles and viral proteins within the infected cell and their relation to the cell cytoskeleton, cellular proteins, vesicles, membranes, and organelles. For the successful application of immunoelectron microscopy, preservation of cell ultrastructure and of epitope antigenicity is essential during sample preparation. This chapter describes the use of chemical fixation followed by rapid cooling of HSV-1 infected sensory neurons in the presence of sucrose as a cryoprotectant to achieve optimal preservation of cell morphology and the use of freeze substitution and resin polymerization at low temperatures for preservation of protein antigenicity. In order to examine HSV-1 infection in the specialized compartments of the neurons (cell body, axons, and growth cones), neurons cultured on plastic coverslips are flat embedded prior to resin polymerization. Overall, this method allows for the ultrathin sectioning and immunogold labeling of the neurons and their axons in growth plane.


Assuntos
Gânglios Espinais , Herpes Simples , Herpesvirus Humano 1 , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Neurônios , Animais , Galinhas , Gânglios Espinais/metabolismo , Gânglios Espinais/ultraestrutura , Gânglios Espinais/virologia , Herpes Simples/metabolismo , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/ultraestrutura , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/ultraestrutura , Neurônios/virologia , Ratos
10.
Toxicol Pathol ; 48(1): 132-143, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746699

RESUMO

Xenobiotic-induced peripheral nerve damage is a growing concern. Identifying relative risks that a new drug may cause peripheral nerve injury over long periods of administration is gathering importance in the evaluation of animal models. Separating out age-related changes in peripheral nerves of rats caused by compression injury from drug-induced effects has been difficult. Biopsy of the sural nerve is utilized in humans for investigations of peripheral neuropathy, because it is largely removed from the effects of nerve compression. This study used transmission electron microscopy to identify incidental findings in the sural nerves and dorsal root ganglia of aged control rats over time. The goal was to establish a baseline understanding of the range of possible changes that could be noted in controls compared to rats treated with any new investigative drug. In this evaluation, most sural nerve fibers from aged control rats had few ultrastructural abnormalities of pathologic significance. However, glycogenosomes, polyglucosan bodies, swollen mitochondria, autolysosomes, split myelin, Schwann cell processes, and endoneural macrophages with phagocytosed debris (considered an indication of ongoing degenerative changes) were occasionally noted.


Assuntos
Testes de Carcinogenicidade , Gânglios Espinais/ultraestrutura , Nervo Sural/ultraestrutura , Animais , Masculino , Bainha de Mielina , Doenças do Sistema Nervoso Periférico , Ratos , Ratos Sprague-Dawley
11.
Pain Physician ; 21(5): E509-E521, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30282399

RESUMO

BACKGROUND: Electroacupuncture (EA) has been proved to be effective in treating certain neuropathic pain conditions. The mechanisms of pain relief by EA are not fully understood. There have been sporadic reports of damage in the peripheral nervous system (PNS) and regions of the central nervous system (CNS) at the ultrastructural level following peripheral nerve injury. However, information about possible systemic changes in the PNS and CNS after nerve injury is scarce. OBJECTIVES: The goal of this study was to examine the ultrastructural changes of the nervous system induced by a local injection of cobra venom into the sciatic nerve and to compare the ultrastructural changes in rats with or without treatment with EA or pregabalin. STUDY DESIGN: An experimental study. SETTING: Department of Anesthesiology, Pain Medicine, and Critical Care Medicine, Aviation General Hospital of China Medical University. METHODS: In this study, using an established model of sciatic neuralgia induced by local injection of cobra venom into the sciatic nerve, we examined ultrastructural changes of the PNS and CNS and how they respond to EA and pregabalin treatment. EA and pregabalin were given daily from postoperative day (POD) 14 to 36. Based on previous works, the frequency of EA stimulation of the ST36 and GB34 acupoints was held to 2/100 Hz variable. Pain sensitivity in the sciatic neuralgia rats with and without treatments was assessed using the von Frey test. Ultrastructural alterations were examined bilaterally in the prefrontal cortex, hippocampus, medulla oblongata; and the cervical, thoracic, and lumbar spinal cords on PODs 14, 40, and 60. Ultrastructural examinations were also carried out on the bilateral sciatic nerves and dorsal root ganglion (DRG) at the cervical, thoracic and lumbar levels. In rats treated with EA or pregabalin, the ultrastructure was examined on PODs 40 and 60. RESULTS: Behavioral signs of pain and systemic ultrastructural changes including demyelination were observed at all levels of the PNS and CNS in rats with sciatic neuralgia. After intervention, the mechanical withdrawal thresholds of the EA group and pregabalin group were significantly higher than that of the cobra venom group (P < 0.05). Both EA and pregabalin treatments partially reversed increased cutaneous sensitivity to mechanical stimulation. However, only the EA treatment was able to repair the ultrastructural damages caused by cobra venom. LIMITATIONS: The results confirm that peripheral nerve injury led to the ultrastructural damage at different levels of the CNS as demonstrated with electron microscopy; however, we need to further verify this at both the molecular level and in light microscope level. Sciatic neuralgia induced by cobra venom is a chemical injury, and whether this exactly mimics a peripheral nerve mechanical injury is still unclear. CONCLUSIONS: Local cobra venom injection leads to systemic neurotoxicity. EA and pregabalin alleviate pain via different mechanisms. KEY WORDS: Sciatic neuralgia, cobra venom, demyelination, electroacupuncture, pregabalin, rat model.


Assuntos
Eletroacupuntura/métodos , Neuralgia/patologia , Analgésicos/farmacologia , Animais , Encéfalo/patologia , Encéfalo/ultraestrutura , China , Venenos Elapídicos/toxicidade , Gânglios Espinais/patologia , Gânglios Espinais/ultraestrutura , Masculino , Neuralgia/induzido quimicamente , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Pregabalina/farmacologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Medula Espinal/patologia , Medula Espinal/ultraestrutura
12.
Sci Rep ; 8(1): 5996, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662228

RESUMO

Development of complex neural circuits like the peripheral somatosensory system requires intricate mechanisms to ensure axons make proper connections. While much is known about ligand-receptor pairs required for dorsal root ganglion (DRG) axon guidance, very little is known about the cytoplasmic effectors that mediate cellular responses triggered by these guidance cues. Here we show that members of the Cas family of cytoplasmic signaling adaptors are highly phosphorylated in central projections of the DRG as they enter the spinal cord. Furthermore, we provide genetic evidence that Cas proteins regulate fasciculation of DRG sensory projections. These data establish an evolutionarily conserved requirement for Cas adaptor proteins during peripheral nervous system axon pathfinding. They also provide insight into the interplay between axonal fasciculation and adhesion to the substrate.


Assuntos
Fasciculação Axônica , Proteína Substrato Associada a Crk/metabolismo , Gânglios Espinais/crescimento & desenvolvimento , Animais , Proteína Substrato Associada a Crk/análise , Proteína Substrato Associada a Crk/genética , Gânglios Espinais/metabolismo , Gânglios Espinais/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Fosforilação , RNA Mensageiro/análise , RNA Mensageiro/genética , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura
13.
Methods Mol Biol ; 1739: 195-212, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29546709

RESUMO

The transmission electron microscope (TEM) enables a unique and valuable examination of cellular and extracellular elements in tissue in situ, in cultured cells, or in pellets derived from suspensions of cells or other materials such as nanoparticles. Here we focus on the preparation of cultured Schwann cells or Schwann cell-containing dorsal root ganglion cultures. To gain as life-like as possible views of the cellular details, it is imperative to achieve excellent preservation of the cellular structure. The steps in the preparation of cultures described in this chapter represent the results of many years of accumulated TEM images to find the best methods of preservation for Schwann cells, myelin, and basal lamina components. All the materials required are listed. The methods for fixing, dehydrating, and embedding a culture are described. Choosing an area in the culture to view, scoring it, cutting it out of the resin-embedded culture, mounting it appropriately for enface or cross-sectioning, and performing the semi-thin and thin sectioning are detailed. Explaining the way in which the sections are then stained for TEM completes the Methods section. Preservation of cultured Schwann cells and their myelin sheaths can be outstanding due to the direct and rapid but careful addition of the fixative solution to the culture dish.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Microtomia/métodos , Bainha de Mielina/ultraestrutura , Células de Schwann/ultraestrutura , Animais , Gânglios Espinais/citologia , Gânglios Espinais/ultraestrutura , Humanos
14.
Nucleic Acids Res ; 46(3): 1412-1423, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29186567

RESUMO

N6-methyladenosine (m6A) is a reversible modification in mRNA and has been shown to regulate processing, translation and decay of mRNA. However, the roles of m6A modification in neuronal development are still not known. Here, we found that the m6A eraser FTO is enriched in axons and can be locally translated. Axon-specific inhibition of FTO by rhein, or compartmentalized siRNA knockdown of Fto in axons led to increases of m6A levels. GAP-43 mRNA is modified by m6A and is a substrate of FTO in axons. Loss-of-function of this non-nuclear pool of FTO resulted in increased m6A modification and decreased local translation of axonal GAP-43 mRNA, which eventually repressed axon elongation. Mutation of a predicted m6A site in GAP-43 mRNA eliminated its m6A modification and exempted regulation of its local translation by axonal FTO. This work showed an example of dynamic internal m6A demethylation of non-nuclear localized mRNA by the demethylase FTO. Regulation of m6A modification of axonal mRNA by axonal FTO might be a general mechanism to control their local translation in neuronal development.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Axônios/metabolismo , Proteína GAP-43/genética , Gânglios Espinais/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Antraquinonas/farmacologia , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Proteína GAP-43/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurogênese/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Técnicas de Cultura de Tecidos
15.
Cell Biol Toxicol ; 34(2): 93-107, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28656345

RESUMO

Cobalt is a trace element that localizes in the human body as cobalamin, also known as vitamin B12. Excessive cobalt exposure induces a peripheral neuropathy, the mechanisms of which are yet to be elucidated. We investigated how cobalt may affect mitochondrial motility in primary cultures of rat dorsal root ganglion (DRG). We observed mitochondrial motility by time-lapse imaging after DsRed2 tagging via lentivirus, mitochondrial structure using transmission electron microscopy (TEM), and axonal swelling using immunocytochemical staining. The concentration of cobaltous ion (Co2+) required to significantly suppress mitochondrial motility is lower than that required to induce axonal swelling following a 24-h treatment. Exposure to relatively low concentrations of Co2+ for 48 h suppressed mitochondrial motility without leading to axonal swelling. TEM images indicated that Co2+ induces mitochondrial destruction. Our results show that destruction of the axonal mitochondria precedes the axonal degeneration induced by Co2+ exposure.


Assuntos
Axônios/efeitos dos fármacos , Cobalto/toxicidade , Gânglios Espinais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Axônios/ultraestrutura , Células Cultivadas , Relação Dose-Resposta a Droga , Gânglios Espinais/embriologia , Gânglios Espinais/ultraestrutura , Idade Gestacional , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Neurônios/ultraestrutura , Cultura Primária de Células , Ratos Sprague-Dawley
16.
Neuron ; 96(6): 1317-1326.e4, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29198756

RESUMO

Action potential induces membrane depolarization and triggers intracellular free Ca2+ concentration (Ca2+)-dependent secretion (CDS) via Ca2+ influx through voltage-gated Ca2+ channels. We report a new type of somatic exocytosis triggered by the action potential per se-Ca2+-independent but voltage-dependent secretion (CiVDS)-in dorsal root ganglion neurons. Here we uncovered the molecular mechanism of CiVDS, comprising a voltage sensor, fusion machinery, and their linker. Specifically, the voltage-gated N-type Ca2+ channel (CaV2.2) is the voltage sensor triggering CiVDS, the SNARE complex functions as the vesicle fusion machinery, the "synprint" of CaV2.2 serves as a linker between the voltage sensor and the fusion machinery, and ATP is a cargo of CiVDS vesicles. Thus, CiVDS releases ATP from the soma while CDS releases glutamate from presynaptic terminals, establishing the CaV2.2-SNARE "voltage-gating fusion pore" as a novel pathway co-existing with the canonical "Ca2+-gating fusion pore" pathway for neurotransmitter release following action potentials in primary sensory neurons.


Assuntos
Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Cálcio/metabolismo , Ativação do Canal Iônico/genética , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cafeína/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Exocitose/efeitos dos fármacos , Exocitose/genética , Gânglios Espinais/citologia , Gânglios Espinais/ultraestrutura , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Fusão de Membrana/efeitos dos fármacos , Fusão de Membrana/genética , Modelos Moleculares , Inibidores de Fosfodiesterase/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Células Receptoras Sensoriais/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Transdução Genética , ômega-Conotoxina GVIA/farmacologia
17.
Mol Pain ; 13: 1744806917746565, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29166837

RESUMO

Platinum-based chemotherapeutic agents, such as cisplatin, are still frequently used for treating various types of cancer. Besides its high effectiveness, cisplatin has several serious side effects. One of the most common side effects is dorsal root ganglion (DRG) neurotoxicity. However, the mechanisms underlying this neurotoxicity are still unclear and controversially discussed. Cisplatin-mediated modulation of voltage-gated calcium channels (VGCCs) in the DRG neurons has been shown to alter intracellular calcium homeostasis, a process critical for the induction of neurotoxicity. Using the whole-cell patch-clamp technique, immunostaining, behavioural experiments and electron microscopy (EM) of rat DRGs, we here demonstrate that cisplatin-induced neurotoxicity is due to functional alteration of VGCC, but not due to morphological damage. In vitro application of cisplatin (0.5 µM) increased N-type VGCC currents ( ICa(V)) in small DRG neurons. Repetitive in vivo administration of cisplatin (1.5 mg/kg, cumulative 12 mg/kg) increased the protein level of N-type VGCC over 26 days, with the protein level being increased for at least 14 days after the final cisplatin administration. Behavioural studies revealed that N-type VGCCs are crucial for inducing symptoms of cisplatin-related neuropathic pain, such as thermal and mechanical hyperalgesia. EM and histology showed no evidence of any structural damage, apoptosis or necrosis in DRG cells after cisplatin exposure for 26 days. Furthermore, no nuclear DNA damage in sensory neurons was observed. Here, we provide evidence for a mainly functionally driven induction of neuropathic pain by cisplatin.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Cisplatino/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Animais , Apoptose/efeitos dos fármacos , Comportamento Animal , Cisplatino/administração & dosagem , Dano ao DNA , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Gânglios Espinais/ultraestrutura , Masculino , Neuralgia/complicações , Neuralgia/patologia , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/ultraestrutura
18.
J Cell Sci ; 130(21): 3650-3662, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28871047

RESUMO

HuD protein (also known as ELAVL4) has been shown to stabilize mRNAs with AU-rich elements (ARE) in their 3' untranslated regions (UTRs), including Gap43, which has been linked to axon growth. HuD also binds to neuritin (Nrn1) mRNA, whose 3'UTR contains ARE sequences. Although the Nrn1 3'UTR has been shown to mediate its axonal localization in embryonic hippocampal neurons, it is not active in adult dorsal root ganglion (DRG) neurons. Here, we asked why the 3'UTR is not sufficient to mediate the axonal localization of Nrn1 mRNA in DRG neurons. HuD overexpression increases the ability of the Nrn1 3'UTR to mediate axonal localizing in DRG neurons. HuD binds directly to the Nrn1 ARE with about a two-fold higher affinity than to the Gap43 ARE. Although the Nrn1 ARE can displace the Gap43 ARE from HuD binding, HuD binds to the full 3'UTR of Gap43 with higher affinity, such that higher levels of Nrn1 are needed to displace the Gap43 3'UTR. The Nrn1 3'UTR can mediate a higher level of axonal localization when endogenous Gap43 is depleted from DRG neurons. Taken together, our data indicate that endogenous Nrn1 and Gap43 mRNAs compete for binding to HuD for their axonal localization and activity of the Nrn1 3'UTR.


Assuntos
Regiões 3' não Traduzidas , Axônios/metabolismo , Proteína Semelhante a ELAV 4/metabolismo , Proteína GAP-43/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Axônios/ultraestrutura , Sequência de Bases , Ligação Competitiva , Proteína Semelhante a ELAV 4/genética , Proteína GAP-43/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/ultraestrutura , Neuropeptídeos/genética , Cultura Primária de Células , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Elementos de Resposta , Transdução de Sinais
19.
J Cell Sci ; 130(21): 3663-3675, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28935671

RESUMO

Central nervous system (CNS) axons lose their intrinsic ability to regenerate upon maturity, whereas peripheral nervous system (PNS) axons do not. A key difference between these neuronal types is their ability to transport integrins into axons. Integrins can mediate PNS regeneration, but are excluded from adult CNS axons along with their Rab11 carriers. We reasoned that exclusion of the contents of Rab11 vesicles including integrins might contribute to the intrinsic inability of CNS neurons to regenerate, and investigated this by performing laser axotomy. We identify a novel regulator of selective axon transport and regeneration, the ARF6 guanine-nucleotide-exchange factor (GEF) EFA6 (also known as PSD). EFA6 exerts its effects from a location within the axon initial segment (AIS). EFA6 does not localise at the AIS in dorsal root ganglion (DRG) axons, and in these neurons, ARF6 activation is counteracted by an ARF GTPase-activating protein (GAP), which is absent from the CNS, ACAP1. Depleting EFA6 from cortical neurons permits endosomal integrin transport and enhances regeneration, whereas overexpressing EFA6 prevents DRG regeneration. Our results demonstrate that ARF6 is an intrinsic regulator of regenerative capacity, implicating EFA6 as a focal molecule linking the AIS, signalling and transport.This article has an associated First Person interview with the first author of the paper.


Assuntos
Segmento Inicial do Axônio/metabolismo , Transporte Axonal/genética , Córtex Cerebral/metabolismo , Dendritos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Cadeias alfa de Integrinas/metabolismo , Neurônios/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Segmento Inicial do Axônio/ultraestrutura , Córtex Cerebral/ultraestrutura , Dendritos/ultraestrutura , Embrião de Mamíferos , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Cadeias alfa de Integrinas/genética , Masculino , Microtúbulos , Neurônios/ultraestrutura , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
20.
PLoS One ; 12(6): e0180038, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28654681

RESUMO

Charcot-Marie-Tooth (CMT) disease or hereditary motor and sensory neuropathy is the most prevalent inherited peripheral neuropathy and is associated with over 90 causative genes. Mutations in neurofilament light polypeptide gene, NEFL cause CMT2E, an axonal form of CMT that results in abnormal structures and/or functions of peripheral axons in spinal cord motor neurons and dorsal root ganglion neurons. We have previously generated and characterized a knock-in mouse model of CMT2E with the N98S mutation in Nefl that presented with multiple inclusions in spinal cord neurons. In this report, we conduct immunofluorescence studies of cultured dorsal root ganglia (DRG) from NeflN98S/+ mice, and show that inclusions found in DRG neurites can occur in embryonic stages. Ultrastructural analyses reveal that the inclusions are disordered neurofilaments packed in high density, segregated from other organelles. Immunochemical studies show decreased NFL protein levels in DRG, cerebellum and spinal cord in NeflN98S/+ mice, and total NFL protein pool is shifted toward the triton-insoluble fraction. Our findings reveal the nature of the inclusions in NeflN98S/+ mice, provide useful information to understand mechanisms of CMT2E disease, and identify DRG from NeflN98S/+ mice as a useful cell line model for therapeutic discoveries.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Gânglios Espinais/patologia , Corpos de Inclusão/patologia , Filamentos Intermediários/patologia , Animais , Axônios/metabolismo , Cerebelo/metabolismo , Cerebelo/patologia , Doença de Charcot-Marie-Tooth/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Gânglios Espinais/ultraestrutura , Corpos de Inclusão/metabolismo , Corpos de Inclusão/ultraestrutura , Filamentos Intermediários/metabolismo , Filamentos Intermediários/ultraestrutura , Camundongos , Proteínas de Neurofilamentos/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA