Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(6): 417-425, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640403

RESUMO

Evidence abounds that gut microbiome components are associated with sex disparities in the immune system. However, it remains unclear whether the observed sex disparity in asthma incidence is associated with sex-dependent differences in immune-modulating gut microbiota, and/or its influence on allergic airway inflammatory processes. Using a mouse model of house dust mite (HDM)-induced allergic inflammation and the four core genotypes (FCGs) model, we have previously reported sex differences in lung inflammatory phenotypes. Here, we investigated associations of gut microbiomes with these phenotypes by challenging FCG mice [mouse with female sex chromosome and male gonad (XXM), mouse with female sex chromosome and female gonad (XXF), mouse with male sex chromosome and male gonad (XYM), and mouse with male sex chromosome and female gonad (XYF); n = 7/group] with HDM (25 µg) or PBS intranasally for 5 wk and collecting fecal samples. We extracted fecal DNA and analyzed the 16S microbiome via Targeted Metagenomic Sequencing. We compared α and ß diversity across genotypes and assessed the Firmicutes/Bacteroidetes (F/B) ratio. When comparing baseline and after exposure for the FCG, we found that the gut F/B ratio was only increased in the XXM genotype. We also found that α diversity was significantly increased in all FCG mice upon HDM challenge, with the highest increase in the XXF, and the lowest in the XXM genotypes. Similarly, ß diversity of the microbial community was also affected by challenge in a gonad- and chromosome-dependent manner. In summary, our results indicated that HDM treatment, gonads, and sex chromosomes significantly influence the gut microbial community composition. We concluded that allergic lung inflammation may be affected by the gut microbiome in a sex-dependent manner involving both hormonal and genetic influences.NEW & NOTEWORTHY Recently, the gut microbiome and its role in chronic respiratory disease have been the subject of extensive research and the establishment of its involvement in immune functions. Using the FCG mouse model, our findings revealed the influence of gonads and sex chromosomes on the microbial community structure before and after exposure to HDM. Our data provide a potential new avenue to better understand mediators of sex disparities associated with allergic airway inflammation.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , Feminino , Masculino , Camundongos , Cromossomos Sexuais/genética , Asma/imunologia , Asma/microbiologia , Asma/genética , Pyroglyphidae/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Genótipo , Gônadas/microbiologia , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Hipersensibilidade/genética , Caracteres Sexuais
2.
Insect Biochem Mol Biol ; 113: 103211, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31425852

RESUMO

Wolbachia are intracellular bacteria that manipulate host reproduction by several mechanisms including cytoplasmic incompatibility (CI). However, the underlying mechanisms of Wolbachia-induced CI are not entirely clear. Here, we monitored the Wolbachia distribution in the male gonads of the small brown planthopper (Laodelphax striatellus, SBPH) at different development stages, and investigated the influence of Wolbachia on male gonads by a quantitative proteomic analysis. A total of 276 differentially expressed proteins were identified, with the majority of them participating in metabolism, modification, and reproduction. Knocking down the expression of outer dense fiber protein (ODFP) and venom allergen 5-like (VA5L) showed decreased egg reproduction, and these two genes might be responsible for Wolbachia improved fecundity in infected L. striatellus; whereas knocking down the expression of cytosol amino-peptidase-like (CAL) significantly decreased the egg hatch rate in Wolbachia-uninfected L. striatellus, but not in the Wolbachia-infected one. Considering that the mRNA/protein level of CAL was downregulated by Wolbachia infection and dsCAL treatment closely mimicked Wolbachia-induced CI, we presumed that CAL might be one of the factors determining the CI phenotype.


Assuntos
Hemípteros/fisiologia , Proteínas de Insetos/genética , Wolbachia/fisiologia , Animais , Gônadas/crescimento & desenvolvimento , Gônadas/microbiologia , Hemípteros/genética , Hemípteros/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Masculino , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Proteoma , Proteômica , Reprodução
3.
Microbiologyopen ; 6(6)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28925024

RESUMO

Five strains were isolated from gonad of Great scallop (Pecten maximus) broodstock in a Norwegian hatchery. The study of 16S rRNA gene sequences showed that these isolates belong to Neptunomonas phycophila, a bacterium originally isolated from a symbiont of the anemone Aiptasia tagetes from Puerto Rico. The gyrB and rpoB genes sequences confirmed the affiliation of the scallop isolates to this species. Phenotypic characterization was performed and some differences between the Norwegian isolates and the type strain of N. phycophila were detected, such as ranges of temperature, pH, and tolerance to salinity or the use of several substrates as sole carbon source which lead to an emended description of the species. The strain 3CM2.5 showed phosphatidylethanolamine and phosphatidylglycerol as the major polar lipids. The whole genomes of the scallop strain 3CM2.5 and type strain of the species CECT 8716T were obtained and the annotation of these genomes revealed the presence of genes involved in degradation of aromatic compounds in both strains. Results obtained not only widen the geographical and host ranges of N. phycophila, but also point out possible biotechnological applications for this bacterial species.


Assuntos
Oceanospirillaceae/isolamento & purificação , Pectinidae/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Biotecnologia , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Genoma Bacteriano , Gônadas/microbiologia , Noruega , Oceanospirillaceae/classificação , Oceanospirillaceae/genética , Oceanospirillaceae/metabolismo , Pectinidae/crescimento & desenvolvimento , Fosfatidiletanolaminas/metabolismo , Filogenia
4.
G3 (Bethesda) ; 7(8): 2627-2635, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28606944

RESUMO

Wolbachia pipientis, a bacterial symbiont infecting arthropods and nematodes, is vertically transmitted through the female germline and manipulates its host's reproduction to favor infected females. Wolbachia also infects somatic tissues where it can cause nonreproductive phenotypes in its host, including resistance to viral pathogens. Wolbachia-mediated phenotypes are strongly associated with the density of Wolbachia in host tissues. Little is known, however, about how Wolbachia density is regulated in native or heterologous hosts. Here, we measure the broad-sense heritability of Wolbachia density among families in field populations of the mosquito Culex pipiens, and show that densities in ovary and nongonadal tissues of females in the same family are not correlated, suggesting that Wolbachia density is determined by distinct mechanisms in the two tissues. Using introgression analysis between two different strains of the closely related species C. quinquefasciatus, we show that Wolbachia densities in ovary tissues are determined primarily by cytoplasmic genotype, while densities in nongonadal tissues are determined by both cytoplasmic and nuclear genotypes and their epistatic interactions. Quantitative-trait-locus mapping identified two major-effect quantitative-trait loci in the C. quinquefasciatus genome explaining a combined 23% of variance in Wolbachia density, specifically in nongonadal tissues. A better understanding of how Wolbachia density is regulated will provide insights into how Wolbachia density can vary spatiotemporally in insect populations, leading to changes in Wolbachia-mediated phenotypes such as viral pathogen resistance.


Assuntos
Culex/microbiologia , Epistasia Genética , Gônadas/microbiologia , Simbiose/genética , Wolbachia/crescimento & desenvolvimento , Wolbachia/genética , Animais , Mapeamento Cromossômico , Feminino , Padrões de Herança/genética , Masculino , Locos de Características Quantitativas/genética
5.
Int Microbiol ; 19(2): 93-99, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27845496

RESUMO

A next-generation sequencing (NGS) approach was used to study the microbiota associated to Pecten maximus broodstock, applying pyrosequencing of PCR-amplified V1-V4 16S rRNA gene regions. We analysed the resident bacterial communities in female and male scallop gonads before and after spawning. DNA samples were amplified and quality-filtered reads were assigned to family and genus taxonomic levels using the Ribosomal Database Project classifier. A total of 18,520 sequences were detected, belonging to 13 phyla, including Proteobacteria (55%), Bacteroidetes (11,7%), Firmicutes (3%), Actinobacteria (2%) and Spirochaetes (1,2%), and 110 genera. The major fraction of the sequences detected corresponded to Proteobacteria, Beta- and Gammaprotebacteria being the most abundant classes. The microbiota of P. maximus gonad harbour a wide diversity, however differences on male and female samples were observed, where female gonad samples show a larger number of genera and families. The dominant bacterial genera appeared to be Delftia, Acinetobacter, Hydrotalea, Aquabacterium, Bacillus, Sediminibacterium, Sphingomonas, and Pseudomonas that were present among the four analysed samples. This next generation sequencing technique, applied for the first time in P. maximus (great scallop) gonads was useful for the study of the bacterial communities in this mollusc, unravelling the great bacterial diversity in its microbiota. [Int Microbiol 19(2): 93-99(2016)].


Assuntos
Bactérias/classificação , Gônadas/microbiologia , Microbiota , Pecten/microbiologia , Animais , DNA Bacteriano/genética , Feminino , Masculino , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
6.
Genet Mol Res ; 15(3)2016 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-27706646

RESUMO

Ferritin is a conserved iron-binding protein involved in host defense and cellular iron metabolism in most organisms. We investigated the expression profiles of two ferritin genes (designated HsFer-1 and HsFer-2) in the hemocytes, gonad, and hepatopancreas of Hyriopsis schlegelii, when challenged with bacteria and metal ions. HsFer gene transcription increased 1.8-7.7- and 1.9-6.1-fold in these tissues after stimulation with Staphylococcus aureus and Vibrio anguillarum, respectively. In addition, following exposure to Fe3+, expression of HsFer-1 and HsFer-2 was elevated by 1.5-6.1- and 3.6-10.1-fold, respectively. Levels of HsFer-1 and -2 mRNA also increased significantly after treatment with Cu2+ and Pb2+ at certain concentrations. Moreover, recombinant HsFer-1 and -2 were able to inhibit the growth of two strains of bacteria, and the former efficiently chelated Fe3+. From these results, we conclude that HsFer-1 and -2 may be involved in iron metabolism and immune defense by inhibiting the growth of bacteria.


Assuntos
Bivalves/imunologia , Ferritinas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Ferro/imunologia , Staphylococcus aureus/metabolismo , Vibrio/metabolismo , Animais , Bivalves/efeitos dos fármacos , Bivalves/genética , Bivalves/microbiologia , Cobre/farmacologia , Ferritinas/genética , Água Doce , Regulação da Expressão Gênica , Gônadas/efeitos dos fármacos , Gônadas/imunologia , Gônadas/microbiologia , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Hemócitos/microbiologia , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/imunologia , Hepatopâncreas/microbiologia , Ferro/química , Ferro/farmacologia , Quelantes de Ferro/química , Chumbo/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Transcrição Gênica , Vibrio/crescimento & desenvolvimento
7.
Poult Sci ; 94(12): 2898-904, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26467015

RESUMO

Mycoplasma gallisepticum (MG) is a major and economically significant pathogen of avian species. When administered before lay, F-strain MG (FMG) can reduce egg production during lay, but the ts-11 strain of MG (ts11MG) does not exert this effect. Two trials were conducted to determine the effects of pre-lay vaccinations of ts11MG, MG-Bacterin (MGBac), or their combination, in conjunction with an FMG vaccination overlay after peak production on the digestive and reproductive organ characteristics of Hy-Line W-36 layers housed in biological isolation units (4 units per treatment, 10 birds per unit). The following vaccination treatments were administered at 10 wk of age (woa): 1) Control (no vaccinations); 2) MGBac; 3) ts11MG; and 4) ts11MG and MGBac combination (ts11MG+MGBac). At 45 woa, half of the birds were vaccinated with a laboratory stock of high passage FMG. In both trials, parameters determined in 4 birds per unit at 55 woa included: BW; fatty liver hemorrhagic syndrome incidence; mean number of mature ovarian follicles; ovarian, oviduct, and small intestine weights; and the weights and lengths of the various portions of the oviduct and small intestine. Treatment effects were observed for the weights of the entire small intestine and the duodenum, jejunum, and ileum, as percentages of BW; and for vagina weight as a percentage of total oviduct weight. In general, the weights of the small intestine and its 3 components were increased in response to the FMG vaccine that was administered at 45 woa. An FMG vaccination at 45 woa may increase relative intestine weight in layers; however, use of a prelay MGBac vaccine alone or in combination with ts11MG, with or without an FMG overlay, does not affect the gross characteristics of their digestive and reproductive organs, and may be used without having an adverse effect on their performance, as was observed in a previous companion study.


Assuntos
Vacinas Bacterianas/imunologia , Galinhas , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/imunologia , Doenças das Aves Domésticas/prevenção & controle , Animais , Sistema Digestório/microbiologia , Feminino , Gônadas/microbiologia , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Reprodução/imunologia , Vacinas Atenuadas/imunologia , Vacinas Combinadas/imunologia
8.
Microbiologyopen ; 4(4): 660-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26131925

RESUMO

Legionella pneumophila, a causative agent of Legionnaires' disease, is a facultative intracellular parasite of freshwater protozoa. Legionella pneumophila features a unique developmental network that involves several developmental forms including the infectious cyst forms. Reservoirs of L. pneumophila include natural and man-made freshwater systems; however, recent studies have shown that isolates of L. pneumophila can also be obtained directly from garden potting soil suggesting the presence of an additional reservoir. A previous study employing the metazoan Caenorhabditis elegans, a member of the Rhabditidae family of free-living soil nematodes, demonstrated that the intestinal lumen can be colonized with L. pneumophila. While both replicative forms and differentiated forms were observed in C. elegans, these morphologically distinct forms were initially observed to be restricted to the intestinal lumen. Using live DIC imaging coupled with focused transmission electron microscopy analyses, we report here that L. pneumophila is able to invade and establish Legionella-containing vacuoles (LCVs) in the intestinal cells. In addition, LCVs containing replicative and differentiated cyst forms were observed in the pseudocoelomic cavity and gonadal tissue of nematodes colonized with L. pneumophila. Furthermore, establishment of LCVs in the gonadal tissue was Dot/Icm dependent and required the presence of the endocytic factor RME-1 to gain access to maturing oocytes. Our findings are novel as this is the first report, to our knowledge, of extraintestinal LCVs containing L. pneumophila cyst forms in C. elegans tissues, highlighting the potential of soil-dwelling nematodes as an alternate environmental reservoir for L. pneumophila.


Assuntos
Caenorhabditis elegans/microbiologia , Legionella pneumophila/isolamento & purificação , Vacúolos/microbiologia , Animais , Trato Gastrointestinal/microbiologia , Gônadas/microbiologia , Microscopia Eletrônica de Transmissão , Microscopia de Interferência , Solo/parasitologia
9.
PLoS One ; 10(6): e0128660, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26047139

RESUMO

Reproductive parasites such as Wolbachia are able to manipulate the reproduction of their hosts by inducing parthenogenesis, male-killing, cytoplasmic incompatibility or feminization of genetic males. Despite extensive studies, no underlying molecular mechanism has been described to date. The goal of this study was to establish a system with a single Wolbachia strain that feminizes two different isopod species to enable comparative analyses aimed at elucidating the genetic basis of feminization. It was previously suggested that Wolbachia wVulC, which naturally induces feminization in Armadillidium vulgare, induces the development of female secondary sexual characters in transinfected Cylisticus convexus adult males. However, this does not demonstrate that wVulC induces feminization in C. convexus since feminization is the conversion of genetic males into functional females that occurs during development. Nevertheless, it suggests that C. convexus may represent a feminization model suitable for further development. Knowledge about C. convexus sexual differentiation is also essential for comparative analyses, as feminization is thought to take place just before or during sexual differentiation. Consequently, we first described gonad morphological differentiation of C. convexus and compared it with that of A. vulgare. Then, wVulC was injected into male and female C. convexus adult individuals. The feminizing effect was demonstrated by the combined appearance of female secondary sexual characters in transinfected adult males, as well as the presence of intersexes and female biases in progenies in which wVulC was vertically transmitted from transinfected mothers. The establishment of a new model of feminization of a Wolbachia strain in a heterologous host constitutes a useful tool towards the understanding of the molecular mechanism of feminization.


Assuntos
Feminização , Isópodes/microbiologia , Wolbachia/fisiologia , Animais , Hibridização Genômica Comparativa , Feminino , Gônadas/anatomia & histologia , Gônadas/metabolismo , Gônadas/microbiologia , Isópodes/fisiologia , Masculino , Microscopia , Fenótipo
10.
Parasit Vectors ; 8: 278, 2015 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25981386

RESUMO

BACKGROUND: Wolbachia is a group of intracellular maternally inherited bacteria infecting a high number of arthropod species. Their presence in different mosquito species has been largely described, but Aedes aegypti, the main vector of Dengue virus, has never been found naturally infected by Wolbachia. Similarly, malaria vectors and other anophelines are normally negative to Wolbachia, with the exception of an African population where these bacteria have recently been detected. Asaia is an acetic acid bacterium stably associated with several mosquito species, found as a dominant microorganism of the mosquito microbiota. Asaia has been described in gut, salivary glands and in reproductive organs of adult mosquitoes in Ae. aegypti and in anophelines. It has recently been shown that Asaia may impede vertical transmission of Wolbachia in Anopheles mosquitoes. Here we present an experimental study, aimed at determining whether there is a negative interference between Asaia and Wolbachia, for the gonad niche in mosquitoes. METHODS: Different methods (PCR and qPCR, monoclonal antibody staining and FISH) have been used to address the question of the co-localization and the relative presence/abundance of the two symbionts. PCR and qPCR were performed to qualitatively and quantitatively verify the distribution of Asaia and Wolbachia in different mosquito species/organs. Monoclonal antibody staining and FISH were performed to localize the symbionts in different mosquito species. RESULTS: Here we provide evidence that, in Anopheles and in other mosquitoes, there is a reciprocal negative interference between Asaia and Wolbachia symbionts, in terms of the colonization of the gonads. In particular, we have shown that in some mosquito species the presence of one of the symbionts prevented the establishment of the second, while in other systems the symbionts were co-localized, although at reduced densities. CONCLUSIONS: A mutual exclusion or a competition between Asaia and Wolbachia may contribute to explain the inability of Wolbachia to colonize the female reproductive organs of anophelines, inhibiting its vertical transmission and explaining the absence of Wolbachia infection in Ae. aegypti and in the majority of natural populations of Anopheles mosquitoes.


Assuntos
Aedes/microbiologia , Alphaproteobacteria/isolamento & purificação , Anopheles/microbiologia , Gônadas/microbiologia , Wolbachia/isolamento & purificação , Animais , Feminino , Trato Gastrointestinal/microbiologia , Masculino
11.
Mol Immunol ; 66(2): 216-28, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25841173

RESUMO

Interleukin (IL)-23 is a heterodimeric IL-12 family cytokine composed of a p19 α-chain, linked to a p40 ß-chain that is shared with IL-12. IL-23 is distinguished functionally from IL-12 by its ability to induce the production of IL-17, and differentiation of Th17 cells in mammals. Three isoforms of p40 (p40a, p40b and p40c) have been found in some 3R teleosts. Salmonids also possess three p40 isoforms (p40b1, p40b2 and p40c) although p40a is missing, and two copies (paralogues) of p40b are present that have presumably been retained following the 4R duplication in this fish lineage. Teleost p19 has been discovered recently in zebrafish, but to date there is limited information on expression and modulation of this molecule. In this report we have cloned two p19 paralogues (p19a and p19b) in salmonids, suggesting that a salmonid can possess six potential IL-23 isoforms. Whilst Atlantic salmon has two active p19 genes, the rainbow trout p19b gene may have been pseudogenized. The salmonid p19 translations share moderate identities (22.8-29.9%) to zebrafish and mammalian p19 molecules, but their identity was supported by structural features, a conserved 4 exon/3 intron gene organisation, and phylogenetic tree analysis. The active salmonid p19 genes are highly expressed in blood and gonad. Bacterial (Yersinia ruckeri) and viral infection in rainbow trout induces the expression of p19a, suggesting pathogen-specific induction of IL-23 isoforms. Trout p19a expression was also induced by PAMPs (poly IC and peptidoglycan) and the proinflammatory cytokine IL-1ß in primary head kidney macrophages. These data may indicate diverse functional roles of trout IL-23 isoforms in regulating the immune response in fish.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Subunidade p19 da Interleucina-23/genética , Oncorhynchus mykiss/imunologia , Salmo salar/imunologia , Yersiniose/veterinária , Sequência de Aminoácidos , Animais , Éxons , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/sangue , Proteínas de Peixes/imunologia , Expressão Gênica , Gônadas/imunologia , Gônadas/microbiologia , Humanos , Interleucina-1beta/farmacologia , Subunidade p19 da Interleucina-23/sangue , Subunidade p19 da Interleucina-23/imunologia , Íntrons , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Dados de Sequência Molecular , Oncorhynchus mykiss/classificação , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/microbiologia , Peptidoglicano/farmacologia , Filogenia , Poli I-C/farmacologia , Cultura Primária de Células , Isoformas de Proteínas/sangue , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Salmo salar/classificação , Salmo salar/genética , Salmo salar/microbiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Yersiniose/imunologia , Yersiniose/microbiologia , Yersinia ruckeri/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia
12.
Int J Parasitol ; 45(1): 1-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25449947

RESUMO

Since June 2012, samples of wild caught white shrimp, Litopenaeus setiferus, from the Gulf of Mexico, Plaquemines and Jefferson Parishes (Louisiana, USA) with clinical signs of microsporidiosis have been delivered to the Louisiana Aquatic Diagnostic Laboratory for identification. Infection was limited predominantly to female gonads and was caused by a microsporidium producing roundish pansporoblasts with eight spores (3.6×2.1 µm) and an anisofilar (2-3+4-6) polar filament. These features allowed identification of the microsporidium as Agmasoma penaei Sprague, 1950. Agmasoma penaei is known as a microsporidium with world-wide distribution, causing devastating epizootic disease among wild and cultured shrimps. This paper provides molecular and morphological characterisation of A. penaei from the type host and type locality. Comparison of the novel ssrDNA sequence of A. penaei from Louisiana, USA with that of A. penaei from Thailand revealed 95% similarity, which suggests these geographical isolates are two different species. The A. penaei sequences did not show significant homology to any other examined taxon. Phylogenetic reconstructions using the ssrDNA and alpha- and beta-tubulin sequences supported its affiliation with the Clade IV Terresporidia sensu Vossbrink 2005, and its association with parasites of fresh and salt water crustaceans of the genera Artemia, Daphnia and Cyclops.


Assuntos
Microsporídios não Classificados/citologia , Microsporídios não Classificados/genética , Penaeidae/microbiologia , Filogenia , Animais , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Feminino , Gônadas/microbiologia , Louisiana , Microsporídios não Classificados/isolamento & purificação , Dados de Sequência Molecular , Análise de Sequência de DNA , Esporos Fúngicos/citologia , Tubulina (Proteína)/genética
13.
Environ Microbiol ; 16(12): 3583-607, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25052143

RESUMO

The Wolbachia are intracellular endosymbionts widely distributed among invertebrates. These primarily vertically transmitted α-proteobacteria have been intensively studied during the last decades because of their intriguing interactions with hosts, ranging from reproductive manipulations to mutualism. To optimize their vertical transmission from mother to offspring, the Wolbachia have developed fine-tuned strategies. However, the Wolbachia are not restricted to the female gonads and frequently exhibit wide intra-host distributions. This extensive colonization of somatic organs might be necessary for Wolbachia to develop their diverse extended phenotypes. From an endosymbiont's perspective, the within-host environment potentially presents different environmental constraints. Hence, the Wolbachia have to face different intracellular habitats, their host's immune system as well as other microorganisms co-occurring in the same host individual and sometimes even in the same cell. A means for the Wolbachia to protect themselves from these environmental constraints may be to live 'hidden' in vacuoles within host cells. In this review, we summarize the current knowledge regarding the extent of the Wolbachia pandemic and discuss the various environmental constraints these bacteria may have to face within their 'host ecosystem'. Finally, we identify new avenues for future research to better understand the complexity of Wolbachia's interactions with their intracellular environment.


Assuntos
Artrópodes/microbiologia , Nematoides/microbiologia , Simbiose , Wolbachia/fisiologia , Animais , Artrópodes/genética , Artrópodes/imunologia , Ecossistema , Meio Ambiente , Feminino , Gônadas/microbiologia , Interações Microbianas , Nematoides/genética , Nematoides/imunologia , Fenótipo , Wolbachia/crescimento & desenvolvimento
14.
Naturwissenschaften ; 101(5): 373-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24622961

RESUMO

Bacterial symbiont transmission is a key step in the renewal of the symbiotic interaction at each host generation, and different modes of transmission can be distinguished. Vesicomyidae are chemosynthetic bivalves from reducing habitats that rely on symbiosis with sulfur-oxidizing bacteria, in which two studies suggesting vertical transmission of symbionts have been published, both limited by the imaging techniques used. Using fluorescence in situ hybridization and transmission electron microscopy, we demonstrate that bacterial symbionts of Isorropodon bigoti, a gonochoristic Vesicomyidae from the Guiness cold seep site, occur intracellularly within female gametes at all stages of gametogenesis from germ cells to mature oocytes and in early postlarval stage. Symbionts are completely absent from the male gonad and gametes. This study confirms the transovarial transmission of symbionts in Vesicomyidae and extends it to the smaller species for which no data were previously available.


Assuntos
Fenômenos Fisiológicos Bacterianos , Bivalves/microbiologia , Simbiose , Animais , Bivalves/ultraestrutura , Feminino , Células Germinativas/microbiologia , Células Germinativas/ultraestrutura , Gônadas/microbiologia , Gônadas/ultraestrutura , Hibridização in Situ Fluorescente , Masculino , Microscopia Eletrônica de Transmissão , Oceanos e Mares
15.
J Invertebr Pathol ; 118: 20-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24594301

RESUMO

There is a long-standing prediction that associations with vertically transmitted symbionts evolve towards maximisation of host reproductive success, eventually leading to mutualist symbiosis and coadaptation. Under this scenario, the regulation of symbiont titres in host tissues would be expected to be greater when partners have coevolved for a long time than when they have recently met. Wolbachia pipientis, a common vertically transmitted symbiont of invertebrates, often has the capacity to spread through the host population without being beneficial to the hosts, by means of reducing the hatch rate in crosses between uninfected females and infected males. This manipulation, namely cytoplasmic incompatibility (CI), may exert strong selection on the accuracy of infection transmission from mother to offspring, and therefore, on regulation of symbiont titres in the ova. Here, we examined the symbiont density dynamics in gonads of Drosophila simulans infected with the wMa strain of Wolbachia, known to cause mild CI and likely to be the oldest Wolbachia infection known to this fly species. Further, we compared these results with those obtained for the more recent association between D. simulans and the potent CI-inducer wHa (Correa and Ballard, 2012). We aimed to determine if the regulation of Wolbachia density in fly gonads is greater in the older association, as would be predicted solely by gradual coadaptation, or if the selection exerted by CI on reproductive fitness could also play a role, therefore showing tighter regulation on flies with the stronger CI-inducing strain. We observed that Wolbachia density in gonads of wMa infected flies changed with laboratory adaptation and were disturbed by environmental challenges, which contrasted with the stability of ovarian wHa density to the same treatments. Our observations are in line with the prediction that selection on reproductive fitness influences the evolution symbiont density regulation in Drosophila, and may provide insights into the evolutionary processes involved in the maintenance or loss of Wolbachia.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Drosophila/microbiologia , Simbiose/genética , Wolbachia/genética , Animais , Feminino , Gônadas/microbiologia , Transmissão Vertical de Doenças Infecciosas , Masculino
16.
Environ Microbiol ; 16(12): 3657-68, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24650112

RESUMO

Arthropod symbionts present tissue tropism that corresponds to the nature of the association and the mode of transmission between host generations. In ticks, however, our knowledge of symbiont tissue tropism and function is limited. Here, we quantified and localized previously described Coxiella-like symbionts in several organs of the tick Rhipicephalus turanicus. Quantitative polymerase chain reaction revealed high densities of Coxiella in the female gonads, and both male and female Malpighian tubules. Using fluorescence in situ hybridization and transmission electron microscopy, we further showed that in the gonads of both Rh. turanicus and Rh. sanguineus, Coxiella does not colonize the primary oocytes but is found later in young and mature oocytes in a specific distribution, suggesting controlled vertical transmission. This method revealed the presence Coxiella in the distal part of the Malpighian tubules, suggesting a possible role in nitrogen metabolism. While testing Rickettsia symbionts, no specific tissue tropism was found, but a slightly higher densities in the tick gut. The low density of Rickettsia in the female ovaries suggests competition between Rickettsia and Coxiella for vertical transmission. The described tissue distribution supports an obligatory role for Coxiella in ticks.


Assuntos
Coxiella/fisiologia , Túbulos de Malpighi/microbiologia , Rhipicephalus sanguineus/microbiologia , Rhipicephalus/microbiologia , Simbiose , Animais , Carga Bacteriana , Coxiella/crescimento & desenvolvimento , Feminino , Gônadas/microbiologia , Hibridização in Situ Fluorescente , Masculino , Oócitos/microbiologia , Rickettsia/fisiologia
17.
Microb Ecol ; 66(1): 211-23, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23588850

RESUMO

We have recently detected the endosymbiont Wolbachia in multiple individuals and populations of the grasshopper Chorthippus parallelus (Orthoptera: acrididae). This bacterium induces reproductive anomalies, including cytoplasmic incompatibility. Such incompatibilities may help explain the maintenance of two distinct subspecies of this grasshopper, C. parallelus parallelus and C. parallelus erythropus, which are involved in a Pyrenean hybrid zone that has been extensively studied for the past 20 years, becoming a model system for the study of genetic divergence and speciation. To evaluate whether Wolbachia is the sole bacterial infection that might induce reproductive anomalies, the gonadal bacterial community of individuals from 13 distinct populations of C. parallelus was determined by denaturing gradient gel electrophoresis analysis of bacterial 16S rRNA gene fragments and sequencing. The study revealed low bacterial diversity in the gonads: a persistent bacterial trio consistent with Spiroplasma sp. and the two previously described supergroups of Wolbachia (B and F) dominated the gonad microbiota. A further evaluation of the composition of the gonad bacterial communities was carried out by whole cell hybridization. Our results confirm previous studies of the cytological distribution of Wolbachia in C. parallelus gonads and show a homogeneous infection by Spiroplasma. Spiroplasma and Wolbachia cooccurred in some individuals, but there was no significant association of Spiroplasma with a grasshopper's sex or with Wolbachia infection, although subtle trends might be detected with a larger sample size. This information, together with previous experimental crosses of this grasshopper, suggests that Spiroplasma is unlikely to contribute to sex-specific reproductive anomalies; instead, they implicate Wolbachia as the agent of the observed anomalies in C. parallelus.


Assuntos
Gafanhotos/microbiologia , Gafanhotos/fisiologia , Spiroplasma/isolamento & purificação , Wolbachia/isolamento & purificação , Animais , Feminino , Gônadas/microbiologia , Gafanhotos/genética , Masculino , Dados de Sequência Molecular , Filogenia , Reprodução , Spiroplasma/classificação , Spiroplasma/genética , Wolbachia/classificação , Wolbachia/genética
18.
Biol Bull ; 222(1): 63-73, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22426633

RESUMO

Vertical transmission of cyanobacterial symbionts occurs in didemnid ascidians harboring Prochloron as an obligate symbiont; the photosymbionts are transferred from the parental ascidian colony to the offspring in various ways depending on host species. Although several didemnids harbor non-Prochloron cyanobacteria in their tunics, few studies have reported the processes of vertical transmission in these didemnids. Here we describe the histological processes of the transmission of cyanobacteria in two didemnids, Trididemnum nubilum harboring Synechocystis and T. clinides harboring three cyanobacterial species. In both species, the photosymbionts in the tunic of the parent colony were apparently captured by the tunic cells of the host and transferred to the embryos brooded in the tunic. The symbiont cells were then incorporated into the inner tunic of the embryo. This mode of transmission is essentially the same as that of T. miniatum harboring Prochloron in the tunic, although there are some differences among species in the timing of the release of the symbionts from the tunic cells. We suggest that the similar modes of vertical transmission are an example of convergent evolution caused by constraints in the distribution patterns of symbiont cells in the host colony.


Assuntos
Cianobactérias/fisiologia , Simbiose , Urocordados/embriologia , Urocordados/microbiologia , Animais , Evolução Biológica , Recifes de Corais , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/ultraestrutura , Gônadas/microbiologia , Gônadas/ultraestrutura , Larva/metabolismo , Larva/microbiologia , Microscopia Eletrônica de Transmissão , Especificidade da Espécie , Fatores de Tempo , Urocordados/anatomia & histologia
19.
Res Microbiol ; 162(8): 764-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21726632

RESUMO

The maternally inherited obligatory intracellular bacterium Wolbachia is a reproductive parasite of many insect species. Wolbachia evades the host immune system, uses the mitotic apparatus to ensure infection of daughter cells, migrates through the host to the gonads and causes reproductive phenotypes, most commonly cytoplasmic incompatibility (CI), i.e. incompatibility of sperm from infected males and eggs from uninfected females. Due to the interconnected facts that Wolbachia is not ex vivo culturable and that no established transformation system exists, virtually nothing is known about Wolbachia-host interactions at the macromolecular level. Intriguingly, the Wolbachia genome codes for an unusually high number of ankyrin repeat (ANK) proteins. ANKs mediate protein-protein interactions in many different contexts. More common in eukaryotes, they also occur in prokaryotes. Some intracellular pathogenic bacteria export ANK effector proteins to the host cytoplasm. This makes the Wolbachia ANK genes candidates for mediating interactions with host cells. We quantified expression of ANK genes of Wolbachia strain wMel in adult gonads and detected host sex-specific regulation of two wMel ANK genes in the gonads in two different backgrounds. Regulation was tissue-specific and independent of host background. We further analyzed expression of their homologues in strains wAu and wRi and found regulation only in wAu. Regulation was tissue-specific and there was no correlation between regulation of these genes and the ability of a strain to induce CI.


Assuntos
Drosophila/genética , Drosophila/microbiologia , Regulação da Expressão Gênica , Wolbachia/genética , Animais , Animais Geneticamente Modificados , Repetição de Anquirina , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Drosophila/metabolismo , Feminino , Gônadas/metabolismo , Gônadas/microbiologia , Masculino , Dados de Sequência Molecular , Especificidade de Órgãos , Wolbachia/química
20.
Vet Res Commun ; 34(5): 459-71, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20526889

RESUMO

In recent years host antimicrobial peptides and proteins have been recognised as key mediators of the innate immune response in many vertebrate species, providing the first line of defense against potential pathogens. In chickens a number of cationic antimicrobial peptides have been recently identified. However, although these peptides have been studied extensively in the avian gastrointestinal tract, little is known about their function in the chicken reproductive organs and embryos. Chicken Liver Expressed Antimicrobial Peptide-2 (cLEAP-2) has been previously reported to function in protecting birds against microbial attack. The aim of this study was to investigate the expression of cLEAP-2 gene in the chicken reproductive organs, as well as in chicken embryos during embryonic development, and to determine whether cLEAP-2 expression in the chicken reproductive organs was constitutive or induced as a response to Salmonella enteritidis infection. RNA was extracted from ovary, oviduct, testis and epididymis of sexually mature healthy and Salmonella infected birds, as well as from chicken embryos until day ten of embryonic development. Expression analysis data revealed that cLEAP-2 was expressed in the chicken ovary, testis and epididymis as well as in embryos during early embryonic development. Quantitative real-time PCR analysis revealed that cLEAP-2 expression was constitutive in the chicken epididymis, but was significantly up regulated in the chicken gonads, following Salmonella infection. In addition, expression of cLEAP-2 during chicken embryogenesis appeared to be developmentally regulated. These data provide evidence to suggest a key role of cLEAP-2 in the protection of the chicken reproductive organs and the developing embryos from Salmonella colonization.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Gônadas/metabolismo , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enterica , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Embrião de Galinha/metabolismo , Galinhas/metabolismo , Galinhas/microbiologia , Epididimo/metabolismo , Epididimo/microbiologia , Feminino , Genes/genética , Gônadas/microbiologia , Masculino , Oviductos/metabolismo , Oviductos/microbiologia , Doenças das Aves Domésticas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Salmonelose Animal/metabolismo , Alinhamento de Sequência/veterinária , Testículo/metabolismo , Testículo/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA