RESUMO
Transitioning from batch to continuous industrial production often improves the economic returns and production efficiency. Immobilization is a critical strategy that can facilitate this shift. This study refined the previously established method for synthesizing uridine diphosphate galactose (UDP-Gal) by employing thermophilic enzymes. Three thermophilic enzymes (galactokinase, uridine diphosphate glucose pyrophosphorylase, and inorganic pyrophosphatase) were coimmobilized on the pH-responsive carrier Eudragit S-100, promoting enzyme recovery and reuse while their industrial potential was assessed. The coimmobilization system efficiently catalyzed UDP-Gal production, yielding 13.69 mM in 1.5 h, attaining a UTP conversion rate of 91.2% and a space-time yield (STY) of 5.16 g/L/h. Moreover, the system exhibited exceptional reproducibility, retaining 58.9% of its initial activity after five cycles. This research highlighted promising prospects for coimmobilization in industrial synthesis and proposed a novel methodology for enhancing UDP-Gal production in the industry. In addition, the phase-transition property of Eudragit S-100 paves the way for further exploration with the one-pot synthesis of poorly soluble galactosides.
Assuntos
Enzimas Imobilizadas , Uridina Difosfato Galactose , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Uridina Difosfato Galactose/metabolismo , Uridina Difosfato Galactose/química , Galactoquinase/genética , Galactoquinase/metabolismo , Galactoquinase/química , Pirofosfatase Inorgânica/metabolismo , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/química , Transição de Fase , Biocatálise , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Ácidos PolimetacrílicosRESUMO
Streptococcus thermophilus (S. thermophilus) is a widely used starter culture in dairy fermentation, but most strains are galactose-negative and only metabolize glucose from lactose hydrolysis. In this study, we aimed to uncover the mechanisms underlying the acquisition of a stable galactose-positive (Gal+) phenotype in a mutant strain of S. thermophilus IMAU10636. By treating the wild-type strain with the mutagenic agent N-methyl-N-nitro-N-nitrosoguanidine, we successfully isolated a Gal+ mutant, S. thermophilus IMAU10636Y. Comparative enzyme activity assays revealed that the mutant exhibited higher ß-galactosidase and galactokinase activities, but lower glucokinase and pyruvate kinase activities compared to the wild-type. High-performance liquid chromatography analysis confirmed the mutant's enhanced ability to utilize lactose and galactose, leading to increased glucose secretion. Integrated genome and transcriptomics analyses provided deeper insights into the underlying genetic and metabolic mechanisms. We found that the metabolism regulatory network of the glycolysis / Leloir pathway was altered in the mutant, possibly due to the upregulation of the gene expression in the galR-galK intergenic region. This likely led to increased RNA polymerase binding and transcription of the gal operon, ultimately promoting the Gal+ phenotype. Additionally, we identified a mutation in the scrR gene, encoding a LacI family transcriptional repressor, which also contributed to the Gal+ phenotype. These findings offer new perspectives on the metabolic rewiring and regulatory mechanisms that enable S. thermophilus to acquire the ability to metabolize galactose. This knowledge can inform strategies for engineering and selecting Gal+ strains with desirable fermentation characteristics for dairy applications.
Assuntos
Galactose , Regulação Bacteriana da Expressão Gênica , Glucose , Lactose , Mutação , Fenótipo , Streptococcus thermophilus , beta-Galactosidase , Galactose/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , Glucose/metabolismo , Lactose/metabolismo , Fermentação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Glucoquinase/genética , Glucoquinase/metabolismo , Glicólise , Perfilação da Expressão GênicaRESUMO
Galactitol, a rare sugar alcohol, has promising potential in the food industry and pharmaceutical field. The available industrial production methods rely on harsh hydrogenation processes, which incur high costs and environmental concerns. It is urgent to develop environmentally friendly and efficient biosynthesis technologies. In this study, a xylose reductase named AnXR derived from Aspergillus niger CBS 513.88 was identified and characterized for the enzymatic properties. AnXR exhibited the highest activity at 25 â and pH 8.0, and it belonged to the NADPH-dependent aldose reductase family. To engineer a strain for galactitol production, we deleted the galactokinase (GAL1) gene in Saccharomyes cerevisiae by using the recombinant gene technology, which significantly reduced the metabolic utilization of D-galactose by host cells. Subsequently, we introduced the gene encoding AnXR into this modified strain, creating an engineered strain capable of catalyzing the conversion of D-galactose into galactitol. Furthermore, we optimized the whole-cell catalysis conditions for the engineered strain, which achieved a maximum galactitol yield of 12.10 g/L. Finally, we tested the reduction ability of the strain for other monosaccharides and discovered that it could produce functional sugar alcohols such as xylitol and arabinitol. The engineered strain demonstrates efficient biotransformation capabilities for galactitol and other functional sugar alcohols, representing a significant advancement in environmentally sustainable production practices.
Assuntos
Aldeído Redutase , Aspergillus niger , Galactitol , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aldeído Redutase/metabolismo , Aldeído Redutase/genética , Galactitol/metabolismo , Galactitol/genética , Aspergillus niger/metabolismo , Aspergillus niger/genética , Galactose/metabolismo , Engenharia Metabólica/métodos , Fermentação , Microbiologia Industrial , Galactoquinase/genética , Galactoquinase/metabolismoRESUMO
Leishmaniasis is a spectrum of conditions caused by infection with the protozoan Leishmania spp. parasites. Leishmaniasis is endemic in 98 countries around the world, and resistance to current anti-leishmanial drugs is rising. Our work has identified and characterised a previously unstudied galactokinase-like protein (GalK) in Leishmania donovani, which catalyses the MgATP-dependent phosphorylation of the C-1 hydroxyl group of d-galactose to galactose-1-phosphate. Here, we report the production of the catalytically active recombinant protein in E. coli, determination of its substrate specificity and kinetic constants, as well as analysis of its molecular envelope using in solution X-ray scattering. Our results reveal kinetic parameters in range with other galactokinases with an average apparent Km value of 76 µM for galactose, Vmax and apparent Kcat values with 4.46376 × 10-9 M/s and 0.021 s-1, respectively. Substantial substrate promiscuity was observed, with galactose being the preferred substrate, followed by mannose, fructose and GalNAc. LdGalK has a highly flexible protein structure suggestive of multiple conformational states in solution, which may be the key to its substrate promiscuity. Our data presents novel insights into the galactose salvaging pathway in Leishmania and positions this protein as a potential target for the development of pharmaceuticals seeking to interfere with parasite substrate metabolism.
Assuntos
Leishmania donovani , Proteínas de Protozoários , Proteínas Recombinantes , Leishmania donovani/enzimologia , Leishmania donovani/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Especificidade por Substrato , Galactoquinase/metabolismo , Galactoquinase/genética , Galactoquinase/química , Cinética , Escherichia coli/genética , Escherichia coli/metabolismo , Galactose/metabolismoRESUMO
Lysosomal accumulation of the glycosphingolipid globotriaosylceramide Gb3 is linked to the deficient activity of the α-galactosidase A in the Anderson-Fabry disease and an elevated level of deacylated Gb3 is a hallmark of this condition. Localization of Gb3 in the plasma membrane is critical for studying how the membrane organization and its dynamics are affected in this genetic disorder. Gb3 analogs containing a terminal 6-azido-functionalized galactose in its head group globotriose (αGal1, 4ßGal1, and 4Glc) are attractive chemical reporters for bioimaging, as the azido-group may act as a chemical tag for bio-orthogonal click chemistry. We report here the production of azido-Gb3 analogs employing mutants of galactokinase, UTP-glucose-1-phosphate uridylyltransferase, and α-1,4-galactosyltransferase LgtC, which participate in the synthesis of the sugar motif globotriose. Variants of enzymes galactokinase/UTP-glucose-1-phosphate uridylyltransferase generate UDP-6-azido-6-deoxy-d-galactose, which is the galactosyl-donor used by LgtC for transferring the terminal galactose moiety to lactosyl-acceptors. Residues at the galactose-binding site of the 3 enzymes were modified to facilitate the accommodation of azido-functionalized substrates and variants outperforming the wild-type enzymes were characterized. Synthesis of 6-azido-6-deoxy-d-galactose-1-phosphate, UDP-6-azido-6-deoxy-d-galactose, and azido-Gb3 analogs by variants GalK-E37S, GalU-D133V, and LgtC-Q187S, respectively, is 3-6-fold that of their wild-type counterparts. Coupled reactions with these variants permit the production of the pricy, unnatural galactosyl-donor UDP-6-azido-6-deoxy-d-galactose with ~90% conversion yields, and products azido-globotriose and lyso-AzGb3 with substrate conversion of up to 70%. AzGb3 analogs could serve as precursors for the synthesis of other tagged glycosphingolipids of the globo-series.
Assuntos
Galactoquinase , Galactose , Galactose/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Sítios de Ligação , Mutação , Difosfato de UridinaRESUMO
MAIN CONCLUSION: Arabidopsis seedlings growing on low concentration of galactose stop regular root growth. Incomplete cell division with cell wall stubs, binuclear and giant cells and lignified root tips are observed. Galactose is a sugar abundant in root cell walls of Arabidopsis. Nevertheless, we found that the germination of Arabidopsis seedlings on galactose containing media causes a strong modification of the root development, as shown by analysing the root with microscopy methods ranging from the bright field over confocal to transmission electron microscopy. At concentrations of about 1 mM, the growth of the primary root stops after a few days though stem cell markers like WOX5 are still expressed. The root tip swells and forms a slightly opaque, partially lignified structure in parts of the cortex and the central cylinder. The formation of the cell plate after mitosis is impaired, often leading to cell wall stubs and binuclear cells. Some cells in the cortex and the central cylinder degenerate, while some rhizodermal and cortical cells increase massively in size. The galactose toxicity phenotype in Arabidopsis depends on the activity of galactokinase and is completely diminished in galactokinase knock-out lines. From the comparison of the galactose toxicity phenotype with those of cytokinesis mutants and plants treated with appropriate inhibitors we speculate that the toxicity syndrome of galactose is caused by interference with intracellular vesicle transport or cell wall biogenesis.
Assuntos
Arabidopsis , Arabidopsis/metabolismo , Morte Celular , Parede Celular/metabolismo , Galactoquinase/metabolismo , Galactose/metabolismo , PlântulaRESUMO
Galactose is an abundant and essential sugar used for the biosynthesis of many macromolecules in different organisms, including plants. Galactose metabolism is tightly and finely controlled, since excess galactose and its derivatives are inhibitory to plant growth. In Arabidopsis (Arabidopsis thaliana), root growth and pollen germination are strongly inhibited by excess galactose. However, the mechanism of galactose-induced inhibition during pollen germination remains obscure. In this study, we characterized a plasma membrane-localized transporter, Arabidopsis Sugars Will Eventually be Exported Transporter 5, that transports glucose and galactose. SWEET5 protein levels started to accumulate at the tricellular stage of pollen development and peaked in mature pollen, before rapidly declining after pollen germinated. SWEET5 levels are responsible for the dosage-dependent sensitivity to galactose, and galactokinase is essential for these inhibitory effects during pollen germination. However, sugar measurement results indicate that galactose flux dynamics and sugar metabolism, rather than the steady-state galactose level, may explain phenotypic differences between sweet5 and Col-0 in galactose inhibition of pollen germination.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Galactoquinase/metabolismo , Galactoquinase/farmacologia , Galactose/metabolismo , Galactose/farmacologia , Germinação , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , PólenRESUMO
Bio-orthogonal chemistries have revolutionized many fields. For example, metabolic chemical reporters (MCRs) of glycosylation are analogues of monosaccharides that contain a bio-orthogonal functionality, such as azides or alkynes. MCRs are metabolically incorporated into glycoproteins by living systems, and bio-orthogonal reactions can be subsequently employed to install visualization and enrichment tags. Unfortunately, most MCRs are not selective for one class of glycosylation (e.g., N-linked vs O-linked), complicating the types of information that can be gleaned. We and others have successfully created MCRs that are selective for intracellular O-GlcNAc modification by altering the structure of the MCR and thus biasing it to certain metabolic pathways and/or O-GlcNAc transferase (OGT). Here, we attempt to do the same for the core GalNAc residue of mucin O-linked glycosylation. The most widely applied MCR for mucin O-linked glycosylation, GalNAz, can be enzymatically epimerized at the 4-hydroxyl to give GlcNAz. This results in a mixture of cell-surface and O-GlcNAc labeling. We reasoned that replacing the 4-hydroxyl of GalNAz with a fluorine would lock the stereochemistry of this position in place, causing the MCR to be more selective. After synthesis, we found that 4FGalNAz labels a variety of proteins in mammalian cells and does not perturb endogenous glycosylation pathways unlike 4FGalNAc. However, through subsequent proteomic and biochemical characterization, we found that 4FGalNAz does not widely label cell-surface glycoproteins but instead is primarily a substrate for OGT. Although these results are somewhat unexpected, they once again highlight the large substrate flexibility of OGT, with interesting and important implications for intracellular protein modification by a potential range of abiotic and native monosaccharides.
Assuntos
Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/genética , Animais , Células CHO , Cricetinae , Cricetulus , Galactoquinase/genética , Galactoquinase/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Regulação da Expressão Gênica , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , N-Acetilglucosaminiltransferases/genética , Proteínas Recombinantes , Especificidade por Substrato , Açúcares de Uridina DifosfatoRESUMO
Chromatin structure and underlying DNA accessibility is modulated by the incorporation of histone variants. H2A.Z, a variant of the H2A core histone family, plays a distinct and essential role in a diverse set of biological functions including gene regulation and maintenance of heterochromatin-euchromatin boundaries. Although it is currently unclear how the replacement of H2A with H2A.Z can regulate gene expression, the variance in their amino acid sequence likely contributes to their functional differences. To tease apart regions of H2A.Z that confer its unique identity, a set of plasmids expressing H2A-H2A.Z hybrids from the native H2A.Z promoter were examined for their ability to recapitulate H2A.Z function. First, we found that the H2A.Z M6 region was necessary and sufficient for interaction with the SWR1-C chromatin remodeler. Remarkably, the combination of only 9 amino acid changes, the H2A.Z M6 region, K79 and L81 (two amino acids in the α2-helix), were sufficient to fully rescue growth phenotypes of the htz1Δ mutant. Furthermore, combining three unique H2A.Z regions (K79 and L81, M6, C-terminal tail) was sufficient for expression of H2A.Z-dependent heterochromatin-proximal genes and GAL1 derepression. Surprisingly, hybrid constructs that restored the transcription of H2A.Z-dependent genes, did not fully recapitulate patterns of H2A.Z-specific enrichment at the tested loci. This suggested that H2A.Z function in transcription regulation may be at least partially independent of its specific localization in chromatin. Together, this work has identified three regions that can confer specific H2A.Z-identity to replicative H2A, furthering our understanding of what makes a histone variant a variant.
Assuntos
Adenosina Trifosfatases/genética , Cromatina/genética , Galactoquinase/genética , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/genética , Montagem e Desmontagem da Cromatina/genética , Regulação Fúngica da Expressão Gênica/genética , Variação Genética/genética , Heterocromatina/genética , Humanos , Nucleossomos/genética , Fenótipo , Saccharomyces cerevisiae/genéticaRESUMO
Upon replication stress, budding yeast checkpoint kinase Mec1ATR triggers the downregulation of transcription, thereby reducing the level of RNA polymerase (RNAP) on chromatin to facilitate replication fork progression. Here, we identify a hydroxyurea-induced phosphorylation site on Mec1, Mec1-S1991, that contributes to the eviction of RNAPII and RNAPIII during replication stress. The expression of the non-phosphorylatable mec1-S1991A mutant reduces replication fork progression genome-wide and compromises survival on hydroxyurea. This defect can be suppressed by destabilizing chromatin-bound RNAPII through a TAP fusion to its Rpb3 subunit, suggesting that lethality in mec1-S1991A mutants arises from replication-transcription conflicts. Coincident with a failure to repress gene expression on hydroxyurea in mec1-S1991A cells, highly transcribed genes such as GAL1 remain bound at nuclear pores. Consistently, we find that nuclear pore proteins and factors controlling RNAPII and RNAPIII are phosphorylated in a Mec1-dependent manner on hydroxyurea. Moreover, we show that Mec1 kinase also contributes to reduced RNAPII occupancy on chromatin during an unperturbed S phase by promoting degradation of the Rpb1 subunit.
Assuntos
Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase III/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Regulação Fúngica da Expressão Gênica , Hidroxiureia/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , Fase S/efeitos dos fármacos , Fase S/genética , Saccharomyces cerevisiae/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição GênicaRESUMO
Classic galactosemia is a rare disease caused by inherited deficiency of galactose-1 phosphate uridylyltransferase (GALT). Accumulation of galactose-1 phosphate (gal-1P) is thought to be the major cause of the chronic complications associated with this disease, which currently has no treatment. Inhibiting galactokinase (GALK1), the enzyme that generates galactose-1 phosphate, has been proposed as a novel strategy for treating classic galactosemia. Our previous work identified a highly selective unique dihydropyrimidine inhibitor against GALK1. With the determination of a co-crystal structure of this inhibitor with human GALK1, we initiated a structure-based structure-activity relationship (SAR) optimization campaign that yielded novel analogs with potent biochemical inhibition (IC50 < 100 nM). Lead compounds were also able to prevent gal-1P accumulation in patient-derived cells at low micromolar concentrations and have pharmacokinetic properties suitable for evaluation in rodent models of galactosemia.
Assuntos
Inibidores Enzimáticos/farmacologia , Galactoquinase/antagonistas & inibidores , Pirimidinas/farmacologia , Animais , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Feminino , Galactoquinase/metabolismo , Humanos , Masculino , Camundongos , Estrutura Molecular , Ligação Proteica , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Relação Estrutura-AtividadeRESUMO
Caspases are a family of cysteine proteases that play an essential role in inflammation, apoptosis, cell death, and development. Here we delve into the effects caused by heterologous expression of human caspase-1 in the yeast Saccharomyces cerevisiae and compare them to those of caspase-8. Overexpression of both caspases in the heterologous model led to their activation and caused mitochondrial hyperpolarization, damage to different organelles, and cell death. All these effects were dependent on their protease activity, and caspase-8 was more aggressive than caspase-1. Growth arrest could be at least partially explained by dysfunction of the actin cytoskeleton as a consequence of the processing of the yeast Bni1 formin, which we identify here as a likely direct substrate of both caspases. Through the modulation of the GAL1 promoter by using different galactose:glucose ratios in the culture medium, we have established a scenario in which caspase-1 is sufficiently expressed to become activated while yeast growth is not impaired. Finally, we used the yeast model to explore the role of death-fold domains (DD) of both caspases in their activity. Peculiarly, the DDs of either caspase showed an opposite involvement in its intrinsic activity, as the deletion of the caspase activation and recruitment domain (CARD) of caspase-1 enhanced its activity, whereas the deletion of the death effector domain (DED) of caspase-8 diminished it. We show that caspase-1 is able to efficiently process its target gasdermin D (GSDMD) when co-expressed in yeast. In sum, we propose that S. cerevisiae provides a manageable tool to explore caspase-1 activity and structure-function relationships.
Assuntos
Caspase 1/biossíntese , Caspase 8/biossíntese , Mitocôndrias/enzimologia , Saccharomyces cerevisiae/enzimologia , Citoesqueleto de Actina/enzimologia , Citoesqueleto de Actina/genética , Caspase 1/genética , Caspase 8/genética , Ativação Enzimática , Indução Enzimática , Galactoquinase/genética , Galactoquinase/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Viabilidade Microbiana , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/genética , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por SubstratoRESUMO
The aggregation of huntingtin fragments with expanded polyglutamine repeat regions (HttpolyQ) that cause Huntington's disease depends on the presence of a prion with an amyloid conformation in yeast. As a result of this relationship, HttpolyQ aggregation indirectly depends on Hsp104 due to its essential role in prion propagation. We find that HttQ103 aggregation is directly affected by Hsp104 with and without the presence of [RNQ+] and [PSI+] prions. When we inactivate Hsp104 in the presence of prion, yeast cells have only one or a few large HttQ103 aggregates rather than numerous smaller aggregates. When we inactivate Hsp104 in the absence of prion, there is no significant aggregation of HttQ103, whereas with active Hsp104, HttQ103 aggregates accumulate slowly due to the severing of spontaneously nucleated aggregates by Hsp104. We do not observe either effect with HttQ103P, which has a polyproline-rich region downstream of the polyglutamine region, because HttQ103P does not spontaneously nucleate and Hsp104 does not efficiently sever the prion-nucleated HttQ103P aggregates. Therefore, the only role of Hsp104 in HttQ103P aggregation is to propagate yeast prion. In conclusion, because Hsp104 efficiently severs the HttQ103 aggregates but not HttQ103P aggregates, it has a marked effect on the aggregation of HttQ103 but not HttQ103P.
Assuntos
Proteínas de Choque Térmico/metabolismo , Proteína Huntingtina/metabolismo , Peptídeos/metabolismo , Príons/química , Agregação Patológica de Proteínas/patologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Cobre/farmacologia , Galactoquinase/genética , Humanos , Doença de Huntington/genética , Placa Amiloide/patologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
PURPOSE: To characterize the proteome of the iris in primary angle closure glaucoma (PACG). EXPERIMENTAL DESIGN: In this cross-sectional study, iris samples were obtained from surgical iridectomy of 48 adults with PACG and five normal controls. Peptides from iris were analysed using liquid chromatography-tandem mass spectrometry on an Orbitrap Q Exactive Plus mass spectrometer. Verification of proteins of interest was conducted using selected reaction monitoring on a triple quadrupole mass spectrometer. The main outcome was proteins with a log2 two-fold difference in expression in iris between PACG and controls. RESULTS: There were 3,446 non-redundant proteins identified in human iris, of which 416 proteins were upregulated and 251 proteins were downregulated in PACG compared with controls. Thirty-two upregulated proteins were either components of the extracellular matrix (ECM) (fibrillar collagens, EMILIN-2, fibrinogen, fibronectin, matrilin-2), matricellular proteins (thrombospondin-1), proteins involved in cell-matrix interactions (integrins, laminin, histidine-rich glycoprotein, paxillin), or protease inhibitors known to modulate ECM turnover (α-2 macroglobulin, tissue factor pathway inhibitor 2, papilin). Two giant proteins, titin and obscurin, were up- and down-regulated, respectively, in the iris in PACG compared with controls. CONCLUSIONS AND CLINICAL RELEVANCE: This proteomic study shows that ECM composition and homeostasis are altered in the iris in PACG.
Assuntos
Matriz Extracelular/metabolismo , Glaucoma de Ângulo Fechado/metabolismo , Iris/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida de Alta Pressão , Colágeno Tipo II/metabolismo , Estudos Transversais , Regulação para Baixo , Feminino , Galactoquinase/metabolismo , Glaucoma de Ângulo Fechado/patologia , Humanos , Iris/cirurgia , Masculino , Pessoa de Meia-Idade , Peptídeos/análise , Espectrometria de Massas em Tandem , Regulação para CimaRESUMO
Congenital cataract can be caused by several systemic diseases and differential diagnosis should be done between infections, genetic or metabolic diseases. We present a case of a 12-month-old girl with bilateral nuclear cataracts that was referred for investigation. Since she did not present a family history of congenital cataracts or metabolic diseases, and her physical examination was normal, a systemic evaluation was performed. Biochemical studies disclosed abnormal galactose metabolism signs. The diagnosis of galactokinase (GALK1) deficiency was considered and the study of the GALK1 gene allowed identifying a pathogenic genetic variant and a predictably pathogenic missense mutation, previously not described. Dietary measures were imposed with a good evolution.
Assuntos
Catarata , Galactosemias , Catarata/genética , Feminino , Galactoquinase/genética , Galactosemias/complicações , Galactosemias/genética , Humanos , Lactente , Mutação de Sentido IncorretoRESUMO
The histone chaperone facilitates chromatin transactions (FACT) functions in various DNA transactions. How FACT performs these multiple functions remains largely unknown. Here, we found, for the first time, that the N-terminal domain of its Spt16 subunit interacts with the Set3 histone deacetylase complex (Set3C) and that FACT and Set3C function in the same pathway to regulate gene expression in some settings. We observed that Spt16-G132D mutant proteins show defects in binding to Set3C but not other reported FACT interactors. At the permissive temperature, induction of the GAL1 and GAL10 genes is reduced in both spt16-G132D and set3Δ cells, whereas transient upregulation of GAL10 noncoding RNA (ncRNA), which is transcribed from the 3' end of the GAL10 gene, is elevated. Mutations that inhibit GAL10 ncRNA transcription reverse the GAL1 and GAL10 induction defects in spt16-G132D and set3Δ mutant cells. Mechanistically, set3Δ and FACT (spt16-G132D) mutants show reduced histone acetylation and increased nucleosome occupancy at the GAL1 promoter under inducing conditions and inhibition of GAL10 ncRNA transcription also partially reverses these chromatin changes. These results indicate that FACT interacts with Set3C, which in turn prevents uncontrolled GAL10 ncRNA expression and fine-tunes the expression of GAL genes upon a change in carbon source.
Assuntos
Cromatina/metabolismo , Galactoquinase/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , RNA não Traduzido/metabolismo , Transativadores , Ativação TranscricionalRESUMO
Gene-regulatory networks achieve complex mappings of inputs to outputs through mechanisms that are poorly understood. We found that in the galactose-responsive pathway in Saccharomyces cerevisiae, the decision to activate the transcription of genes encoding pathway components is controlled independently from the expression level, resulting in behavior resembling that of a mechanical dimmer switch. This was not a direct result of chromatin regulation or combinatorial control at galactose-responsive promoters; rather, this behavior was achieved by hierarchical regulation of the expression and activity of a single transcription factor. Hierarchical regulation is ubiquitous, and thus dimmer switch regulation is likely a key feature of many biological systems. Dimmer switch gene regulation may allow cells to fine-tune their responses to multi-input environments on both physiological and evolutionary time scales.
Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Galactose/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Redes Reguladoras de Genes , Aptidão Genética , Glucose/metabolismo , Redes e Vias Metabólicas/genética , Modelos Genéticos , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcrição GênicaRESUMO
Deuterium (D), the second most abundant isotope of hydrogen is present in natural waters at an approximate concentration of 145-155 ppm (ca. 1.5E-4 atom/atom). D is known to influence various biological processes due to its physical and chemical properties, which significantly differ from those of hydrogen. For example, increasing D-concentration to >1000-fold above its natural abundance has been shown to increase the frequency of genetic mutations in several species. An interesting deterministic hypothesis, formulated with the intent of explaining the mechanism of D-mutagenicity is based on the calculation that the theoretical probability of base pairs to comprise two adjacent D-bridges instead of H-bridges is 2.3E-8, which is equal to the mutation rate of certain species. To experimentally challenge this hypothesis, and to infer the mutagenicity of D present at natural concentrations, we investigated the effect of a nearly 100-fold reduction of D concentration on the bacterial mutation rate. Using fluctuation tests, we measured the mutation rate of three Escherichia coli genes (cycA, ackA and galK) in media containing D at either <2 ppm or 150 ppm concentrations. Out of 15 pair-wise fluctuation analyses, nine indicated a significant decrease, while three marked the significant increase of the mutation/culture value upon D-depletion. Overall, growth in D-depleted minimal medium led to a geometric mean of 0.663-fold (95% confidence interval: 0.483-0.911) change in the mutation rate. This falls nowhere near the expected 10,000-fold reduction, indicating that in our bacterial systems, the effect of D abundance on the formation of point mutations is not deterministic. In addition, the combined results did not display a statistically significant change in the mutation/culture value, the mutation rate or the mutant frequency upon D-depletion. The potential mutagenic effect of D present at natural concentrations on E. coli is therefore below the limit of detection using the indicated methods.
Assuntos
Deutério/toxicidade , Escherichia coli/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos/genética , Deutério/química , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Galactoquinase/genética , Taxa de MutaçãoRESUMO
Classic galactosemia is caused by loss-of-function mutations in galactose-1-phosphate uridylyltransferase (GALT) that lead to toxic accumulation of its substrate, galactose-1-phosphate. One proposed therapy is to inhibit the biosynthesis of galactose-1-phosphate, catalyzed by galactokinase 1 (GALK1). Existing inhibitors of human GALK1 (hGALK1) are primarily ATP-competitive with limited clinical utility to date. Here, we determined crystal structures of hGALK1 bound with reported ATP-competitive inhibitors of the spiro-benzoxazole series, to reveal their binding mode in the active site. Spurred by the need for additional chemotypes of hGALK1 inhibitors, desirably targeting a nonorthosteric site, we also performed crystallography-based screening by soaking hundreds of hGALK1 crystals, already containing active site ligands, with fragments from a custom library. Two fragments were found to bind close to the ATP binding site, and a further eight were found in a hotspot distal from the active site, highlighting the strength of this method in identifying previously uncharacterized allosteric sites. To generate inhibitors of improved potency and selectivity targeting the newly identified binding hotspot, new compounds were designed by merging overlapping fragments. This yielded two micromolar inhibitors of hGALK1 that were not competitive with respect to either substrate (ATP or galactose) and demonstrated good selectivity over hGALK1 homologues, galactokinase 2 and mevalonate kinase. Our findings are therefore the first to demonstrate inhibition of hGALK1 from an allosteric site, with potential for further development of potent and selective inhibitors to provide novel therapeutics for classic galactosemia.
Assuntos
Inibidores Enzimáticos/uso terapêutico , Galactoquinase/antagonistas & inibidores , Galactosemias/tratamento farmacológico , Cristalografia por Raios X , Galactoquinase/química , Humanos , Conformação ProteicaRESUMO
Metabolic pathways differ across species but are expected to be similar within a species. We discovered two functional, incompatible versions of the galactose pathway in Saccharomyces cerevisiae We identified a three-locus genetic interaction for growth in galactose, and used precisely engineered alleles to show that it arises from variation in the galactose utilization genes GAL2, GAL1/10/7, and phosphoglucomutase (PGM1), and that the reference allele of PGM1 is incompatible with the alternative alleles of the other genes. Multiloci balancing selection has maintained the two incompatible versions of the pathway for millions of years. Strains with alternative alleles are found primarily in galactose-rich dairy environments, and they grow faster in galactose but slower in glucose, revealing a trade-off on which balancing selection may have acted.