Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Drug Deliv Transl Res ; 14(10): 2771-2787, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38478324

RESUMO

Cerebrovascular impairment represents one of the main causes of death worldwide with a mortality rate of 5.5 million per year. The disability of 50% of surviving patients has high social impacts and costs in long period treatment for national healthcare systems. For these reasons, the efficacious clinical treatment of patients, with brain ischemic stroke, remains a medical need. To this aim, a liposome nanomedicine, with monosialic ganglioside type 1 (GM1), OX26 (an anti-transferrin receptor antibody), and CDP-choline (a neurotrophic drug) (CDP-choline/OX26Lip) was prepared. CDP-choline/OX26Lip were prepared by a freeze and thaw method and then extruded through polycarbonate filters, to have narrow size distributed liposomes of ~80 nm. CDP-choline/OX26Lip were stable in human serum, they had suitable pharmacokinetic properties, and 30.0 ± 4.2% of the injected drug was still present in the blood stream 12 h after its systemic injection. The post-ischemic therapeutic effect of CDP-choline/OX26Lip is higher than CDP-choline/Lip, thus showing a significantly high survival rate of the re-perfused post-ischemic rats, i.e. 96% and 78% after 8 days. The treatment with CDP-choline/OX26Lip significantly decreased the peroxidation rate of ~5-times compared to CDP-choline/Lip; and the resulting conjugated dienes, that was 13.9 ± 1.1 mmol/mg proteins for CDP-choline/Lip and 3.1 ± 0.8 for CDP-choline/OX26Lip. OX26 increased the accumulation of GM1-liposomes in the brain tissues and thus the efficacious of CDP-choline. Therefore, this nanomedicine may represent a strategy for the reassessment of CDP-choline to treat post-ischemic events caused by brain stroke, and respond to a significant clinical need.


Assuntos
Citidina Difosfato Colina , Lipossomos , Animais , Citidina Difosfato Colina/administração & dosagem , Citidina Difosfato Colina/farmacocinética , Masculino , Ratos , Humanos , Ratos Sprague-Dawley , Isquemia Encefálica/tratamento farmacológico , Gangliosídeo G(M1)/administração & dosagem
2.
Mol Ther ; 29(10): 3059-3071, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34111562

RESUMO

Parkinson's disease (PD) is characterized by Lewy bodies (composed predominantly of alpha-synuclein [aSyn]) and loss of pigmented midbrain dopaminergic neurons comprising the nigrostriatal pathway. Most PD patients show significant deficiency of gangliosides, including GM1, in the brain, and GM1 ganglioside appears to keep dopaminergic neurons functioning properly. Thus, supplementation of GM1 could potentially provide some rescuing effects. In this study, we demonstrate that intranasal infusion of GD3 and GM1 gangliosides reduces intracellular aSyn levels. GM1 also significantly enhances expression of tyrosine hydroxylase (TH) in the substantia nigra pars compacta of the A53T aSyn overexpressing mouse, following restored nuclear expression of nuclear receptor related 1 (Nurr1, also known as NR4A2), an essential transcription factor for differentiation, maturation, and maintenance of midbrain dopaminergic neurons. GM1 induces epigenetic activation of the TH gene, including augmentation of acetylated histones and recruitment of Nurr1 to the TH promoter region. Our data indicate that intranasal administration of gangliosides could reduce neurotoxic proteins and restore functional neurons via modulating chromatin status by nuclear gangliosides.


Assuntos
Gangliosídeo G(M1)/administração & dosagem , Gangliosídeos/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo , Administração Intranasal , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Epigênese Genética/efeitos dos fármacos , Gangliosídeo G(M1)/farmacologia , Gangliosídeos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/enzimologia , Tirosina 3-Mono-Oxigenase/genética
3.
Exp Neurol ; 329: 113284, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32165255

RESUMO

Parkinson's disease (PD) is a major neurodegenerative disorder characterized by a variety of non-motor symptoms in addition to the well-recognized motor dysfunctions that have commanded primary interest. We previously described a new PD mouse model based on heterozygous disruption of the B4galnt1 gene leading to partial deficiency of the GM1 family of gangliosides that manifested several nigrostriatal neuropathological features of PD as well as movement impairment. We now show this mouse also suffers three non-motor symptoms characteristic of PD involving the gastrointestinal, sympathetic cardiac, and cerebral cognitive systems. Treatment of these animals with a synthetic form of GM1 ganglioside, produced by transfected E. coli, proved ameliorative of these symptoms as well as the motor defect. These findings further suggest subnormal GM1 to be a systemic defect constituting a major risk factor in sporadic PD and indicate the B4galnt1(+/-) (HT) mouse to be a true neuropathological model that recapitulates both motor and non-motor lesions of this condition.


Assuntos
Modelos Animais de Doenças , Gangliosídeo G(M1)/administração & dosagem , Gangliosídeo G(M1)/deficiência , N-Acetilgalactosaminiltransferases/deficiência , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Animais , Feminino , Gangliosídeo G(M1)/genética , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/genética , Gastroenteropatias/metabolismo , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transtornos das Habilidades Motoras/tratamento farmacológico , Transtornos das Habilidades Motoras/genética , Transtornos das Habilidades Motoras/metabolismo , N-Acetilgalactosaminiltransferases/genética , Doença de Parkinson/genética
4.
Anesth Analg ; 130(2): 505-517, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31934908

RESUMO

BACKGROUND: A prolonged exposure to ketamine triggers significant neurodegeneration and long-term neurocognitive deficits in the developing brain. Monosialotetrahexosylganglioside (GM1) can limit the neuronal damage from necrosis and apoptosis in neurodegenerative conditions. We aimed to assess whether GM1 can prevent ketamine-induced developmental neurotoxicity. METHODS: Postnatal day 7 (P7) rat pups received 5 doses of intraperitoneal ketamine (20 mg/kg per dose) at 90-minute intervals for 6 hours. Cognitive functions, determined by using Morris water maze (MWM) including escape latency (at P32-36) and platform crossing (at P37), were compared among the ketamine-exposed pups treated with or without exogenous GM1 (30 mg/kg; n = 12/group). The effect of GM1 on apoptosis in hippocampus was determined by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling (TUNEL) staining and activated caspase 3 measurement. The hippocampal expression of brain-derived neurotrophic factor (BDNF), along with the phosphorylation of protein kinase B (AKT) and extracellular signal-related kinases 1 and 2 (ERK1/2), was detected by western blotting (n = 6/group). Anti-BDNF antibody (2 µg per rat) administered before GM1 treatment was applied to determine the neuroprotective mechanisms of GM1. RESULTS: The rats receiving ketamine exposure experinced cognitive impairment in MWM test compared to the control rats, indicated by prolonged escape latency at P34 (P = .006), P35 (P = .002), and P36 (P = .005). However, in GM1-pretreated rats, ketamine exposure did not induce prolonged escape latency. The exogenous GM1 increased the platform-crossing times at P37 (3.00 ± 2.22 times vs 5.40 ± 1.53 times, mean ± standard deviation; P = .041) and reduced the hippocampal TUNEL-positive cells and cleaved-caspase 3 expression in ketamine-exposed young rats. Ketamine decreased BDNF expression and phosphorylation of AKT and ERK in the hippocampus, whereas exogenous GM1 blocked these ketamine-caused effects. However, for the ketamine-exposed rat pups receiving exogenous GM1, compared to immunoglobulin Y (IgY) isotype control, the BDNF-neutralizing antibody treatment counteracted the exogenous GM1-induced improvement of the escape latency at P36 (41.32 ± 12.37 seconds vs 25.14 ± 8.97 seconds, mean ± standard deviation; P = .036), platform-crossing times at P37 (2.16 ± 1.12 times vs 3.92 ± 1.97 times, mean ± standard deviation; P < .036), apoptotic activity, as well as AKT and ERK1/2 phosphorylation in the hippocampus of ketamine-challenged young rats. CONCLUSIONS: Our data suggest that the exogenous GM1 acts on BDNF signaling pathway to ameliorate the cognitive impairment and hippocampal apoptosis induced by ketamine in young rats. Our study may indicate a potential use of GM1 in preventing the cognitive deficits induced by ketamine in the young per se.


Assuntos
Anestésicos Dissociativos/toxicidade , Encéfalo/efeitos dos fármacos , Gangliosídeo G(M1)/administração & dosagem , Ketamina/toxicidade , Transtornos Neurocognitivos/induzido quimicamente , Transtornos Neurocognitivos/prevenção & controle , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos Neurocognitivos/patologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
5.
Cancer Med ; 9(1): 151-159, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31724334

RESUMO

BACKGROUND: Monosialotetrahexosylganglioside (GM1) is a neuroprotective glycosphingolipid that repairs nerves. Oxaliplatin-based chemotherapy is neurotoxic. This study assessed the efficacy of GM1 for preventing oxaliplatin-induced peripheral neurotoxicity (OIPN) in colorectal cancer (CRC) patients receiving oxaliplatin-based chemotherapy. METHODS: In total, 196 patients with stage II/III CRC undergoing adjuvant chemotherapy with mFOLFOX6 were randomly assigned to intravenous GM1 or a placebo. The primary endpoint was the rate of grade 2 or worse cumulative neurotoxicity (NCI-CTCAE). The secondary endpoints were chronic cumulative neurotoxicity (EORTC QLQ-CIPN20), time to grade 2 neurotoxicity (NCI-CTCAE or the oxaliplatin-specific neuropathy scale), acute neurotoxicity (analog scale), rates of dose reduction or withdrawal due to OIPN, 3-year disease-free survival (DFS) and adverse events. RESULTS: There were no significant differences between the arms in the rate of NCI-CTCAE grade 2 or worse neurotoxicity (GM1: 33.7% vs placebo: 31.6%; P = .76) or neuropathy measured by the EORTC QLQ-CIPN20 or time to grade 2 neurotoxicity using NCI-CTCAE and the oxaliplatin-specific neuropathy scale. GM1 substantially decreased participant-reported acute neurotoxicity (sensitivity to cold items [P < .01], discomfort swallowing cold liquids [P < .01], throat discomfort [P < .01], muscle cramps [P < .01]). The rates of dose reduction or withdrawal were not significantly different between the arms (P = .08). The 3-year DFS rates were 85% and 83% in the GM1 and placebo arms, respectively (P = .19). There were no differences in toxicity between the arms. CONCLUSION: Patients receiving GM1 were less troubled by the symptoms of acute neuropathy. However, we do not support the use of GM1 to prevent cumulative neurotoxicity. (ClinicalTrials.gov number, NCT02251977).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Capecitabina/efeitos adversos , Neoplasias Colorretais/tratamento farmacológico , Gangliosídeo G(M1)/administração & dosagem , Oxaliplatina/efeitos adversos , Oxaloacetatos/efeitos adversos , Doenças do Sistema Nervoso Periférico/epidemiologia , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Capecitabina/administração & dosagem , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/efeitos adversos , Humanos , Leucovorina/administração & dosagem , Leucovorina/efeitos adversos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Compostos Organoplatínicos/administração & dosagem , Compostos Organoplatínicos/efeitos adversos , Oxaliplatina/administração & dosagem , Oxaloacetatos/administração & dosagem , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Placebos/administração & dosagem , Índice de Gravidade de Doença
6.
J Mol Neurosci ; 68(1): 78-90, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30863991

RESUMO

Long-term memory impairment is reported in more than 50% of cardiac arrest survivors. Monosialoganglioside (GM1) provided neuroprotection in experimental models of stroke but failed to replicate its promise clinically for unknown reasons. GM1 stimulates the release of nerve growth factor (NGF), which is synthesized as a precursor protein (pro-NGF) that either mediates apoptosis through the p75 neurotrophin receptor (p75NTR) or is cleaved by the protease furin (FUR) to yield mature NGF, the latter supporting survival through tropomyosin kinase receptor (Trk). The flavanol epicatechin (EPI) inhibits p75NTR-mediated signaling and apoptosis by pro-NGF. The aim of the current work is to test whether these two drugs affect, or communicate with, each other in the setting of CNS injuries. Using the two-vessel occlusion model of global ischemia/reperfusion (I/R), we tested if pharmacological modulation of Trk, p75NTR, and NGF balance with GM1, EPI, and their combination, can correct the memory deficit that follows this insult. Finally, we tested if FUR insufficiency and/or p75NTR-mediated apoptosis negatively affect the neurotherapeutic effect of GM1. Key proteins for Trk and p75NTR, FUR, and both forms of NGF were assessed. All treatment regiments successfully improved spatial memory retention and acquisition. A week after the insult, most Trk and p75NTR proteins were normal, but pro/mature NGF ratio remained sharply elevated and was associated with the poorest memory performance. Pharmacological correction of this balance was achieved by reinforcing Trk and p75NTR signaling. GM1 increased FUR levels, while concomitant administration of EPI weakened GM1 effect on pro-survival Trk and p75NTR mediators. GM1 neuroprotection is therefore not limited by FUR but could be dependent on p75NTR. Graphical Abstract "."


Assuntos
Isquemia Encefálica/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Isquemia Encefálica/complicações , Catequina/administração & dosagem , Catequina/farmacologia , Catequina/uso terapêutico , Gangliosídeo G(M1)/administração & dosagem , Gangliosídeo G(M1)/farmacologia , Gangliosídeo G(M1)/uso terapêutico , Masculino , Transtornos da Memória/etiologia , Proteínas do Tecido Nervoso , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/metabolismo
7.
J Mol Neurosci ; 67(2): 305-311, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30604381

RESUMO

To study the clinical effectiveness and mechanism of GM1 acupoint injection therapy on mental retardation for children with cerebral palsy (CP). A total of 90 children with CP were divided into acupoint injection group (group A), subcutaneous injection group (group B), and control group (group C). Another 30 healthy children were set as a healthy control group (group D). The Mental Developmental Index (MDI), Psychomotor Developmental Index (PDI), and hemodynamic parameters in the cerebral arteries were measured before and after treatment. After three treatment courses, the MDI and PDI in groups A, B, and C were increased, and the increase in group A was most obvious (P < 0.05). Peak systolic velocity, mean velocity, and end-diastolic velocity were also elevated in group A, and after three treatment courses, resistance index decreased with a statistical significance (P < 0.05). However, there were no significant changes in groups B and C (P > 0.05). For all groups, neuron-specific enolase levels decreased and total superoxide dismutase increased after treatment. Acupoint injection therapy combined with conventional rehabilitation therapy demonstrated significant effects on cerebral hemodynamic conditions for children with CP.


Assuntos
Terapia por Acupuntura/métodos , Paralisia Cerebral/complicações , Gangliosídeo G(M1)/uso terapêutico , Deficiência Intelectual/terapia , Pontos de Acupuntura , Artérias Cerebrais/fisiologia , Pré-Escolar , Feminino , Gangliosídeo G(M1)/administração & dosagem , Hemodinâmica , Humanos , Lactente , Injeções Subcutâneas/métodos , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/etiologia , Masculino , Fosfopiruvato Hidratase/sangue , Superóxido Dismutase/sangue
8.
Macromol Biosci ; 19(2): e1800340, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30536989

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative brain disorder that exhibits clear pathologic changes in the hippocampus. Traditional drug delivery systems are ineffective due to the existence of the blood-brain barrier (BBB). In this study, an efficient, stable, and easily constructed nanosystem (CB-Gd-Cy5.5) based on the cholera toxin B subunit (CB) is designed to improve the efficiency of drug delivery to the brain, especially the hippocampus. Through intranasal administration, CB-Gd-Cy5.5 is easily delivered to the brain without intervention by the BBB. The CB in CB-Gd-Cy5.5 is used for specifically combining with the monosialoganglioside GM1, which is widely found in the hippocampus. This nanosystem exhibits impressive performance in accumulating in the hippocampus. In addition, the good magnetic resonance imaging (MRI) capability of CB-Gd-Cy5.5 can satisfy the monitoring of AD in the different stages.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Toxina da Cólera/farmacologia , Portadores de Fármacos/farmacologia , Gangliosídeo G(M1)/química , Hipocampo/fisiologia , Nanopartículas/química , Administração Intranasal , Animais , Barreira Hematoencefálica , Carbocianinas , Linhagem Celular , Toxina da Cólera/química , Portadores de Fármacos/química , Gangliosídeo G(M1)/administração & dosagem , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem
9.
Sci Rep ; 7: 41269, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112258

RESUMO

Blast induced traumatic brain injury (B-TBI) may cause various degrees of cognitive and behavioral disturbances but the exact brain pathophysiology involved is poorly understood. It was previously suggested that ganglioside alteration on the axon surface as well as axonal regenerating inhibitors (ARIs) such as myelin associated glycoprotein (MAG) were involved in axonal outgrowth inhibition (AOI), leading to brain damage. GM1 ganglioside content in the brain was significantly reduced while GD1 ganglioside was not affected. The axonal regeneration was also reduced as seen by the phosphorylated NF-H expression. Moreover, B-TBI induced a significant elevation in MAG expression in the brains of the injured mice. The blast injured mice exhibited a significant decline in spatial memory as seen by the Y-maze test. In addition, the injured mice showed pronounced damage to the visual memory (as evaluated by the Novel object recognition test). A single low dose of GM1 (2 mg/kg; IP), shortly after the injury, prevented both the cognitive and the cellular changes in the brains of the injured mice. These results enlighten part of the complicated mechanism that underlies the damage induced by B-TBI and may also suggest a potential new treatment strategy for brain injuries.


Assuntos
Axônios/metabolismo , Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Explosões , Gangliosídeo G(M1)/metabolismo , Actinas/metabolismo , Animais , Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Gangliosídeo G(M1)/administração & dosagem , Gangliosídeos/metabolismo , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos ICR , Bainha de Mielina/metabolismo , Proteínas de Neurofilamentos/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fatores de Tempo
10.
J Coll Physicians Surg Pak ; 26(7): 633-4, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27504562

RESUMO

Postherpetic neuralgia (PHN) is a commonest and difficult-to-manage complication of Herpes zoster. This comparative study included 140 cases of PHN admitted in the department of dermatology in Renmin Hospital of Wuhan University, Wuhan, China, from March 2014 to February 2015, divided into a control and a study group. In addition to the combination of antiviral, analgesic, and neurotrophic agents given to the control group, additional ganglioside GM1 was given to patients in the study group. Pain assessment was performed at the time of admission, and then on the third, seventh and tenth day of treatment, on both groups, using a 10 cm visual analogue scale (VAS). There was a significant statistical difference between the pain VAS score of the two groups, on the seventh day (3.73 ±1.66 vs. 3.03 ±1.86, p=0.024) and on the tenth day (3.25 ±1.78 vs. 2.20 ±1.59, p=0.006) of treatment. The number of patients who have good /and complete response (37.5%) were largely higher in the study group than those in the control group (15%, p < 0.05). This finding demonstrates that the administration of ganglioside GM1 may potentially serve as a neoadjuvant therapy to reduce the severity and duration of pain in PHN patients.


Assuntos
Analgésicos/administração & dosagem , Antivirais/administração & dosagem , Gangliosídeo G(M1)/administração & dosagem , Herpes Zoster/tratamento farmacológico , Neuralgia Pós-Herpética/tratamento farmacológico , Complexo Vitamínico B/administração & dosagem , Administração Intravenosa , Adulto , China , Feminino , Herpes Zoster/complicações , Herpes Zoster/imunologia , Humanos , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Neuralgia Pós-Herpética/etiologia , Medição da Dor , Tiamina/administração & dosagem , Resultado do Tratamento , Vitamina B 12
11.
ACS Nano ; 9(11): 10801-16, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26440073

RESUMO

Alzheimer's disease (AD) exerts a heavy health burden for modern society and has a complicated pathological background. The accumulation of extracellular ß-amyloid (Aß) is crucial in AD pathogenesis, and Aß-initiated secondary pathological processes could independently lead to neuronal degeneration and pathogenesis in AD. Thus, the development of combination therapeutics that can not only accelerate Aß clearance but also simultaneously protect neurons or inhibit other subsequent pathological cascade represents a promising strategy for AD intervention. Here, we designed a nanostructure, monosialotetrahexosylganglioside (GM1)-modified reconstituted high density lipoprotein (GM1-rHDL), that possesses antibody-like high binding affinity to Aß, facilitates Aß degradation by microglia, and Aß efflux across the blood-brain barrier (BBB), displays high brain biodistribution efficiency following intranasal administration, and simultaneously allows the efficient loading of a neuroprotective peptide, NAP, as a nanoparticulate drug delivery system for the combination therapy of AD. The resulting multifunctional nanostructure, αNAP-GM1-rHDL, was found to be able to protect neurons from Aß(1-42) oligomer/glutamic acid-induced cell toxicity better than GM1-rHDL in vitro and reduced Aß deposition, ameliorated neurologic changes, and rescued memory loss more efficiently than both αNAP solution and GM1-rHDL in AD model mice following intranasal administration with no observable cytotoxicity noted. Taken together, this work presents direct experimental evidence of the rational design of a biomimetic nanostructure to serve as a safe and efficient multifunctional nanoplatform for the combination therapy of AD.


Assuntos
Doença de Alzheimer/terapia , Gangliosídeo G(M1)/metabolismo , Lipoproteínas HDL/metabolismo , Nanopartículas/química , Administração Intranasal , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteínas E/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Terapia Combinada , Modelos Animais de Doenças , Endocitose/efeitos dos fármacos , Gangliosídeo G(M1)/administração & dosagem , Gangliosídeo G(M1)/farmacocinética , Glutamatos/toxicidade , Lipoproteínas HDL/administração & dosagem , Lipoproteínas HDL/farmacocinética , Transtornos da Memória/complicações , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Camundongos Endogâmicos ICR , Microglia/efeitos dos fármacos , Microglia/metabolismo , Dados de Sequência Molecular , Nanopartículas/ultraestrutura , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Tamanho da Partícula , Fragmentos de Peptídeos/metabolismo , Peptídeos/química , Ratos Sprague-Dawley , Eletricidade Estática , Distribuição Tecidual/efeitos dos fármacos
12.
Behav Brain Res ; 278: 303-6, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25453740

RESUMO

Gangliosides are compounds that are abundant throughout the CNS, participating actively in neuroplasticity. We previously described that exogenous GM1 ganglioside pretreatment enhances the rewarding properties of cocaine, evidenced by a lower number of sessions and/or dosage necessary to induce conditioned place preference (CPP). Since GM1 pretreatment did not modify cocaine's pharmacokinetic parameters, we suspected that the increased rewarding effect found might be mediated by BDNF, a neurotrophic factor closely related to cocaine addiction. This study was performed to investigate the possibility that GM1 may induce changes in BDNF levels in the nucleus accumbens (NAc), a core structure in the brain's reward circuitry, of rats submitted to three conditioning sessions with cocaine (10 mg/kg, i.p.). The results demonstrate that GM1 administration, which showed no rewarding effect by itself in the CPP, induced a significant increase of BDNF protein levels in the NAc, which may account for the increased rewarding effect of cocaine shown in the CPP paradigm.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Gangliosídeo G(M1)/farmacologia , Núcleo Accumbens/metabolismo , Recompensa , Animais , Gangliosídeo G(M1)/administração & dosagem , Masculino , Ratos , Ratos Wistar
13.
Brain Res ; 1592: 73-81, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25285892

RESUMO

The progressive pathogenesis and prevention of Parkinson's disease (PD) remains unknown at present. Therefore, the present study aimed to investigate the possible progressive pathogenesis and prevention of PD. Our study investigated the content of glutamate, mitochondria calcium, calmodulin, malonaldehyde and trace elements in striatum, cerebral cortex and hippocampus tissues; and the expression of bcl-2, bax and neuronal nitric oxide synthase (nNOS) in substantia nigra and striatum; and the change of apomorphine induced rotation behavior; and the treatmental effect of monosialotetrahexosylganglioside (GM1) intraperitoneal administration for 14 days in a PD rat model induced by 6-hydroxydopamine. The results revealed that the content of glutamate significantly decreased, and that of mitochondria calcium, calmodulin, malonaldehyde and ferrum significantly increased in striatum, cerebral cortex and hippocampus tissues; the content of magnesium significantly decreased, and that of cuprum and zinc significantly increased in cerebral cortex; the expression of bcl-2 significantly decreased, and that of bax and nNOS significantly increased in substantia nigra and striatum in PD rat. GM1 can partially improve the apomorphine induced rotation behavior and changes of glutamate, mitochondria calcium, calmodulin content in striatum of PD rat. Data suggested that dysfunction of excitatory amino acids neurotransmitter, calcium homeostasis disorder, abnormal metabolism of oxygen free radicals, abnormal trace elements distribution and/or deposition and excessive apoptosis participated in the progressive process of PD, and that GM1 could partially prevent the progressive damage.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Gangliosídeo G(M1)/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Progressão da Doença , Ácido Glutâmico/metabolismo , Infusões Parenterais , Masculino , Malondialdeído/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Oxidopamina , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Oligoelementos/metabolismo , Proteína X Associada a bcl-2/metabolismo
14.
Mol Pharm ; 9(6): 1620-7, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22536790

RESUMO

Due to the aging of the population, the incidence of neurodegenerative diseases, such as Parkinson's and Alzheimer's, is expected to grow and, hence, the demand for adequate treatment modalities. However, the delivery of medicines into the brain for the treatment of brain-related diseases is hampered by the presence of a tight layer of endothelial cells that forms the blood-brain barrier (BBB). Furthermore, most conventional drugs lack stability and/or bioavailability. These obstacles can be overcome by the application of nanocarriers, in which the therapeutic entity has been incorporated, provided that they are effectively targeted to the brain endothelial cell layer. Drug nanocarriers decorated with targeting ligands that bind BBB receptors may accumulate efficiently at/in brain microvascular endothelium and hence represent a promising tool for brain drug delivery. Following the accumulation of drug nanocarriers at the brain vasculature, the drug needs to be transported across the brain endothelial cells into the brain. Transport across brain endothelial cells can occur via passive diffusion, transport proteins, and the vesicular transport pathways of receptor-mediated and adsorptive-mediated transcytosis. When a small lipophilic drug is released from its carrier at the brain vasculature, it may enter the brain via passive diffusion. On the other hand, the passage of intact nanocarriers, which is necessary for the delivery of larger and more hydrophilic drugs into brain, may occur via active transport by means of transcytosis. In previous work we identified GM1 ganglioside and prion protein as potential transcytotic receptors at the BBB. GM1 is a glycosphingolipid that is ubiquitously present on the endothelial surface and capable of acting as the transcytotic receptor for cholera toxin B. Likewise, prion protein has been shown to have transcytotic capacity at brain endothelial cells. Here we determine the transcytotic potential of polymersome nanocarriers functionalized with GM1- and prion-targeting peptides (G23, P50 and P9), that were identified by phage display, in an in vitro BBB model. In addition, the biodistribution of polymersomes functionalized with either the prion-targeting peptide P50 or the GM1-targeting peptide G23 is determined following intravenous injection in mice. We show that the prion-targeting peptides do not induce efficient transcytosis of polymersomes across the BBB in vitro nor induce accumulation of polymersomes in the brain in vivo. In contrast, the G23 peptide is shown to have transcytotic capacity in brain endothelial cells in vitro, as well as a brain-targeting potential in vivo, as reflected by the accumulation of G23-polymersomes in the brain in vivo at a level comparable to that of RI7217-polymersomes, which are targeted toward the transferrin receptor. Thus the G23 peptide seems to serve both of the requirements that are needed for efficient brain drug delivery of nanocarriers. An unexpected finding was the efficient accumulation of G23-polymersomes in lung. In conclusion, because of its combined brain-targeting and transcytotic capacity, the G23 peptide could be useful in the development of targeted nanocarriers for drug delivery into the brain, but appears especially attractive for specific drug delivery to the lung.


Assuntos
Gangliosídeo G(M1)/administração & dosagem , Gangliosídeo G(M1)/farmacocinética , Príons/administração & dosagem , Príons/farmacocinética , Administração Intravenosa , Animais , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
15.
Proc Natl Acad Sci U S A ; 109(9): 3528-33, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331905

RESUMO

Huntington disease (HD) is a progressive neurodegenerative monogenic disorder caused by expansion of a polyglutamine stretch in the huntingtin (Htt) protein. Mutant huntingtin triggers neural dysfunction and death, mainly in the corpus striatum and cerebral cortex, resulting in pathognomonic motor symptoms, as well as cognitive and psychiatric decline. Currently, there is no effective treatment for HD. We report that intraventricular infusion of ganglioside GM1 induces phosphorylation of mutant huntingtin at specific serine amino acid residues that attenuate huntingtin toxicity, and restores normal motor function in already symptomatic HD mice. Thus, our studies have identified a potential therapy for HD that targets a posttranslational modification of mutant huntingtin with critical effects on disease pathogenesis.


Assuntos
Gangliosídeo G(M1)/uso terapêutico , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Códon/efeitos dos fármacos , Corpo Estriado/metabolismo , Dimerização , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/biossíntese , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Avaliação Pré-Clínica de Medicamentos , Gangliosídeo G(M1)/administração & dosagem , Proteína Huntingtina , Bombas de Infusão Implantáveis , Infusões Parenterais , Camundongos , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/análise , Desempenho Psicomotor/efeitos dos fármacos
16.
Cell Mol Neurobiol ; 30(1): 43-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19582569

RESUMO

The neuropeptide-immunoreactive (IR) and neurofilament-IR neurons are two major phenotypical classes in dorsal root ganglion (DRG). Targets of neuronal innervation play a vital role in regulating the survival and differentiation of innervating neurotrophin-responsive neurons. Monosialoganglioside (GM1) has been considered to have a neurotrophic factor-like activity. Both GM1 and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons. However, whether target SKM cells and GM1, alone or associated, generate neuropeptide or neurofilament expression remains unclear. The aim of the present study is to investigate the effects of GM1 or/and SKM on DRG neuronal phenotypes. DRG neurons containing the neuropeptide substance P (SP) and neurofilament 200 (NF-200) were quantified using immunofluorescent labeling in cultures of DRG, which was dissected out at times before (at embryonic days 12.5, E12.5) and after (at E19.5) sensory neurons contact peripheral targets in vivo. DRG neurons were cultured in absence or presence of GM1 or/and SKM cells. In this experiment, we found that: (1) GM1 promoted expression of SP and NF-200 in E12.5 DRG cultures; (2) SKM cells promoted expression of NF-200 but not SP in E12.5 DRG cultures; (3) GM1 and target SKM cells had additive effects on expression of SP and NF-200 in E12.5 DRG cultures; and (4) SKM or/and GM1 did not have effects on expression of SP and NF-200 in E19.5 DRG cultures. These results suggested that GM1 could influence DRG, two major neuronal phenotypes, before sensory neurons contact peripheral targets in vivo. Target SKM cells could only influence neurofilament-expressed neuronal phenotype before sensory neurons contact peripheral targets in vivo. GM1 and SKM cells had the additive effects on two major DRG neuronal classes, which express neuropeptide or neurofilament when DRG cells were harvested before sensory neurons contact peripheral targets in vivo. These results offered new clues for a better understanding of the association of GM1 or/and SKM with neuronal phenotypes.


Assuntos
Gangliosídeo G(M1)/administração & dosagem , Gangliosídeo G(M1)/farmacologia , Gânglios Espinais/citologia , Células Musculares/citologia , Músculo Esquelético/citologia , Neurônios/citologia , Animais , Células Cultivadas , Microscopia de Fluorescência , Células Musculares/efeitos dos fármacos , Proteínas de Neurofilamentos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Ratos , Ratos Wistar , Substância P/metabolismo
17.
Brain Res Bull ; 79(1): 85-8, 2009 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-19133317

RESUMO

Monosialoganglioside (GM1) has been considered to have a neurotrophic factor-like activity. Nerve growth factor (NGF), a member of the neurotrophin family, is essential for neuronal survival, differentiation and maturation. The aim of the present study was to investigate whether co-administration of GM1 and NGF reverses glutamate (Glu) neurotoxicity in primary cultured rat embryonic spinal cord neurons. Spinal cord neurons were exposed to Glu (2 mmol/l), Glu (2 mmol/l) plus GM1 (10 mg/ml), Glu (2 mmol/l) plus NGF (10 ng/ml), Glu (2 mmol/l) plus GM1 (5 mg/ml) and NGF (5 ng/ml) and then processed for detecting intracellular concentrations of Ca2+([Ca2+]i) by confocal laser scanning microscopy and growth associated protein 43 (GAP43) mRNA by RT-PCR. The fluorescent intensity in Glu plus GM1 and NGF incubated neurons was the lowest as compared with that in other groups. The expression of GAP43 mRNA in Glu plus GM1 and NGF incubated neurons was the highest as compared with that in other groups. These results implicated that GM1 and NGF have synergistic neuroprotective effects on spinal cord neurons with excitotoxicity induced by Glu in vitro.


Assuntos
Gangliosídeo G(M1)/administração & dosagem , Fator de Crescimento Neural/administração & dosagem , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Medula Espinal/citologia , Análise de Variância , Animais , Cálcio/metabolismo , Células Cultivadas , Quimioterapia Combinada , Proteína GAP-43/metabolismo , Microscopia Confocal , Neurônios/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/efeitos dos fármacos
18.
Cytokine ; 42(1): 92-104, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18329889

RESUMO

NOD (non-obese diabetic) mice develop type 1 diabetes mellitus spontaneously and with a strong similarity to the human disease. Differentiation and function of pancreas beta cells are regulated by a variety of hormones and growth factors, including the nerve growth factor (NGF). Gangliosides have multiple immunomodulatory activities with immunosuppressive properties, decreasing lymphoproliferative responses and modulating cytokine production. In the present study, serum, pancreas islets and spleen mononuclear cells from NOD mice treated with monosialic ganglioside GM1 (100 mg/kg/day) and the group control which received saline solution were isolated to investigate the proinflammatory cytokines (IL-1beta, IFN-gamma, IL-12, TNF-alpha), NGF and its high-affinity receptor TrkA, peri-islet Schwann cells components (GFAP, S100-beta) expression and the relationship with diabetes onset and morphological aspects. Our results suggest that GM1 administration to female NOD mice beginning at the 4th week of life is able to reduce the index of inflammatory infiltrate and consequently the expression of diabetes, modulating the expression of proinflammatory cytokines (IL-12, IFN-gamma, TNF-alpha and IL-1beta). Furthermore, GM1 increases GFAP, S-100beta and NGF in pancreas islets, factors involved in beta cell survival.


Assuntos
Citocinas/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Gangliosídeo G(M1)/metabolismo , Camundongos Endogâmicos NOD , Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Idade de Início , Animais , Citocinas/genética , Feminino , Gangliosídeo G(M1)/administração & dosagem , Proteína Glial Fibrilar Ácida , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Fator de Crescimento Neural/genética , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptor trkA/genética , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/genética , Proteínas S100/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo , Baço/citologia , Baço/metabolismo
19.
Brain Res ; 1058(1-2): 193-7, 2005 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-16153613

RESUMO

Cytidine-5'-diphosphocholine (CDP-choline, Citicoline, Somazina) is in clinical use (intravenous administration) for stroke treatment in Europe and Japan, while USA phase III stroke clinical trials (oral administration) were disappointing. Others showed that CDP-choline liposomes significantly increased brain uptake over the free drug in cerebral ischemia models. Liposomes were formulated as DPPC, DPPS, cholesterol, GM(1) ganglioside; 7/4/7/1.57 molar ratio or 35.8/20.4/35.8/8.0 mol%. GM(1) ganglioside confers long-circulating properties to the liposomes by suppressing phagocytosis. CDP-choline liposomes deliver the agent intact to the brain, circumventing the rate-limiting, cytidine triphosphate:phosphocholine cytidylyltransferase in phosphatidylcholine synthesis. Our data show that CDP-choline liposomes significantly ( P < 0.01) decreased cerebral infarction (by 62%) compared to the equivalent dose of free CDP-choline (by 26%) after 1 h focal cerebral ischemia and 24 h reperfusion in spontaneously hypertensive rats. Beneficial effects of CDP-choline liposomes in stroke may derive from a synergistic effect between the phospholipid components of the liposomes and the encapsulated CDP-choline.


Assuntos
Infarto Encefálico/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Colina/administração & dosagem , Citidina Difosfato Colina/administração & dosagem , Lipossomos/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Infarto Encefálico/metabolismo , Infarto Encefálico/fisiopatologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Colesterol/administração & dosagem , Modelos Animais de Doenças , Combinação de Medicamentos , Sinergismo Farmacológico , Gangliosídeo G(M1)/administração & dosagem , Lipossomos/uso terapêutico , Masculino , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Fosfatidilcolinas/biossíntese , Ratos , Ratos Endogâmicos SHR , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Resultado do Tratamento
20.
Brain Res ; 1054(2): 125-34, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16084500

RESUMO

We investigated the ability of GM1 to induce phosphorylation/activation of the extracellular-regulated protein kinases (ERKs) in the striatum, hippocampus and frontal cortex of aged male Sprague-Dawley rats. Three different treatment paradigms were used: a single application of GM1 to brain slices in situ, a single intracerebroventricular (icv) administration of GM1 in vivo, and chronic administration of GM1 in vivo. In situ, GM1 induced a rapid and transient activation of ERK1 and ERK 2 in both young and aged rats, and a similar effect was observed after stimulation with the neurotrophins NGF and BDNF. The aged brain appeared to respond more robustly to neurotrophic stimulation with the pERK2 response being significantly greater in the hippocampus and frontal cortex. Acute icv administration of GM1 resulted in short-lasting phosphorylation of ERKs in both aged groups, while chronic administration of GM1 induced a protracted phosphorylation of ERKs. Following chronic GM1 treatment, pERK2 levels in the aged hippocampus were elevated over young control animals. In agreement with reports that GM1 phosphorylates TrkA in vitro or in situ, treatment with GM1 increased the phosphorylation of TrkA in hippocampus of both young and aged animals. These observations indicate that the aged brain maintains the ability to respond to neurotrophic stimuli and put forward the proposition that the ERK cascade is associated with the action(s) of GM1 ganglioside in vivo.


Assuntos
Envelhecimento/fisiologia , Encéfalo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gangliosídeo G(M1)/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Fatores Etários , Animais , Western Blotting/métodos , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Vias de Administração de Medicamentos , Esquema de Medicação , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/classificação , Flavonoides/farmacologia , Técnicas In Vitro , Masculino , Proteína Básica da Mielina/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA