RESUMO
Ganoderma lingzhi is widely reported for its medicinal properties, presenting several bioactive substances with potential pharmaceutical and industrial application. This study aimed to evaluate the production of mycelial biomass, extracellular enzymes and antioxidant compounds by G. lingzhi under submerged fermentation. G. lingzhi was cultured in Polysaccharide (POL) and Melin-Norkrans (MNM) media for 7 days. The cellulases, xylanases, pectinases, laccases, and proteases activities were quantified in the culture broth, while the antioxidant potential was evaluated for the mycelial biomass. G. lingzhi showed higher biomass production in MNM. However, it exhibited similar microstructural characteristics in both culture media. In the POL there was greater activity of CMCase (0.229 U/mL), xylanase (0.780 U/mL), pectinase (0.447 U/mL) and proteases (16.13 U/mL). FPase did not differ (0.01 U/mL), and laccase was detected only in MNM (0.122 U/mL). The biomass water extract from MNM showed high levels of phenolic compounds (951.97 mg AGE/100 g). DPPH⢠inhibition (90.55%) and reducing power (0.456) were higher in MNM medium, while ABTSâ¢+ inhibition (99.95%) and chelating ability (54.86%) were higher in POL. Thus, the MNM medium was more favorable to the production of mycelial biomass and phenolic compounds, while the POL medium favored the synthesis and excretion of hydrolytic enzymes.
Assuntos
Antioxidantes , Biomassa , Meios de Cultura , Fermentação , Ganoderma , Antioxidantes/metabolismo , Antioxidantes/análise , Ganoderma/enzimologia , Ganoderma/metabolismo , Micélio/crescimento & desenvolvimentoRESUMO
The aim of this work to study an efficient laccase producing fungus Ganoderma leucocontextum, which was identified by ITS regions of DNA and phylogenetic tree was constructed. This study showed the laccase first-time from G. leucocontextum by using medium containing guaiacol. The growth cultural (pH, temperature, incubation days, rpm) and nutritional (carbon and nitrogen sources) conditions were optimized, which enhanced the enzyme production up to 4.5-folds. Laccase production increased 855 U/L at 40 °C. The pH 5.0 was suitable for laccase secretion (2517 U/L) on the 7th day of incubation at 100 rpm (698.3 U/L). Glucose and sucrose were good carbon source to enhance the laccase synthesis. The 10 g/L beef (4671 U/L) and yeast extract (5776 U/L) were the best nitrogen source for laccase secretion from G. leucocontextum. The laccase was purified from the 80% ammonium sulphate precipitations of protein identified by nucleotides sequence. The molecular weight (65.0 kDa) of purified laccase was identified through SDS and native PAGE entitled as Glacc110. The Glacc110 was characterized under different parameters. It retained > 90% of its activity for 16 min incubation at 60 °C in acidic medium (pH 4.0). This enzyme exerted its optimal activity at pH 3.0 and temperature 70 °C with guaiacol substrate. The catalytic parameters Km and Vmax was 1.658 (mM) and 2.452 (mM/min), respectively. The thermo stability of the laccase produced by submerged fermentation of G. leucocontextum has potential for industrial and biotechnology applications. The results remarked the G. leucocontextum is a good source for laccase production.
Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Ganoderma/enzimologia , Lacase/química , Lacase/metabolismo , Filogenia , Sequência de Bases , Precipitação Química , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Ganoderma/química , Ganoderma/classificação , Ganoderma/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Lacase/genética , Lacase/isolamento & purificaçãoRESUMO
L-Asparaginase is a therapeutically and industrially-competent enzyme, acting predominantly as an anti-neoplastic and anti-cancerous agent. The existing formulations of prokaryotic L-asparaginase are often toxic and contain L-glutaminase and urease residues, thereby increasing the purification steps. Production of L-glutaminase and urease free L-asparaginase is thus desired. In this research, bioprospecting of isolates from the less explored class Agaricomycetes was undertaken for L-asparaginase production. Plate assay (using phenol red and bromothymol blue dyes) was performed followed by estimation of L-asparaginase, L-glutaminase and urease activities by Nesslerization reaction for all the isolates. The isolate displaying the desired enzyme production was subjected to morphological, molecular identification, and phylogenetic analysis with statistical validation using Jukes-Cantor by Neighbour-joining tree of Maximum Likelihood statistical method. Among the isolates, Ganoderma australe GPC191 with significantly high zone index value (5.581 ± 0.045 at 120 h) and enzyme activity (1.57 ± 0.006 U/mL), devoid of L-glutaminase and urease activity was selected. The present study for the first-time reported G. australe as the potential source of L-glutaminase and urease-free L-asparaginase and also is one of the few studies contributing to the literature of G. australe in India. Hence, it can be postulated that it may find its future application in pharmaceutical and food industries.
Assuntos
Antineoplásicos/química , Asparaginase/química , Asparagina/metabolismo , Carpóforos/genética , Proteínas Fúngicas/química , Ganoderma/genética , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Asparaginase/biossíntese , Asparaginase/genética , Asparaginase/isolamento & purificação , Ensaios Enzimáticos , Carpóforos/enzimologia , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Ganoderma/classificação , Ganoderma/enzimologia , Expressão Gênica , Glutaminase/deficiência , Glutaminase/genética , Humanos , Cinética , Filogenia , Urease/deficiência , Urease/genéticaRESUMO
A novel study on biodegradation of 30 mg L-1 of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) mixture (celecoxib, diclofenac and ibuprofen) by two wood-rot fungi; Ganoderma applanatum (GA) and Laetiporus sulphureus (LS) was investigated for 72 h. The removal efficiency of celecoxib, diclofenac and ibuprofen were 98, 96 and 95% by the fungal consortium (GA + LS). Although, both GA and LS exhibited low removal efficiency (61 and 73% respectively) on NSAIDs. However, 99.5% degradation of the drug mixture (NSAIDs) was achieved on the addition of the fungal consortium (GA + LS) to the experimental set-up. Overall, LS exhibited higher degradation efficiency; 92, 87, 79% on celecoxib, diclofenac and ibuprofen than GA with 89, 80 and 66% respectively. Enzyme analyses revealed significant induction of 201, 180 and 135% in laccase (Lac), lignin peroxidase (LiP) and manganese peroxidase (MnP) by the fungal consortium during degradation of the NSAIDs respectively. The experimental data showed the best goodness of fit when subjected to Langmuir (R2 = 0.980) and Temkin (R2 = 0.979) isotherm models which suggests monolayer and heterogeneous nature exhibited by the mycelia during interactions with NSAIDs. The degradation mechanism followed pseudo-second-order kinetic model (R2 = 0.987) indicating the strong influence of fungal biomass in the degradation of NSAIDs. Furthermore, Gas Chromatography-Mass Spectrometry (GCMS) and High-Performance Liquid Chromatography (HPLC) analyses confirmed the degraded metabolic states of the NSAIDs after treatment with GA, LS and consortium (GA + LS). Hence, the complete removal of NSAIDs is best achieved in an economical and eco-friendly way with the use of fungi consortium.
Assuntos
Anti-Inflamatórios não Esteroides/análise , Poluentes Ambientais/análise , Ganoderma/enzimologia , Ganoderma/crescimento & desenvolvimento , Lignina/metabolismo , Madeira/microbiologia , Anti-Inflamatórios não Esteroides/metabolismo , Biodegradação Ambiental , Biomassa , Poluentes Ambientais/metabolismo , Indução Enzimática/efeitos dos fármacos , Cinética , Lacase/biossíntese , Modelos Biológicos , Peroxidases/biossínteseRESUMO
In this study, the effects of Aspergillus niger in coculture with the basidiomycetes, Trametes versicolor, T. maxima, and Ganoderma spp., were studied to assess H2O2 production and laccase (Lac), Lignin Peroxidase (LiP), and manganese peroxidase (MnP) activities. The results indicated that maximum discoloration was of 97%, in the T. maxima and A. niger coculture, where the concentration of H2O2 was 5 mg/L and 6.3 mg/L in cultures without and with dye, respectively. These concentrations of H2O2 were 1.6- and 1.8-fold higher than monocultures of T. maxima (3.37 mg/L) and A. niger (3.87 mg/L), respectively. In the same coculture, the LiP and MnP enzyme activities also increased 12-fold, (from 0.08 U/mg to 0.99 U/mg), and 67-fold, (from 0.11 U/mg to 7.4 U/mg), respectively. The Lac activity increased 1.7-fold (from 13.46 U/mg to 24 U/mg). Further, a Box-Behnken experimental design indicated a 1.8-fold increase of MnP activity (from 7.4 U/mg to 13.3 U/mg). In addition, dye discoloration regression model obtained from the Box-Behnken experimental design showed a positively correlation with H2O2, (R2 = 0.58) and a negatively correlation with Lac activity (R2 = -0.7).
Assuntos
Aspergillus niger/enzimologia , Compostos Azo/metabolismo , Corantes/metabolismo , Ganoderma/enzimologia , Peróxido de Hidrogênio/metabolismo , Lacase/metabolismo , Peroxidases/metabolismo , Polyporaceae/enzimologia , Compostos Azo/química , Técnicas de Cocultura , Corantes/química , Meios de Cultura , Lignina/metabolismoRESUMO
The studies on natural compounds to diabetes mellitus treatment have been increasing in recent years. Research suggests that natural components can inhibit alpha-glucosidase activities, an important strategy in the management of blood glucose levels. In this work, for the first time in the literature, the compounds produced by Ganoderma lipsiense extracts were identified and evaluated on the inhibitory effect of these on alpha-glucosidase activity. Four phenolic compounds were identified by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) to crude extract from G. lipsiense grown in red rice medium (RCE) and synthetic medium (SCE), being syringic acid identified in both extracts. Gas chromatography-mass spectrometry (GC-MS) analysis showed fatty acids and their derivatives, terpene, steroid, niacin, and nitrogen compounds to SCE, while RCE was rich in fatty acids and their derivatives. Both extracts demonstrated alpha-glucosidase inhibition (RCE IC50 = 0.269 ± 8.25 mg mL-1; SCE IC50 = 0.218 ± 9.67 mg mL-1), and the purified hexane fraction of RCE (RHEX) demonstrated the highest inhibition of enzyme (81.1%). Studies on kinetic inhibition showed competitive inhibition mode to RCE, while SCE showed uncompetitive inhibition mode. Although the inhibitory effects of RCE and SCE were satisfactory, the present findings identified some unpublished compounds to G. lipsiense in the literature with important therapeutic properties.
Assuntos
Fermentação , Ganoderma/enzimologia , Micélio/enzimologia , alfa-Glucosidases/metabolismo , Glicemia , Cromatografia Líquida de Alta Pressão , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Inibidores de Glicosídeo Hidrolases/química , Humanos , Hipoglicemiantes/farmacologia , Concentração Inibidora 50 , Cinética , Fenóis/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em TandemRESUMO
Aflatoxin B1 (AFB1) and zearalenone (ZEN) exert deleterious effects to human and animal health. In this study, the ability of a CotA laccase from Bacillus subtilis (BsCotA) to degrade these two mycotoxins was first investigated. Among the nine structurally defined chemical compounds, methyl syringate was the most efficient mediator assisting BsCotA to degrade AFB1 (98.0%) and ZEN (100.0%). BsCotA could also use plant extracts, including the Epimedium brevicornu, Cucumis sativus L., Lavandula angustifolia, and Schizonepeta tenuifolia extracts to degrade AFB1 and ZEN. Using hydra and BLYES as indicators, it was demonstrated that the degraded products of AFB1 and ZEN using the laccase/mediator systems were detoxified. Finally, a laccase of fungal origin was also able to degrade AFB1 and ZEN in the presence of the discovered mediators. The findings shed light on the possibility of using laccases and a mediator, particularly a natural plant-derived complex mediator, to simultaneously degrade AFB1 and ZEN contaminants in food and feed.
Assuntos
Aflatoxina B1/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas Fúngicas/química , Ganoderma/enzimologia , Lacase/química , Extratos Vegetais/química , Zearalenona/química , Contaminação de Alimentos/prevenção & controle , MagnoliopsidaRESUMO
Since polycyclic aromatic hydrocarbons (PAHs) are mutagenic, teratogenic, and carcinogenic, they are of considerable environmental concern. A biotechnological approach to remove such compounds from polluted ecosystems could be based on the use of white-rot fungi (WRF). The potential of well-adapted indigenous Ganoderma strains to degrade PAHs remains underexplored. Seven native Ganoderma sp. strains with capacity to produce high levels of laccase enzymes and to degrade synthetic dyes were investigated for their degradation potential of PAHs. The crude enzymatic extracts produced by Ganoderma strains differentially degraded the PAHs assayed (naphthalene 34-73%, phenanthrene 9-67%, fluorene 11-64%). Ganoderma sp. UH-M was the most promising strain for the degradation of PAHs without the addition of redox mediators. The PAH oxidation performed by the extracellular enzymes produced more polar and soluble metabolites such as benzoic acid, catechol, phthalic and protocatechuic acids, allowing us to propose degradation pathways of these PAHs. This is the first study in which breakdown intermediates and degradation pathways of PAHs by a native strain of Ganoderma genus were determined. The treatment of PAHs with the biomass of this fungal strain enhanced the degradation of the three PAHs. The laccase enzymes played an important role in the degradation of these compounds; however, the role of peroxidases cannot be excluded. Ganoderma sp. UH-M is a promising candidate for the bioremediation of ecosystems polluted with PAHs.
Assuntos
Poluentes Ambientais/metabolismo , Ganoderma/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biodegradação Ambiental , Fluorenos/metabolismo , Ganoderma/enzimologia , Lacase/metabolismo , Naftalenos/metabolismo , Oxirredução , Peroxidases/metabolismo , Fenantrenos/metabolismoRESUMO
Ganoderma lucidum is a medicinal mushroom that is well known for its ability to enhance human health, and products made from this fungus have been highly profitable. The substrate-degrading ability of G. lucidum could be related to its growth. CAZy proteins were more abundant in its genome than in the other white rot fungi models. Among these CAZy proteins, changes in lignocellulolytic enzymes during growth have not been well studied. Using genomic, transcriptomic and secretomic analyses, this study focuses on the lignocellulolytic enzymes of G. lucidum strain G0119 to determine which of these degradative enzymes contribute to its growth. From the genome sequencing data, genes belonging to CAZy protein families, especially genes involved in lignocellulose degradation, were investigated. The gene expression, protein abundance and enzymatic activity of lignocellulolytic enzymes in mycelia over a growth cycle were analysed. The overall expression cellulase was higher than that of hemicellulase and lignin-modifying enzymes, particularly during the development of fruiting bodies. The cellulase and hemicellulase abundances and activities increased after the fruiting bodies matured, when basidiospores were produced in massive quantities till the end of the growth cycle. Additionally, the protein abundances of the lignin-modifying enzymes and the expression of their corresponding genes, including laccases and lignin-degrading heme peroxidases, were highest when the mycelia fully spread in the compost bag. Type I cellobiohydrolase was observed to be the most abundant extracellular lignocellulolytic enzyme produced by the G. lucidum strain G0119. The AA2 family haem peroxidases were the dominant lignin-modifying enzyme expressed during the mycelial growth phase, and several laccases might play roles during the formation of the primordium. This study provides insight into the changes in the lignocellulose degradation ability of G. lucidum during its growth and will facilitate the discovery of new approaches to accelerate the growth of G. lucidum in culture.
Assuntos
Enzimas/genética , Enzimas/metabolismo , Ganoderma/enzimologia , Ganoderma/genética , Perfilação da Expressão Gênica , Genômica , Lignina/metabolismo , Ganoderma/crescimento & desenvolvimento , Ganoderma/metabolismo , Hidrólise , Polissacarídeos/metabolismoRESUMO
Laccases (EC 1.10.3.2) are enzymes known for their ability to catalyse the oxidation of phenolic compounds using molecular oxygen as the final electron acceptor. Lignin is a natural phenylpropanoids biopolymer whose degradation in nature is thought to be aided by enzymatic oxidation by laccases. Laccase activity is often measured spectrophotometrically on compounds such as syringaldazine and ABTS which poorly relate to lignin. We employed natural phenolic hydroxycinnamates having different degree of methoxylations, p-coumaric, ferulic and sinapic acid, and a lignin model OH-dilignol compound as substrates to assess enzyme kinetics by HPLC-MS on two fungal laccases Trametes versicolor laccase, Tv and Ganoderma lucidum laccase, Gl. The method allowed accurate kinetic measurements and detailed insight into the product profiles of both laccases. Both Tv and Gl laccase are active on the hydroxycinnammates and show a preference for substrate with methoxylations. Product profiles were dominated by the presence of dimeric and trimeric species already after 10 minutes of reaction and similar profiles were obtained with the two laccases. This new HPLC-MS method is highly suitable and accurate as a new method for assaying laccase activity on genuine phenolic substrates, as well as a tool for examining laccase oxidation product profiles.
Assuntos
Ensaios Enzimáticos/métodos , Lacase/metabolismo , Cromatografia Líquida de Alta Pressão , Ganoderma/enzimologia , Cinética , Espectrometria de Massas , Trametes/enzimologiaRESUMO
AIM: Lignolytic (lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden)), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin-degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at. METHODS AND RESULTS: In our work, 10 naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G. boninense. Additionally, the lignin-degrading enzymes were characterized. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin-degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin-degrading enzymes, when compared between the 10 phenolic compounds. The inhibitory potential of the phenolic compounds towards the lignin-degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin-degrading enzymes were stable in a wide range of pH but were sensitive to higher temperature. CONCLUSION: The study demonstrated the inhibitor potential of 10 naturally occurring phenolic compounds towards the lignin-degrading enzymes of G. boninense with different efficacies. SIGNIFICANCE AND IMPACT OF THE STUDY: The study has shed a light towards a new management strategy to control basal stem rot disease in oil palm. It serves as a replacement for the existing chemical control.
Assuntos
Celulases , Proteínas Fúngicas , Ganoderma/enzimologia , Lignina/metabolismo , Fenóis/farmacologia , Celulases/antagonistas & inibidores , Celulases/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Ganoderma/efeitos dos fármacos , CinéticaRESUMO
AIM: Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. METHODS AND RESULTS: Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (Vmax and Km ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. CONCLUSION: These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. SIGNIFICANCE AND IMPACT OF THE STUDY: The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds.
Assuntos
Celulases , Celulose/metabolismo , Ganoderma/enzimologia , Fenóis/farmacologia , Polissacarídeos/metabolismo , Celulases/antagonistas & inibidores , Celulases/química , Celulases/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hidrólise , CinéticaRESUMO
Putrescine is an important polyamine that participates in a variety of stress responses. Ornithine decarboxylase (ODC) is a key enzyme that catalyzes the biosynthesis of putrescine. A homolog of the gene encoding ODC was cloned from Ganoderma lucidum In the ODC-silenced strains, the transcript levels of the ODC gene and the putrescine content were significantly decreased. The ODC-silenced strains were more sensitive to oxidative stress. The content of ganoderic acid was increased by approximately 43 to 46% in the ODC-silenced strains. The content of ganoderic acid could be recovered after the addition of exogenous putrescine. Additionally, the content of reactive oxygen species (ROS) was significantly increased by approximately 1.3-fold in the ODC-silenced strains. The ROS content was significantly reduced after the addition of exogenous putrescine. The gene transcript levels and the activities of four major antioxidant enzymes were measured to further explore the effect of putrescine on the intracellular ROS levels. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes.IMPORTANCE It is well known that ODC and the ODC-mediated production of putrescine play an important role in resisting various environmental stresses, but there are few reports regarding the mechanisms underlying the effect of putrescine on secondary metabolism in microorganisms, particularly in fungi. G. lucidum is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, a homolog of the gene encoding ODC was cloned in Ganoderma lucidum We found that the transcript level of the ODC gene and the content of putrescine were significantly decreased in the ODC-silenced strains. The content of ganoderic acid was significantly increased in the ODC-silenced strains. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes.
Assuntos
Proteínas Fúngicas/metabolismo , Ganoderma/metabolismo , Ornitina Descarboxilase/metabolismo , Putrescina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/metabolismo , Proteínas Fúngicas/genética , Ganoderma/enzimologia , Ganoderma/genética , Ornitina Descarboxilase/genética , Estresse OxidativoRESUMO
Lignin is one of the main barriers to obtaining added-value products from cellulosic fraction of lignocellulosic biomass due to its random aromatic structure and strong association with cellulose and hemicellulose. Inorganic and organic compounds have been used as enzyme inducers to increase the ligninolytic potential of white-rot fungi, without considering their effect on the selectivity of degradation. In this study, the selective lignin degradation in wheat straw by Ganoderma lobatum was optimized using a central composite design to evaluate the combined effect of Fe2+ and Mn2+ as inducers of ligninolytic enzymes and NO3- as an additional nitrogen source. Selective lignin degradation was promoted to maximize lignin degradation and minimize weight losses. The optimal conditions were 0.18 M NO3-, 0.73 mM Fe2+, and 1 mM Mn2+, which resulted in 50.0% lignin degradation and 18.5% weight loss after 40 days of fungal treatment. A decrease in absorbance at 1505 and 900 cm-1 in fungal-treated samples was observed in the FTIR spectra, indicating lignin and cellulose degradation in fungal-treated wheat straw, respectively. The main ligninolytic enzymes detected during lignin degradation were manganese-dependent and manganese-independent peroxidases. Additionally, confocal laser scanning microscopy revealed that lignin degradation in wheat straw by G. lobatum resulted in higher cellulose accessibility. We concluded that the addition of enzyme inducers and NO3- promotes selective lignin degradation in wheat straw by G. lobatum.
Assuntos
Indução Enzimática , Ganoderma/metabolismo , Lignina/metabolismo , Nitratos/metabolismo , Biodegradação Ambiental , Ganoderma/enzimologia , TriticumRESUMO
The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 µg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.
Assuntos
Acil Coenzima A/genética , Proteínas Fúngicas/genética , Ganoderma/metabolismo , Esqualeno Mono-Oxigenase/genética , Triterpenos/metabolismo , Acil Coenzima A/metabolismo , Vias Biossintéticas , Proteínas Fúngicas/metabolismo , Ganoderma/enzimologia , Ganoderma/genética , Expressão Gênica , Esqualeno Mono-Oxigenase/metabolismoRESUMO
Spent mushroom substrate (SMS) of Pleurotus ostreatus was supplemented with wheat bran and soybean flour in various proportions to obtain C/N ratios of 10, 20, and 30, and their effect was evaluated in successive cultivation of Pleurotus ostreatus, Pleurotus pulmonarius, Ganoderma adspersum, Ganoderma resinaceum, and Lentinula edodes strains with respect to mycelium growth rate, biomass concentration, recovery of the enzyme laccase and crude exopolysaccharides, and also with additional fruiting body production. All fungi showed the highest growth rate on unamended SMS (C/N 30), with G. resinaceum being the fastest colonizer (Kr = 9.84 mm day-1), while biomass concentration maximized at C/N 10. Moreover, supplementation affected positively laccase activity, with P. pulmonarius furnishing the highest value (44,363.22 U g-1) at C/N 20. On the contrary, L. edodes growth, fruiting, and laccase secretion were not favored by SMS supplementation. Fruiting body formation was promoted at C/N 30 for Ganoderma and at C/N 20 for Pleurotus species. Exopolysaccharide production of further studied Pleurotus strains was favored at a C/N 20 ratio, at the initial stage of SMS colonization. The obtained results support the potential effective utilization of supplemented SMS for laccase production from Ganoderma spp. and for new fruiting body production of Pleurotus spp.
Assuntos
Misturas Complexas/farmacologia , Ganoderma/enzimologia , Lacase/biossíntese , Lentinula/enzimologia , Pleurotus/enzimologia , Agaricales/química , Biomassa , Fibras na Dieta/farmacologia , Fermentação , Farinha , Carpóforos/efeitos dos fármacos , Carpóforos/crescimento & desenvolvimento , Ganoderma/efeitos dos fármacos , Ganoderma/crescimento & desenvolvimento , Lacase/metabolismo , Lentinula/efeitos dos fármacos , Lentinula/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Pleurotus/efeitos dos fármacos , Pleurotus/crescimento & desenvolvimento , Glycine max/químicaRESUMO
In this study, manganese peroxidase (MnP) from an indigenous white-rot fungus Ganoderma lucidum IBL-05 was insolubilized in the form of cross-linked enzyme aggregates (CLEAs) using various aggregating agents, i.e., acetone, ammonium sulfate, ethanol, 2-propanol, and tert-butanol, followed by glutaraldehyde (GA) cross-linking. The precipitant type, MnP, and GA concentrations affected the CLEAs activity recovery and aggregation yield. Among precipitants used, acetone appeared to be the most efficient aggregation agent, providing the highest activity recovery and aggregation yield of 31.26 and 73.46%, respectively. Optimal cross-linking was noticed using 2.0% (v/v) GA and 8:1 (v/v) MnP to GA ratio at 3.0 h cross-linking time under continuous agitation at 4 °C. The highest recovered activity and aggregation yield were determined to be 47.57 and 81.26%, respectively. The MnP-CLEAs, thus synthesized, were tested to investigate their bio-catalytic capacity for removing two known endocrine-disrupting chemicals (EDCs), e.g., nonylphenol and triclosan in a packed bed reactor system. The insolubilized MnP efficiently catalyzed the biodegradation of both EDCs, transforming over 80% in the presence of MnP-based system. A maximal of 100% decolorization was recorded for Sitara textile (SIT-based) effluent, followed by 95.5% for Crescent textile (CRT-based) effluent, 88.0% for K&N textile (KIT-based) effluent, and 84.2% for Nishat textile (NIT-based) effluent.
Assuntos
Corantes/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Disruptores Endócrinos/metabolismo , Poluentes Ambientais/metabolismo , Peroxidases/química , Peroxidases/metabolismo , Agregados Proteicos , Biodegradação Ambiental , Corantes/isolamento & purificação , Disruptores Endócrinos/isolamento & purificação , Poluentes Ambientais/isolamento & purificação , Ganoderma/enzimologia , Glutaral/farmacologia , Agregados Proteicos/efeitos dos fármacos , SolubilidadeRESUMO
Ganoderic acids (GAs) in Ganoderma lingzhi exhibit anticancer and antimetastatic activities. GA yields can be potentially improved by manipulating G. lingzhi through genetic engineering. In this study, a putative lanosterol synthase (LS) gene was cloned and overexpressed in G. lingzhi. Results showed that its overexpression (OE) increased the ganoderic acid (GA) content and the accumulation of lanosterol and ergosterol in a submerged G. lingzhi culture. The maximum contents of GA-O, GA-Mk, GA-T, GA-S, GA-Mf, and GA-Me in transgenic strains were 46.6 ± 4.8, 24.3 ± 3.5, 69.8 ± 8.2, 28.9 ± 1.4, 15.4 ± 1.2, and 26.7 ± 3.1 µg/100 mg dry weight, respectively, these values being 6.1-, 2.2-, 3.2-, 4.8-, 2.0-, and 1.9-times higher than those in wild-type strains. In addition, accumulated amounts of lanosterol and ergosterol in transgenic strains were 2.3 and 1.4-fold higher than those in the control strains, respectively. The transcription level of LS was also increased by more than five times in the presence of the G. lingzhi glyceraldehyde-3-phosphate dehydrogenase gene promoter, whereas transcription levels of 3-hydroxy-3-methylglutaryl coenzyme A enzyme and squalene synthase did not change significantly in transgenic strains. This study demonstrated that OE of the homologous LS gene can enhance lanosterol accumulation. A large precursor supply promotes GA biosynthesis.
Assuntos
Ganoderma , Transferases Intramoleculares/metabolismo , Triterpenos , Ergosterol/análise , Ganoderma/química , Ganoderma/enzimologia , Ganoderma/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Transferases Intramoleculares/genética , Lanosterol/análise , Plantas Geneticamente Modificadas , Reishi/química , Triterpenos/química , Triterpenos/metabolismo , Triterpenos/farmacologiaRESUMO
BACKGROUND: Structural component of plant biomass, lignocellulose, is the most abundant renewable resource in nature. Lignin is the most recalcitrant natural aromatic polymer and its degradation presents great challenge. Nowadays, the special attention is given to biological delignification, the process where white-rot fungi take the crucial place owing to strong ligninolytic enzyme system. However, fungal species, even strains, differ in potential to produce high active ligninolytic enzymes and consequently to delignify plant biomass. Therefore, the goals of the study were characterization of Mn-oxidizing peroxidases and laccases of numerous mushrooms as well as determination of their potential to delignify wheat straw, the plant raw material that, according to annual yield, takes the first place in Europe and the second one in the world. RESULTS: During wheat straw fermentation, Lentinus edodes HAI 858 produced the most active Mn-dependent and Mn-independent peroxidases (1443.2 U L-1 and 1045.5 U L-1, respectively), while Pleurotus eryngii HAI 711 was the best laccase producer (7804.3 U L-1). Visualized bends on zymogram confirmed these activities and demonstrated that laccases were the dominant ligninolytic enzymes in the studied species. Ganoderma lucidum BEOFB 435 showed considerable ability to degrade lignin (58.5%) and especially hemicellulose (74.8%), while the cellulose remained almost intact (0.7%). Remarkable selectivity in lignocellulose degradation was also noted in Pleurotus pulmonarius HAI 573 where degraded amounts of lignin, hemicellulose and cellulose were in ratio of 50.4%:15.3%:3.8%. CONCLUSIONS: According to the presented results, it can be concluded that white-rot fungi, due to ligninolytic enzymes features and degradation potential, could be important participants in various biotechnological processes including biotransformation of lignocellulose residues/wastes in food, feed, paper and biofuels.
Assuntos
Agaricales/metabolismo , Lignina/metabolismo , Triticum , Agaricales/enzimologia , Ganoderma/enzimologia , Ganoderma/metabolismo , Lentinula/enzimologia , Lentinula/metabolismo , Pleurotus/enzimologia , Pleurotus/metabolismo , Triticum/metabolismo , Triticum/microbiologiaRESUMO
A novel phytase from Ganoderma australe G24 was produced by submerged cultivation and recovery. Liquid and solid forms of phytase were developed; both types of product were formulated using different additives. Ganoderma australe G24 phytase was very stable in liquid form with NaCl and sodium acetate buffer. Solid form products were obtained by spray-drying using different polymers to encapsulate the phytase and the capsules obtained were analyzed by electron microscopy. Micrographs confirmed micro and nanoparticles formed with maltodextrin (300 nm to 7-8 µm) without the presence of agglomerates. The use of maltodextrin for solid formulation of G. australe G24 phytase is recommended, and resulted in good stability after the drying process and during storage (shelf life). Kinetic models of phytase inactivation in the microencapsulated powders over time were proposed for the different stabilizing additives. Inactivation rate constants, half-lives and D values (decimal reduction time) were obtained. Phytase encapsulated with maltodextrin remained stable after 90 days, with k 0.0019 day(-1) and a half-life (t1/2) of 367.91 days(-1).