Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(17)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34500659

RESUMO

In this study, broilers were fed with heavy-metal-containing diets (Zn, Cu, Pb, Cr, As, Hg) at three rates (T1: 5 kg premix/ton feed, T2: 10 kg premix/ton feed and T3: 15 kg premix/ton feed) and Doxycycline (DOX) and Gatifloxacin (GAT) at low or high doses (T4: 31.2 mg DOX/bird/day and 78 mg GAT/bird/day, T5: 15.6 mg DOX/bird/day and 48 mg GAT/bird/day) to assess the accumulation of various heavy metals and the fate of two antibiotics in broiler manure after 35 days of aerobic composting. The results indicated that the two antibiotics changed quite differently during aerobic composting. About 14.96-15.84% of Doxycycline still remained at the end of composting, while Gatifloxacin was almost completely removed within 10 days of composting. The half-lives of Doxycycline were 13.75 and 15.86 days, while the half-lives of Gatifloxacin were only 1.32 and 1.38 days. Based on the Redundancy analysis (RDA), the concentration of antibiotics was significantly influenced by physico-chemical properties (mainly temperature and pH) throughout the composting process. Throughout the composting process, all heavy metal elements remained concentrated in organic fertilizer. In this study the Cr content reached 160.16 mg/kg, 223.98 mg/kg and 248.02 mg/kg with increasing premix feed rates, similar to Zn, which reached 258.2 mg/kg, 312.21 mg/kg and 333.68 mg/kg. Zn and Cr concentrations well exceeded the United States and the European soil requirements. This experiment showed that antibiotic residues and the accumulation of heavy metals may lead to soil contamination and pose a risk to the soil ecosystem.


Assuntos
Doxiciclina/metabolismo , Gatifloxacina/metabolismo , Animais , Compostagem , Esterco/microbiologia , Metais Pesados/metabolismo
2.
Food Chem Toxicol ; 136: 111058, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31881243

RESUMO

Fluoroquinolone antibiotics (FQs), a new class of pollutants that seriously threaten human health through environmental and food residues, have aroused wide public concern. However, little attention has been paid to the potential toxicity of FQs' metal complex. Here, we firstly explore the proof-of-concept study of FQs' metal complex to bind bovine serum albumin (BSA) using systematical spectroscopic approaches. In detail, we have found that the complex of Al3+ with gatifloxacin (Al(III)-GFLX complex) can effectively bind to BSA via electrostatic interaction in PBS buffer (pH = 7.4, 1×), resulting in the formation of Al(III)-GFLX-BSA complex. The negative value of ΔG shows that the binding of Al(III)-GFLX complex to BSA is a spontaneous process. Circular dichroism spectra verify that Al(III)-GFLX complex effectively triggers the conformation changes of BSA's secondary structure. It has been proved that the interaction of small molecule with serum albumin has a significant effect on their in vivo biological effects such as absorption, distribution, metabolism, and excretion, and etc. Therefore, the results of this paper may offer a valuable theoretical basis for establishing safety standards of FQs' metal complex to ensure food and environmental health.


Assuntos
Complexos de Coordenação/metabolismo , Poluentes Ambientais/metabolismo , Gatifloxacina/análogos & derivados , Gatifloxacina/metabolismo , Soroalbumina Bovina/metabolismo , Alumínio/química , Alumínio/metabolismo , Animais , Bovinos , Complexos de Coordenação/química , Poluentes Ambientais/química , Fluorescência , Estudo de Prova de Conceito , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Soroalbumina Bovina/química , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA