Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 100(1): e24014, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429764

RESUMO

INTRODUCTION: As a hematopoietic carcinogen, benzene induces human leukemia through its active metabolites such as benzoquinone, which may cause oxidative damage to cancer-related nuclear genes by increasing reactive oxygen species (ROS). Mitochondrion is the main regulatory organelle of ROS, genetic abnormality of mitochondrion can impede its regulation of ROS, leading to more severe oxidative damage. Mutations have been related to certain types of cancer in several mitochondrial genes, but they have never been completely analyzed genome-wide in leukemia. PATIENT CONCERNS: The patient was a 52-year-old female who had chronic exposure to benzene for several years. Her symptoms mainly included recurrent dizziness, fatigue, and they had lasted for nearly 8 years and exacerbated in recent weeks before diagnosis. DIAGNOSIS: Samples of peripheral blood were taken from the patient using evacuated tubes with EDTA anticoagulant on the second day of her hospitalization. At the same time blood routine and BCR/ABL genes of leukemic phenotype were tested. Platelets were isolated for mitochondrial DNA (mtDNA) extraction. The genetic analysis of ATP synthase Fo subunit 8 (complex V), ATP synthase Fo subunit 6 (complex V), cytochrome c oxidase subunit 1 (complex IV), cytochrome c oxidase subunit 2 (complex IV), cytochrome c oxidase subunit 3, Cytb, NADH dehydrogenase subunit 1 (complex I) (ND) 1, ND2, ND3, ND4, ND5, ND6, 12S-RNA, 16S-RNA, tRNA-Cysteine, A, N, tRNA-Leucine, E, displacement loop in platelet mtDNA were performed. All the detected gene mutations were validated using the conventional Sanger sequencing method. INTERVENTIONS: The patient received imatinib, a small molecule kinase inhibitor, and symptomatic treatments. OUTCOMES: After 3 months treatment her blood routine test indicators were restored to normal. CONCLUSION: A total of 98 mutations were found, and 25 mutations were frame shift. The ND6 gene mutation rate was the highest among all mutation points. Frame shifts were identified in benzene-induced leukemia for the first time. Many mutations in the platelet mitochondrial genome were identified and considered to be potentially pathogenic in the female patient with benzene-induced leukemia. The mutation rate of platelet mitochondrial genome in the benzene-induced leukemia patient is relatively high, and the complete genome analysis is helpful to fully comprehend the disease characteristics.


Assuntos
Plaquetas/patologia , Leucemia/etiologia , Leucemia/genética , Mitocôndrias/genética , Antineoplásicos/uso terapêutico , Benzeno/efeitos adversos , Exposição Ambiental/efeitos adversos , Feminino , Genoma Mitocondrial/genética , Genoma Mitocondrial/fisiologia , Humanos , Mesilato de Imatinib/uso terapêutico , Pessoa de Meia-Idade , Mitocôndrias/fisiologia
2.
Mol Metab ; 38: 100942, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32217072

RESUMO

BACKGROUND: Virtually all eukaryotic cells contain spatially distinct genomes, a single nuclear genome that harbours the vast majority of genes and much smaller genomes found in mitochondria present at thousands of copies per cell. To generate a coordinated gene response to various environmental cues, the genomes must communicate with each another. Much of this bi-directional crosstalk relies on epigenetic processes, including DNA, RNA, and histone modification pathways. Crucially, these pathways, in turn depend on many metabolites generated in specific pools throughout the cell, including the mitochondria. They also involve the transport of metabolites as well as the enzymes that catalyse these modifications between nuclear and mitochondrial genomes. SCOPE OF REVIEW: This study examines some of the molecular mechanisms by which metabolites influence the activity of epigenetic enzymes, ultimately affecting gene regulation in response to metabolic cues. We particularly focus on the subcellular localisation of metabolite pools and the crosstalk between mitochondrial and nuclear proteins and RNAs. We consider aspects of mitochondrial-nuclear communication involving histone proteins, and potentially their epigenetic marks, and discuss how nuclear-encoded enzymes regulate mitochondrial function through epitranscriptomic pathways involving various classes of RNA molecules within mitochondria. MAJOR CONCLUSIONS: Epigenetic communication between nuclear and mitochondrial genomes occurs at multiple levels, ultimately ensuring a coordinated gene expression response between different genetic environments. Metabolic changes stimulated, for example, by environmental factors, such as diet or physical activity, alter the relative abundances of various metabolites, thereby directly affecting the epigenetic machinery. These pathways, coupled to regulated protein and RNA transport mechanisms, underpin the coordinated gene expression response. Their overall importance to the fitness of a cell is highlighted by the identification of many mutations in the pathways we discuss that have been linked to human disease including cancer.


Assuntos
Comunicação Celular/genética , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Animais , Comunicação Celular/fisiologia , Núcleo Celular/genética , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Genoma Mitocondrial/genética , Genoma Mitocondrial/fisiologia , Histona Acetiltransferases/metabolismo , Histonas/genética , Humanos , Mitocôndrias/genética , RNA/metabolismo
3.
Cells ; 8(11)2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652817

RESUMO

It is becoming increasingly apparent that cells require cooperation between the nuclear and mitochondrial genomes to promote effective function. However, it was long thought that the mitochondrial genome was under the strict control of the nuclear genome and the mitochondrial genome had little influence on cell fate unless it was extensively mutated, as in the case of the mitochondrial DNA diseases. However, as our understanding of the roles that epigenetic regulators, including DNA methylation, and metabolism play in cell fate and function, the role of the mitochondrial genome appears to have a greater influence than previously thought. In this review, I draw on examples from tumorigenesis, stem cells, and oocyte pre- and post-fertilisation events to discuss how modulating one genome affects the other and that this results in a compromise to produce functional mature cells. I propose that, during development, both of the genomes interact with each other through intermediaries to establish genomic balance and that establishing genomic balance is a key facet in determining cell fate and viability.


Assuntos
Linhagem da Célula/genética , Genoma Mitocondrial/genética , Genoma/genética , Animais , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Metilação de DNA , DNA Mitocondrial/genética , Epigênese Genética/genética , Genoma/fisiologia , Genoma Mitocondrial/fisiologia , Genômica , Humanos , Mitocôndrias/metabolismo , Oócitos/metabolismo
4.
Integr Comp Biol ; 59(4): 856-863, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504533

RESUMO

Eukaryotes are the outcome of an ancient symbiosis and as such, eukaryotic cells fundamentally possess two genomes. As a consequence, gene products encoded by both nuclear and mitochondrial genomes must interact in an intimate and precise fashion to enable aerobic respiration in eukaryotes. This genomic architecture of eukaryotes is proposed to necessitate perpetual coevolution between the nuclear and mitochondrial genomes to maintain coadaptation, but the presence of two genomes also creates the opportunity for intracellular conflict. In the collection of papers that constitute this symposium volume, scientists working in diverse organismal systems spanning vast biological scales address emerging topics in integrative, comparative biology in light of mitonuclear interactions.


Assuntos
Coevolução Biológica , Núcleo Celular/fisiologia , Eucariotos/fisiologia , Genoma Mitocondrial/fisiologia , Adaptação Biológica , Núcleo Celular/genética , Eucariotos/genética , Genoma Mitocondrial/genética
5.
Curr Biol ; 29(11): R496-R511, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163164

RESUMO

Mitochondria, a nearly ubiquitous feature of eukaryotes, are derived from an ancient symbiosis. Despite billions of years of cooperative coevolution - in what is arguably the most important mutualism in the history of life - the persistence of mitochondrial genomes also creates conditions for genetic conflict with the nucleus. Because mitochondrial genomes are present in numerous copies per cell, they are subject to both within- and among-organism levels of selection. Accordingly, 'selfish' genotypes that increase their own proliferation can rise to high frequencies even if they decrease organismal fitness. It has been argued that uniparental (often maternal) inheritance of cytoplasmic genomes evolved to curtail such selfish replication by minimizing within-individual variation and, hence, within-individual selection. However, uniparental inheritance creates conditions for cytonuclear conflict over sex determination and sex ratio, as well as conditions for sexual antagonism when mitochondrial variants increase transmission by enhancing maternal fitness but have the side-effect of being harmful to males (i.e., 'mother's curse'). Here, we review recent advances in understanding selfish replication and sexual antagonism in the evolution of mitochondrial genomes and the mechanisms that suppress selfish interactions, drawing parallels and contrasts with other organelles (plastids) and bacterial endosymbionts that arose more recently. Although cytonuclear conflict is widespread across eukaryotes, it can be cryptic due to nuclear suppression, highly variable, and lineage-specific, reflecting the diverse biology of eukaryotes and the varying architectures of their cytoplasmic genomes.


Assuntos
Evolução Biológica , Genoma Mitocondrial/fisiologia , Fenômenos Fisiológicos Bacterianos , Eucariotos/fisiologia , Plastídeos/fisiologia , Simbiose/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-30670467

RESUMO

Mitochondria are metabolic hubs that use multiple proteases to maintain proteostasis and to preserve their overall quality. A decline of mitochondrial proteolysis promotes cellular stress and may contribute to the aging process. Mitochondrial proteases have also emerged as tightly regulated enzymes required to support the remarkable mitochondrial plasticity necessary for metabolic adaptation in a number of physiological scenarios. Indeed, the mutation and dysfunction of several mitochondrial proteases can cause specific human diseases with severe metabolic phenotypes. Here, we present an overview of the proteolytic regulation of key mitochondrial functions such as respiration, lipid biosynthesis, and mitochondrial dynamics, all of which are required for metabolic control. We also pay attention to how mitochondrial proteases are acutely regulated in response to cellular stressors or changes in growth conditions, a greater understanding of which may one day uncover their therapeutic potential.


Assuntos
DNA Mitocondrial/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Genoma Mitocondrial/fisiologia , Peptídeo Hidrolases/metabolismo , Proteínas/metabolismo , DNA Mitocondrial/genética , Peptídeo Hidrolases/genética
7.
Sci Rep ; 8(1): 15422, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337561

RESUMO

Mitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle. Using an experimentally validated computational model of mitochondrial function, we show that complex oscillatory dynamics in key metabolic variables, arising at the "edge" between fully functional and pathological behavior, sets the stage for chaos. Under these conditions, a mild, regular sinusoidal redox forcing perturbation triggers chaotic dynamics with main signature traits such as sensitivity to initial conditions, positive Lyapunov exponents, and strange attractors. At the "edge" mitochondrial chaos is exquisitely sensitive to the antioxidant capacity of matrix Mn superoxide dismutase as well as to the amplitude and frequency of the redox perturbation. These results have potential implications both for mitochondrial signaling determining health maintenance, and pathological transformation, including abnormal cardiac rhythms.


Assuntos
Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Animais , Antioxidantes/metabolismo , Simulação por Computador , Genoma Mitocondrial/fisiologia , Instabilidade Genômica/fisiologia , Humanos , Mitocôndrias/genética , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/genética , Dinâmica não Linear , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/metabolismo
8.
Integr Comp Biol ; 58(3): 532-543, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945248

RESUMO

A key adaptation of mammals to their environment is their ability to maintain a constant high body temperature, even at rest, under a wide range of ambient temperatures. In cold climates, this is achieved by an adaptive production of endogenous heat, known as nonshivering thermogenesis (NST), in the brown adipose tissue (BAT). This organ, unique to mammals, contains a very high density of mitochondria, and BAT correct functioning relies on the correct functioning of its mitochondria. Mitochondria enclose proteins encoded both in the maternally inherited mitochondrial genome and in the biparentally inherited nuclear genome, and one overlooked hypothesis is that both genomes and their interaction may shape NST. By housing under standardized conditions wild-derived common voles (Microtus arvalis) from two distinct evolutionary lineages (Western [W] and Central [C]), we show that W voles had greater NST than C voles. By introgressing those two lineages over at least nine generations, we then experimentally tested the influence of the nuclear and mitochondrial genomes on NST and related phenotypic traits. We found that between-lineage variation in NST and BAT size were significantly influenced by the mitochondrial and nuclear genomes, respectively, with the W mitochondrial genotype being associated with higher NST and the W nuclear genotype with a larger BAT. There were significant mito-nuclear interactions on whole animal body weight and resting metabolic rate (RMR). Hybrid voles were lighter and had higher RMR. Overall, our findings turn new light on the influence of the mitochondrial and nuclear genomes on thermogenesis and building adaptation to the environment in mammals.


Assuntos
Tecido Adiposo Marrom/fisiologia , Arvicolinae/fisiologia , Genoma/fisiologia , Termogênese/genética , Animais , Arvicolinae/classificação , Arvicolinae/genética , Núcleo Celular/genética , Feminino , Genoma Mitocondrial/fisiologia , Masculino
9.
Proc Natl Acad Sci U S A ; 115(8): E1809-E1818, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29434039

RESUMO

In almost all eukaryotes, mitochondria maintain their own genome. Despite the discovery more than 50 y ago, still very little is known about how the genome is correctly segregated during cell division. The protozoan parasite Trypanosoma brucei contains a single mitochondrion with a singular genome, the kinetoplast DNA (kDNA). Electron microscopy studies revealed the tripartite attachment complex (TAC) to physically connect the kDNA to the basal body of the flagellum and to ensure correct segregation of the mitochondrial genome via the basal bodies movement, during the cell cycle. Using superresolution microscopy, we precisely localize each of the currently known TAC components. We demonstrate that the TAC is assembled in a hierarchical order from the base of the flagellum toward the mitochondrial genome and that the assembly is not dependent on the kDNA itself. Based on the biochemical analysis, the TAC consists of several nonoverlapping subcomplexes, suggesting an overall size of the TAC exceeding 2.8 mDa. We furthermore demonstrate that the TAC is required for correct mitochondrial organelle positioning but not for organelle biogenesis or segregation.


Assuntos
Regulação da Expressão Gênica/fisiologia , Genoma Mitocondrial/fisiologia , Genoma de Protozoário/fisiologia , Trypanosoma brucei brucei/genética , DNA de Cinetoplasto/genética , Modelos Biológicos
10.
Nat Commun ; 8(1): 1532, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146908

RESUMO

The expression of the compact mammalian mitochondrial genome requires transcription, RNA processing, translation and RNA decay, much like the more complex chromosomal systems, and here we use it as a model system to understand the fundamental aspects of gene expression. Here we combine RNase footprinting with PAR-CLIP at unprecedented depth to reveal the importance of RNA-protein interactions in dictating RNA folding within the mitochondrial transcriptome. We show that LRPPRC, in complex with its protein partner SLIRP, binds throughout the mitochondrial transcriptome, with a preference for mRNAs, and its loss affects the entire secondary structure and stability of the transcriptome. We demonstrate that the LRPPRC-SLIRP complex is a global RNA chaperone that stabilizes RNA structures to expose the required sites for translation, stabilization, and polyadenylation. Our findings reveal a general mechanism where extensive RNA-protein interactions ensure that RNA is accessible for its biological functions.


Assuntos
Mitocôndrias/fisiologia , Proteínas de Neoplasias/fisiologia , Dobramento de RNA/fisiologia , Proteínas de Ligação a RNA/fisiologia , Transcriptoma/fisiologia , Animais , Sítios de Ligação , Fibroblastos , Genoma Mitocondrial/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/fisiologia , Poliadenilação/fisiologia , Ligação Proteica/fisiologia , Biossíntese de Proteínas/fisiologia , Pegadas de Proteínas/métodos , Estabilidade de RNA/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de RNA/métodos
11.
Proc Natl Acad Sci U S A ; 114(47): 12466-12471, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109257

RESUMO

Incorporation of ribonucleotides into DNA during genome replication is a significant source of genomic instability. The frequency of ribonucleotides in DNA is determined by deoxyribonucleoside triphosphate/ribonucleoside triphosphate (dNTP/rNTP) ratios, by the ability of DNA polymerases to discriminate against ribonucleotides, and by the capacity of repair mechanisms to remove incorporated ribonucleotides. To simultaneously compare how the nuclear and mitochondrial genomes incorporate and remove ribonucleotides, we challenged these processes by changing the balance of cellular dNTPs. Using a collection of yeast strains with altered dNTP pools, we discovered an inverse relationship between the concentration of individual dNTPs and the amount of the corresponding ribonucleotides incorporated in mitochondrial DNA, while in nuclear DNA the ribonucleotide pattern was only altered in the absence of ribonucleotide excision repair. Our analysis uncovers major differences in ribonucleotide repair between the two genomes and provides concrete evidence that yeast mitochondria lack mechanisms for removal of ribonucleotides incorporated by the mtDNA polymerase. Furthermore, as cytosolic dNTP pool imbalances were transmitted equally well into the nucleus and the mitochondria, our results support a view of the cytosolic and mitochondrial dNTP pools in frequent exchange.


Assuntos
DNA Polimerase gama/fisiologia , Desoxirribonucleotídeos/fisiologia , Genoma Mitocondrial/fisiologia , Mitocôndrias/fisiologia , Saccharomyces cerevisiae/fisiologia , Núcleo Celular/fisiologia , Citoplasma/fisiologia , Reparo de Erro de Pareamento de DNA/fisiologia , Replicação do DNA/fisiologia , DNA Mitocondrial/metabolismo , Instabilidade Genômica
12.
PLoS One ; 12(6): e0179800, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28622362

RESUMO

Mitochondrial genome (mitogenome) is very important to understand molecular evolution and phylogenetics. Herein, in this study, the complete mitogenome of Sesarmops sinensis was reported. The mitogenome was 15,905 bp in size, and contained 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region (CR). The AT skew and the GC skew are both negative in the mitogenomes of S. sinensis. The nucleotide composition of the S. sinensis mitogenome was also biased toward A + T nucleotides (75.7%). All tRNA genes displayed a typical mitochondrial tRNA cloverleaf structure, except for the trnS1 gene, which lacked a dihydroxyuridine arm. S. sinensis exhibits a novel rearrangement compared with the Pancrustacean ground pattern and other Brachyura species. Based on the 13 PCGs, the phylogenetic analysis showed that S. sinensis and Sesarma neglectum were clustered on one branch with high nodal support values, indicating that S. sinensis and S. neglectum have a sister group relationship. The group (S. sinensis + S. neglectum) was sister to (Parasesarmops tripectinis + Metopaulias depressus), suggesting that S. sinensis belongs to Grapsoidea, Sesarmidae. Phylogenetic trees based on amino acid sequences and nucleotide sequences of mitochondrial 13 PCGs using BI and ML respectively indicate that section Eubrachyura consists of four groups clearly. The resulting phylogeny supports the establishment of a separate subsection Potamoida. These four groups correspond to four subsections of Raninoida, Heterotremata, Potamoida, and Thoracotremata.


Assuntos
Braquiúros/genética , Rearranjo Gênico/fisiologia , Genes Mitocondriais/fisiologia , Genoma Mitocondrial/fisiologia , Filogenia , Animais , Proteínas de Artrópodes/genética , Proteínas Mitocondriais/genética , RNA/genética , RNA Mitocondrial , RNA Ribossômico/genética , RNA de Transferência/genética
13.
Reprod Fertil Dev ; 30(1): 118-139, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29539308

RESUMO

In mammalian species, the mitochondrial genome is between 16.2 and 16.7kb in size and encodes key proteins associated with the cell's major energy-generating apparatus, the electron transfer chain. The maternally inherited mitochondrial genome has, until recently, been thought to be only involved in the production of energy. In this review, we analyse how the mitochondrial genome influences the developing embryo and cellular differentiation, as well as fetal and offspring health and wellbeing. We make specific reference to two assisted reproductive technologies, namely mitochondrial supplementation and somatic cell nuclear transfer, and how modulating the mitochondrial content in the oocyte influences embryo viability and the potential to generate enhanced offspring for livestock production purposes. We also explain why it is important to ensure that the transmission of only one population of mitochondrial (mt) DNA is maintained through to the offspring and why two populations of genetically distinct mitochondrial genomes could be deleterious. Finally, we explain how mtDNA influences chromosomal gene expression patterns in developing embryos and cells primarily by modulating DNA methylation patterns through factors associated with the citric acid cycle. These factors can then modulate the ten-eleven translocation (TET) pathway, which, in turn, determines whether a cell is in a more or less DNA methylated state.


Assuntos
DNA Mitocondrial/fisiologia , Fertilidade/genética , Genoma Mitocondrial/fisiologia , Animais , Metilação de DNA/fisiologia , Desenvolvimento Embrionário/fisiologia , Humanos , Mamíferos , Técnicas de Reprodução Assistida/tendências , Técnicas de Reprodução Assistida/veterinária
14.
Biochemistry (Mosc) ; 81(10): 1057-1065, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27908231

RESUMO

Mitochondrial DNA (mtDNA) in cells is organized in nucleoids containing DNA and various proteins. This review discusses questions of organization and structural dynamics of nucleoids as well as their protein components. The structures of mt-nucleoid from different organisms are compared. The currently accepted model of nucleoid organization is described and questions needing answers for better understanding of the fine mechanisms of the mitochondrial genetic apparatus functioning are discussed.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial/fisiologia , Mitocôndrias , Proteínas Mitocondriais , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
15.
Gene ; 593(1): 242-248, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27565702

RESUMO

Cantor's Giant Softshell Turtle, Pelochelys cantorii has become one of the most critically endangered species in the world. When comparative analyses of the P. cantorii complete mitochondrial genome sequences were conducted, we discovered a duplication of a segment of the control region in the mitochondrial genome of P. cantorii. The duplication is characterized by two copies of conserved sequence box 2 (CSB2) and CSB3 in a single control region. In contrast to previous reports of duplications involving the control regions of other animals, this particular pattern of duplications appears to be unique to P. cantorii. Copies of the CSB2 and CSB3 show many of the conserved sequence features typically found in mitochondrial control regions, and rare differences were found between the paralogous copies. Using the primer design principle of simple sequence repeats (SSR) and the reference sequence of the duplicated CSBs, specific primers were designed to amplify the duplicated CSBs. These primers were validated among different individuals and populations of P. cantorii. This unique duplication structure suggests the two copies of the CSB2 and CSB3 may have arisen through occasional tandem duplication and subsequent concerted evolution.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial/fisiologia , Sequências Repetitivas de Ácido Nucleico/fisiologia , Tartarugas/genética , Animais
16.
J Biomed Sci ; 23: 38, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27067525

RESUMO

BACKGROUND: Mitochondria play important roles in providing metabolic energy and key metabolites for synthesis of cellular building blocks. Mitochondria have additional functions in other cellular processes, including programmed cell death and aging. A previous study revealed Drosophila mitochondrial topoisomerase III alpha (Top3α) contributes to the maintenance of the mitochondrial genome and male germ-line stem cells. However, the involvement of mitochondrial Top3α in the mitochondrion-mediated aging process remains unclear. In this study, the M1L flies, in which Top3α protein lacks the mitochondrial import sequence and is thus present in cell nuclei but not in mitochondria, is used as a model system to examine the role of mitochondrial Top3α in the aging of fruit flies. RESULTS: Here, we reported that M1L flies exhibit mitochondrial defects which affect the aging process. First, we observed that M1L flies have a shorter life span, which was correlated with a significant reduction in the mitochondrial DNA copy number, the mitochondrial membrane potential, and ATP content compared with those of both wildtype and transgene-rescued flies of the same age. Second, we performed a mobility assay and electron microscopic analysis to demonstrate that the locomotion defect and mitophagy of M1L flies were enhanced with age, as compared with the controls. Finally, we showed that the correlation between the mtDNA deletion level and aging in M1L flies resembles what was reported in mammalian systems. CONCLUSIONS: The results reported here demonstrate that mitochondrial Top3α ablation results in mitochondrial genome instability and its dysfunction, thereby accelerating the aging process.


Assuntos
Envelhecimento/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Drosophila/metabolismo , Genoma Mitocondrial/fisiologia , Instabilidade Genômica/fisiologia , Envelhecimento/genética , Animais , DNA Topoisomerases Tipo I/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Masculino
17.
Sci Rep ; 6: 20096, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833286

RESUMO

The Pheretima complex within the Megascolecidae family is a major earthworm group. Recently, the systematic status of the Pheretima complex based on morphology was challenged by molecular studies. In this study, we carry out the first comparative mitogenomic study in oligochaetes. The mitogenomes of 15 earthworm species were sequenced and compared with other 9 available earthworm mitogenomes, with the main aim to explore their phylogenetic relationships and test different analytical approaches on phylogeny reconstruction. The general earthworm mitogenomic features revealed to be conservative: all genes encoded on the same strand, all the protein coding loci shared the same initiation codon (ATG), and tRNA genes showed conserved structures. The Drawida japonica mitogenome displayed the highest A + T content, reversed AT/GC-skews and the highest genetic diversity. Genetic distances among protein coding genes displayed their maximum and minimum interspecific values in the ATP8 and CO1 genes, respectively. The 22 tRNAs showed variable substitution patterns between the considered earthworm mitogenomes. The inclusion of rRNAs positively increased phylogenetic support. Furthermore, we tested different trimming tools for alignment improvement. Our analyses rejected reciprocal monophyly among Amynthas and Metaphire and indicated that the two genera should be systematically classified into one.


Assuntos
Genoma Mitocondrial/fisiologia , Oligoquetos/genética , Filogenia , Animais
18.
Artigo em Inglês | MEDLINE | ID: mdl-24989048

RESUMO

The complete mitochondrial genome sequence of color changeable toad-headed agama, Phrynocephalus versicolor, was determined using polymerase chain reaction (PCR), long-and-accurate PCR and directly sequencing by primer walking. The entire mitochondrial genome of P. versicolor was 16,429 bp in length, the accession was KJ749841 and the content of A, T, C, and G were 36.1%, 26.5%, 24.9% and 12.5%, respectively, which was similar to most vertebrate. The complete mitochondrial genome of P. versicolor contain 13 protein-coding genes, 2 rRNA genes, 23 tRNA genes, plus one control region and was similar to those of other Phrynocephalus sand lizards in gene arrangement and composition, except that tRNA-Phe and tRNA-Pro were exchanged and tRNA-Phe had two copies. The control region comprised three parts, one between tRNA-Thr and tRNA-Phe, a second between tRNA-Pro and tRNA-Phe, and a third between tRNA-Phe and 12S RNA. The complete mitochondrial genome of P. versicolor provided fundamental data for resolving phylogenetic relationship problems related to Agaimidae and genus Phrynocephalus.


Assuntos
Genoma Mitocondrial/fisiologia , Lagartos/genética , Proteínas Mitocondriais/genética , Filogenia , Pigmentação da Pele , Animais , Sequência de Bases , Dados de Sequência Molecular , RNA/genética , RNA Mitocondrial , RNA Ribossômico/genética , RNA de Transferência/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-24989049

RESUMO

In the present study, the complete mitogenome of the hybrid of Siniperca scherzeri (♀) × Siniperca chuatsi (♂) is determined to be 16,504 bp long and showed a typical vertebrate pattern with 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a control region. The base composition of heave strand in descending order is C (29.61%), A (28.31%), T (25.61%) and G (16.47%), with a slight AT bias of 53.92%. All the protein-coding genes are initiated by typical ATG codon, except for COX1 gene with the initiation codon GTG. Nine genes end with the complete stop codon TAA or TAG, while the COX1, COX2, ND4 and CYTB genes terminate with an incomplete stop codon T. The complete mitogenome of the hybrid of S. scherzeri (♀) × S. chuatsi (♂) could provide an important data set for the study in mitochondrial inheritance mechanism.


Assuntos
Quimera/genética , Peixes/genética , Genes Mitocondriais/fisiologia , Genoma Mitocondrial/fisiologia , Animais , Feminino , Proteínas de Peixes/genética , Masculino , Proteínas Mitocondriais/genética , RNA/genética , RNA Mitocondrial , RNA Ribossômico/genética , RNA de Transferência/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-24989050

RESUMO

Sargassum fusiforme (Harvey) Setchell (=Hizikia fusiformis (Harvey) Okamura) is one of the most important economic seaweeds for mariculture in China. In this study, we present the complete mitochondrial genome of S. fusiforme. The genome is 34,696 bp in length with circular organization, encoding the standard set of three ribosomal RNA genes (rRNA), 25 transfer RNA genes (tRNA), 35 protein-coding genes, and two conserved open reading frames (ORFs). Its total AT content is 62.47%, lower than other brown algae except Pylaiella littoralis. The mitogenome carries 1571 bp of intergenic region constituting 4.53% of the genome, and 13 pairs of overlapping genes with the overlap size from 1 to 90 bp. The phylogenetic analyses based on 35 protein-coding genes reveal that S. fusiforme has a closer evolutionary relationship with Sargassum muticum than Sargassum horneri, indicating Hizikia are not distinct evolutionary entity and should be reduced to synonymy with Sargassum.


Assuntos
Evolução Molecular , Ordem dos Genes/fisiologia , Genoma Mitocondrial/fisiologia , Filogenia , Sargassum/classificação , Sargassum/genética , Sequência de Bases , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , RNA/genética , RNA Mitocondrial , RNA Ribossômico/genética , RNA de Transferência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA