Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
BMC Plant Biol ; 24(1): 254, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594633

RESUMO

BACKGROUND: The genus Caragana encompasses multiple plant species that possess medicinal and ecological value. However, some species of Caragana are quite similar in morphology, so identifying species in this genus based on their morphological characteristics is considerably complex. In our research, illumina paired-end sequencing was employed to investigate the genetic organization and structure of Caragana tibetica and Caragana turkestanica, including the previously published chloroplast genome sequence of 7 Caragana plants. RESULTS: The lengths of C. tibetica and C. turkestanica chloroplast genomes were 128,433 bp and 129,453 bp, respectively. The absence of inverted repeat sequences in these two species categorizes them under the inverted repeat loss clade (IRLC). They encode 110 and 111 genes (4 /4 rRNA genes, 30 /31tRNA genes, and 76 /76 protein-coding genes), respectively. Comparison of the chloroplast genomes of C. tibetica and C. turkestanica with 7 other Caragana species revealed a high overall sequence similarity. However, some divergence was observed between certain intergenic regions (matK-rbcL, psbD-psbM, atpA-psbI, and etc.). Nucleotide diversity (π) analysis revealed the detection of five highly likely variable regions, namely rps2-atpI, accD-psaI-ycf4, cemA-petA, psbN-psbH and rpoA-rps11. Phylogenetic analysis revealed that C. tibetica's sister species is Caragana jubata, whereas C. turkestanica's closest relative is Caragana arborescens. CONCLUSIONS: The present study provides worthwhile information about the chloroplast genomes of C. tibetica and C. turkestanica, which aids in the identification and classification of Caragana species.


Assuntos
Caragana , Genoma de Cloroplastos , Filogenia , Caragana/genética , Genoma de Cloroplastos/genética
2.
Genes (Basel) ; 15(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674341

RESUMO

Manglietia Blume, belonging to the Magnoliaceae family and mainly distributed in tropical and subtropical regions of Asia, has great scientific and economic value. In this study, we employed next-generation sequencing followed by de novo assembly to investigate the adaptive evolution of Manglietia using plastid genetic information. We newly sequenced the complete or nearly complete plastomes of four Manglietia species (Manglietia aromatica, Manglietia calcarea, Manglietia kwangtungensis, and Manglietia glauca) and conducted comparative analysis with seventeen published plastomes to examine the evolutionary pattern within this genus. The plastomes of these five newly sequenced Manglietia species range from 157,093 bp (M. calcarea2) to 160,493 bp (M. kwangtungensis), all exhibiting circular structures when mapped. Nucleotide diversity was observed across the plastomes, leading us to identify 13 mutational hotspot regions, comprising eight intergenic spacer regions and five gene regions. Our phylogenetic analyses based on 77 protein-coding genes generated phylogenetic relationships with high support and resolution for Manglietia. This genus can be divided into three clades, and the previously proposed infrageneric classifications are not supported by our studies. Furthermore, the close affinity between M. aromatica and M. calcarea is supported by the present work, and further studies are necessary to conclude the taxonomic treatment for the latter. These results provide resources for the comparative plastome, breeding, and plastid genetic engineering of Magnoliaceae and flowering plants.


Assuntos
Evolução Molecular , Genoma de Cloroplastos , Magnoliaceae , Filogenia , Genoma de Cloroplastos/genética , Magnoliaceae/genética , Sequenciamento de Nucleotídeos em Larga Escala , Cloroplastos/genética
3.
Genes (Basel) ; 15(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38674391

RESUMO

Korean wasabi occurs naturally on the young oceanic, volcanic Ulleung Island off the east coast of the Korean Peninsula. Although the Ulleung Island wasabi is reported as Eutrema japonicum and has been suggested to be morphologically identical to cultivars in Korea, very little is known about its taxonomic identity and relationship with other cultivars. In this study, we sequenced the complete chloroplast DNA sequences of three naturally occurring Ulleung Island wasabi plants and six cultivars ('Daewang', 'Daruma', 'Micado', 'Orochi', 'Green Thumb', and 'Shogun') from continental Korea and determined the taxonomic identity of Korean wasabi on Ulleung Island. The size and organization of the complete chloroplast genomes of the nine accessions were nearly identical to those of previously reported wasabi cultivars. In addition, phylogenetic analysis based on the complete plastomes suggested that Ulleung Island wasabi most likely comprises various wasabi cultivars with three chlorotypes ('Shogun', 'Green Thumb', and a unique Chusan type). Based on the complete plastomes, we identified eight chlorotypes for the major wasabi cultivars and the Ulleung Island wasabi. Two major groups (1-'Mazuma' and 'Daruma', and 2-'Fujidaruma'/'Shimane No. 3'/Ulleung Island wasabi/five cultivars in Korea) were also identified based on mother line genealogical history. Furthermore, different types of variations (mutations, insertions/deletions (indels), mononucleotide repeats, and inversions) in plastomes were identified to distinguish different cultivar lines and five highly divergent hotspots. The nine newly obtained complete plastomes are valuable organelle genomic resources for species identification and infraspecific phylogeographic studies on wild and cultivated wasabi.


Assuntos
Filogenia , República da Coreia , Genoma de Cloroplastos/genética , Ilhas , DNA de Cloroplastos/genética , Cloroplastos/genética
4.
Genes (Basel) ; 15(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674448

RESUMO

The mitochondrial genome (mitogenome) of Actinidia macrosperma, a traditional medicinal plant within the Actinidia genus, remains relatively understudied. This study aimed to sequence the mitogenome of A. macrosperma, determining its assembly, informational content, and developmental expression. The results revealed that the mitogenome of A. macrosperma is circular, spanning 752,501 bp with a GC content of 46.16%. It comprises 63 unique genes, including 39 protein-coding genes (PCGs), 23 tRNA genes, and three rRNA genes. Moreover, the mitogenome was found to contain 63 SSRs, predominantly mono-nucleotides, as well as 25 tandem repeats and 650 pairs of dispersed repeats, each with lengths equal to or greater than 60, mainly comprising forward repeats and palindromic repeats. Moreover, 53 homologous fragments were identified between the mitogenome and chloroplast genome (cp-genome), with the longest segment measuring 4296 bp. This study represents the initial report on the mitogenome of the A. macrosperma, providing crucial genetic materials for phylogenetic research within the Actinidia genus and promoting the exploitation of species genetic resources.


Assuntos
Actinidia , Genoma Mitocondrial , Filogenia , Genoma Mitocondrial/genética , Actinidia/genética , Genoma de Cloroplastos/genética , RNA de Transferência/genética , Composição de Bases/genética
5.
Sci Rep ; 14(1): 9783, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684694

RESUMO

The subfamily Polygonoideae encompasses a diverse array of medicinal and horticultural plants that hold significant economic value. However, due to the lack of a robust taxonomy based on phylogenetic relationships, the classification within this family is perplexing, and there is also a scarcity of reports on the chloroplast genomes of many plants falling under this classification. In this study, we conducted a comprehensive analysis by sequencing and characterizing the complete chloroplast genomes of six Polygonoideae plants, namely Pteroxygonum denticulatum, Pleuropterus multiflorus, Pleuropterus ciliinervis, Fallopia aubertii, Fallopia dentatoalata, and Fallopia convolvulus. Our findings revealed that these six plants possess chloroplast genomes with a typical quadripartite structure, averaging 162,931 bp in length. Comparative chloroplast analysis, codon usage analysis, and repetitive sequence analysis demonstrated a high level of conservation within the chloroplast genomes of these plants. Furthermore, phylogenetic analysis unveiled a distinct clade occupied by P. denticulatum, while P. ciliinrvis displayed a closer relationship to the three plants belonging to the Fallopia genus. Selective pressure analysis based on maximum likelihood trees showed that a total of 14 protein-coding genes exhibited positive selection, with psbB and ycf1 having the highest number of positive amino acid sites. Additionally, we identified four molecular markers, namely petN-psbM, psal-ycf4, ycf3-trnS-GGA, and trnL-UAG-ccsA, which exhibit high variability and can be utilized for the identification of these six plants.


Assuntos
Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , Seleção Genética , Marcadores Genéticos , Asteraceae/genética , Asteraceae/classificação , Evolução Molecular , Uso do Códon
6.
BMC Genomics ; 25(1): 396, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649816

RESUMO

BACKGROUND: While the size of chloroplast genomes (cpDNAs) is often influenced by the expansion and contraction of inverted repeat regions and the enrichment of repeats, it is the intergenic spacers (IGSs) that appear to play a pivotal role in determining the size of Pteridaceae cpDNAs. This provides an opportunity to delve into the evolution of chloroplast genomic structures of the Pteridaceae family. This study added five Pteridaceae species, comparing them with 36 published counterparts. RESULTS: Poor alignment in the non-coding regions of the Pteridaceae family was observed, and this was attributed to the widespread presence of overlong IGSs in Pteridaceae cpDNAs. These overlong IGSs were identified as a major factor influencing variations in cpDNA size. In comparison to non-expanded IGSs, overlong IGSs exhibited significantly higher GC content and were rich in repetitive sequences. Species divergence time estimations suggest that these overlong IGSs may have already existed during the early radiation of the Pteridaceae family. CONCLUSIONS: This study reveals new insights into the genetic variation, evolutionary history, and dynamic changes in the cpDNA structure of the Pteridaceae family, providing a fundamental resource for further exploring its evolutionary research.


Assuntos
Cloroplastos , DNA de Cloroplastos , Genoma de Cloroplastos , Pteridaceae , Pteridaceae/classificação , Pteridaceae/genética , Genoma de Cloroplastos/genética , Cloroplastos/genética , Elementos de DNA Transponíveis/genética , Filogenia , DNA de Cloroplastos/genética , Evolução Molecular , Variação Genética , Repetições de Microssatélites/genética , Fatores de Tempo , Especificidade da Espécie
7.
BMC Genom Data ; 25(1): 34, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528505

RESUMO

BACKGROUND: Calamus tetradactylus, a species primarily distributed in Vietnam, Laos, and southern China, is highly valued for its utilization as a small-diameter rattan material. While its physical and mechanical properties have been extensively studied, the genomic characteristics of C. tetradactylus remain largely unexplored. RESULTS: To gain a better understanding of its chloroplast genomic features and evolutionary relationships, we conducted sequencing and assembly of the chloroplast genome of C. tetradactylus. The complete chloroplast genome exhibited the typical highly conserved quartile structure, with specific variable regions identified in the single-copy region (like psbF-psbE, π = 0.10327, ndhF-rpl32, π = 0.10195), as well as genes such as trnT-GGU (π = 0.05764) and ycf1 (π = 0.03345) and others. We propose that these regions and genes hold potential as markers for species identification. Furthermore, phylogenetic analysis revealed that C. tetradactylus formed a distinct clade within the phylogenetic tree, alongside other Calamus species, and C. tetradactylus was most closely related to C. walkeri, providing support for the monophyly of the genus. CONCLUSION: The analysis of the chloroplast genome conducted in this study provides valuable insights that can contribute to the improvement of rattan breeding programs and facilitate sustainable development in the future.


Assuntos
Calamus , Genoma de Cloroplastos , Filogenia , Calamus/genética , Genoma de Cloroplastos/genética , Melhoramento Vegetal , Genômica
8.
Mol Biol Rep ; 51(1): 406, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459415

RESUMO

BACKGROUND: Bursera trees are conspicuous elements of the tropical dry forests in the Neotropics that have significant cultural value due to their fragrant resins (incense), wood sources (handcrafts), and ecological benefits. Despite their relevance, genetic resources developed for the genus are scarce. METHODS AND RESULTS: We obtained the complete chloroplast (Cp) genome sequence, analyzed the genome structure, and performed functional annotation of three Bursera species of the Bullockia section: Bursera cuneata, B. palmeri, and B. bipinnata. The Cp genome sizes ranged from 159,824 to 159,872 bp in length, including a large single-copy (LSC) region from 87,668 to 87,656 bp, a small single-copy (SSC) from 18,581 to 18,571 bp, and two inverted repeats regions (IRa and IRb) of 26,814 bp each. The three Cp genomes consisted of 135 genes, of which 90 were protein-coding, 37 tRNAs, and 8 rRNAs. The Cp genomes were relatively conserved, with the LSC region exhibiting the greatest nucleotide divergence (psbJ, trnQ-UCC, trnG-UCC, and petL genes), whereas few changes were observed in the IR border regions. Between 589 and 591 simple sequence repeats were identified. Analysis of phylogenetic relationships using our data for each Cp region (LSC, SSC, IRa, and IRb) and of seven species within Burseraceae confirmed that Commiphora is the sister genus of Bursera. Only the phylogenetic trees based on the SSC and LSC regions resolved the close relationship between B. bipinnata and B. palmeri. CONCLUSION: Our work contributes to the development of Bursera's genomic resources for taxonomic, evolutionary, and ecological-genetic studies.


Assuntos
Bursera , Genoma de Cloroplastos , Filogenia , Bursera/genética , Sulindaco , Genoma de Cloroplastos/genética , Genômica/métodos
9.
Genes (Basel) ; 15(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540322

RESUMO

Lindera aggregata is a species of the Lauraceae family, which has important medicinal, economic and ornamental values. In this study, we sequenced, assembled and annotated the chloroplast genome of L. aggregata and reannotated and corrected eight unverified annotations in the same genus. The chloroplast genomes taxa from Lindera and from different genera of Lauraceae were compared and analyzed, and their phylogenetic relationship and divergence time were speculated. All the 36 chloroplast genomes had typical quadripartite structures that ranged from 150,749 to 154,736 bp in total length. These genomes encoded 111-112 unique genes, including 78-79 protein-coding genes, 29-30 tRNA and 4 rRNA. Furthermore, there were 78-97 SSRs loci in these genomes, in which mononucleotide repeats were the most abundant; there were 24-49 interspersed repeats, and forward repeat types were the most frequent. The codon bias patterns of all species tended to use codons ending with A or U. Five and six highly variable regions were identified within genus and between genera, respectively, and three common regions (ycf1, ndhF-rpl32 and rpl32-trnL) were identified, which can be used as important DNA markers for phylogeny and species identification. According to the evaluation of the Ka/Ks ratio, most of the genes were under purifying selection, and only 10 genes were under positive selection. Finally, through the construction of the evolutionary tree of 39 chloroplast genomes, the phylogenetic relationship of Lauraceae was clarified and the evolutionary relationship of Lindera was revealed. The species of genus Lindera experienced rapid adaptive radiation from Miocene to Pleistocene. The results provided valuable insights for the study of chloroplast genomes in the Lauraceae family, especially in the genus Lindera.


Assuntos
Genoma de Cloroplastos , Lindera , Filogenia , Lindera/genética , Genoma de Cloroplastos/genética , Evolução Biológica , Marcadores Genéticos
10.
Sci Rep ; 14(1): 6472, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499663

RESUMO

Aeluropus littoralis, a halophyte grass, is widely distributed from the Mediterranean to the Indian subcontinent through the Mongolian Gobi. This model halophyte has garnered increasing attention owing to its use as forage and its high tolerance to environmental stressors. The chloroplast genomes of many plants have been extensively examined for molecular, phylogenetic and transplastomic applications. However, no published research on the A. littoralis chloroplast (cp) genome was discovered. Here, the entire chloroplast genome of A. littoralis was assembled implementing accurate long-read sequences. The entire chloroplast genome, with an estimated length of 135,532 bp (GC content: 38.2%), has a quadripartite architecture and includes a pair of inverted repeat (IR) regions, IRa and IRb (21,012 bp each), separated by a large and a small single-copy regions (80,823 and 12,685 bp, respectively). The features of A. littoralis consist of 133 genes that synthesize 87 peptides, 38 transfer RNAs, and 8 ribosomal RNAs. Of these genes, 86 were unique, whereas 19 were duplicated in IR regions. Additionally, a total of forty-six simple sequence repeats, categorized into 32-mono, four-di, two-tri, and eight-tetranucleotides, were discovered. Furthermore, ten sets of repeats greater than 20 bp were located primarily in the LSC region. Evolutionary analysis based on chloroplast sequence data revealed that A. littoralis with A. lagopoides and A. sinensis belong to the Aeluropodinae subtribe, which is a sister to the Eleusininae in the tribe Cynodonteae and the subfamily Chloridoideae. This subfamily belongs to the PACMAD clade, which contains the majority of the C4 photosynthetic plants in the Poaceae. The newly constructed A. littoralis cp genome offers valuable knowledge for DNA barcoding, phylogenetic, transplastomic research, and other biological studies.


Assuntos
Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , Poaceae/genética , Cloroplastos/genética , Fotossíntese
11.
Sci Rep ; 14(1): 5873, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467810

RESUMO

Lemnoideae, commonly referred to as the duckweed, are aquatic plants found worldwide. Wolffia species are known for their extreme reduction in size and complexity, lacking both roots and leaves, and they hold the distinction of being the smallest plants among angiosperms. Interestingly, it belongs to the Araceae family, despite its apparent morphological differences from land plants in the same family. Traditional morphological methods have limitations in classifying these plants, making molecular-level information essential. The chloroplast genome of Wolffia arrhiza is revealed that a total length of 169,602 bp and a total GC content of 35.78%. It follows the typical quadripartite structure, which includes a large single copy (LSC, 92,172 bp) region, a small single copy (SSC, 13,686 bp) region, and a pair of inverted repeat (IR, 31,872 bp each) regions. There are 131 genes characterized, comprising 86 Protein-Coding Genes, 37 Transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. Moreover, 48 simple sequence repeats and 32 long repeat sequences were detected. Comparative analysis between W. arrhiza and six other Lemnoideae species identified 12 hotspots of high nucleotide diversity. In addition, a phylogenetic analysis was performed using 14 species belonging to the Araceae family and one external species as an outgroup. This analysis unveiled W. arrhiza and Wolffia globosa as closely related sister species. Therefore, this research has revealed the complete chloroplast genome data of W. arrhiza, offering a more detailed understanding of its evolutionary position and phylogenetic categorization within the Lemnoideae subfamily.


Assuntos
Araceae , Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , Araceae/genética , Genômica
12.
BMC Genomics ; 25(1): 203, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389079

RESUMO

BACKGROUND: Firmiana danxiaensis is a critically endangered and ecologically important tree currently only found in four locations in Danxia or Karst habitats in northern Guangdong Province, China. The specialized habitat preference makes it an ideal model species for study of adaptive evolution. Meanwhile, the phylogenetic relationships of F. danxiaensis in four locations under two landforms are unclear. Therefore, we sequenced its complete chloroplast (cp.) genomes and conducted comprehensive interspecific and intrageneric plastome studies. RESULTS: The F. danxiaensis plastomes in four locations showed a typical quadripartite and circular structure that ranged from 160,832 to 161,206 bp in size, with 112 unique genes encoded. Comparative genomics showed that the plastomes of F. danxiaensis were relatively conserved with high similarity of genome organization, gene number, GC content and SSRs. While the genomes revealed higher biased codon preferences in Karst habitat than those in Danxia habitats. Eighteen and 11 divergent hotpots were identified at interspecific and intrageneric levels for species identification and further phylogenetic studies. Seven genes (clpP, accD, ccsA, ndhH, rpl20, rpoC2, and rps4) were under positive selection and may be related to adaptation. Phylogenetic analysis revealed that F. danxiaensis is sister to F. major and F. simplex. However, the interspecific relationships are not consistent with the habitat types. CONCLUSIONS: The characteristics and interspecific relationship of F. danxiaensis plastomes provide new insights into further integration of geographical factors, environmental factors, and genetic variations on the genomic study of F. danxiaensis. Together, our study will contribute to the study of species identification, population genetics, and conservation biology of F. danxiaensis.


Assuntos
Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , Genômica , Sequência de Bases , Genética Populacional
13.
J Plant Res ; 137(3): 377-393, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369599

RESUMO

The tree genus Dimorphandra (Fabaceae), which contains 26 species divided into three subgenera, was studied using DNA sequence data from six chloroplast genome regions (cpDNA) and the nuclear internal transcribed spacer (ITS). The analyses, which included Bayesian phylogenies and haplotype networks, ancestral area reconstructions, and ecological niche modeling, allowed for exploring the evolutionary history of Dimorphandra. Within the subgenus Phaneropsia, the cpDNA sequence data were more closely-related to species from the genus Mora, while the ITS sequence data displayed a closer phylogenetic relationship with the subgenus Pocillum. This incongruence may be due to incomplete lineage sorting associated with ancient polymorphisms. The Amazonian Dimophandra lineages were highly polymorphic and divergent, while those from the Cerrado and the Atlantic Forest had low levels of polymorphisms. The Amazon likely gave rise to the Dimophandra lineage that produced the Cerrado species, while a Cerrado lineage likely gave rise to the Atlantic Forest species. Habitat shifts were identified as a key factor in shaping the late evolutionary history of Dimorphandra.


Assuntos
Fabaceae , Florestas , Pradaria , Filogenia , Fabaceae/genética , Fabaceae/classificação , DNA de Cloroplastos/genética , Haplótipos , Evolução Biológica , Análise de Sequência de DNA , Genoma de Cloroplastos/genética , Teorema de Bayes , Evolução Molecular , DNA de Plantas/genética , Ecossistema
14.
Sci Rep ; 14(1): 4262, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383559

RESUMO

The genus Gleditsia has significant medicinal and economic value, but information about the chloroplast genomic characteristics of Gleditsia species has been limited. Using the Illumina sequencing, we assembled and annotated the whole chloroplast genomes of seven Gleditsia species (Gleditsia sinensis, Gleditsia japonica var. delavayi (G. delavayi), G. fera, G. japonica, G. microphylla, Fructus Gleditsiae Abnormalis (Zhu Yá Zào), G. microphylla mutant). The assembled genomes revealed that Gleditsia species have a typical circular tetrad structure, with genome sizes ranging from 162,746 to 170,907 bp. Comparative genomic analysis showed that most (65.8-75.8%) of the abundant simple sequence repeats in Gleditsia and Gymnocladus species were located in the large single copy region. The Gleditsia chloroplast genome prefer T/A-ending codons and avoid C/G-ending codons, positive selection was acting on the rpoA, rpl20, atpB, ndhA and ycf4 genes, most of the chloroplast genes of Gleditsia species underwent purifying selection. Expansion and contraction of the inverted repeat (IR)/single copy (SC) region showed similar patterns within the Gleditsia genus. Polymorphism analysis revealed that coding regions were more conserved than non-coding regions, and the IR region was more conserved than the SC region. Mutational hotspots were mostly found in intergenic regions such as "rps16-trnQ", "trnT-trnL", "ndhG-ndhI", and "rpl32-trnL" in Gleditsia. Phylogenetic analysis showed that G. fera is most closely related to G. sinensis,G. japonica and G. delavayi are relatively closely related. Zhu Yá Zào can be considered a bud mutation of the G. sinensis. The albino phenotype of G. microphylla mutant is not caused by variations in the chloroplast genome, and that the occurrence of the albino phenotype may be due to mutations in chloroplast-related genes involved in splicing or localization functions. This study will help us enhance our exploration of the genetic evolution and geographical origins of the Gleditsia genus.


Assuntos
Genoma de Cloroplastos , Gleditsia , Filogenia , Gleditsia/genética , Genoma de Cloroplastos/genética , Mutação , Códon/genética
15.
Sci Rep ; 14(1): 4547, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402284

RESUMO

The increasing number of plant mitochondrial DNA genomes (mtDNA) sequenced reveals the extent of transfer from both chloroplast DNA genomes (cpDNA) and nuclear DNA genomes (nDNA). This study created a library and assembled the chloroplast and mitochondrial genomes of the leafy sweet potato better to understand the extent of mitochondrial and chloroplast gene transfer. The full-length chloroplast genome of the leafy sweet potato (OM808940) is 161,387 bp, with 132 genes annotated, including 87 protein-coding genes, 8 rRNA genes, and 37 tRNA genes. The mitochondrial genome (OM808941) was 269,578 bp in length and contained 69 functional genes, including 39 protein-coding genes, 6 rRNA genes, and 24 tRNA genes. 68 SSR loci were found in the leafy sweet potato organelle genome, including 54 in the chloroplast genome and 14 in the mitochondria genome. In the sweet potato mitochondrial genome, most genes have RNA editing sites, and the conversion ratio from hydrophilic amino acids to hydrophobic amino acids is the highest, reaching 47.12%. Horizontal transfer occurs in the sweet potato organelle genome and nuclear genome. 40 mitochondrial genome segments share high homology with 14 chloroplast genome segments, 33 of which may be derived from chloroplast genome horizontal transfer. 171 mitochondrial genome sequences come from the horizontal transfer of nuclear genome. The phylogenetic analysis of organelle genes revealed that the leafy sweet potato was closely related to the tetraploid wild species Ipomoea tabascana and the wild diploid species Ipomoea trifida.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Ipomoea batatas , Ipomoea , Ipomoea batatas/genética , Filogenia , Genoma Mitocondrial/genética , Ipomoea/genética , Genoma de Cloroplastos/genética , Cloroplastos/genética , Aminoácidos/genética , RNA de Transferência/genética
16.
PLoS Comput Biol ; 20(2): e1011870, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335225

RESUMO

Chloroplasts are photosynthetic organelles in algal and plant cells that contain their own genome. Chloroplast genomes are commonly used in evolutionary studies and taxonomic identification and are increasingly becoming a target for crop improvement studies. As DNA sequencing becomes more affordable, researchers are collecting vast swathes of high-quality whole-genome sequence data from laboratory and field settings alike. Whole tissue read libraries sequenced with the primary goal of understanding the nuclear genome will inadvertently contain many reads derived from the chloroplast genome. These whole-genome, whole-tissue read libraries can additionally be used to assemble chloroplast genomes with little to no extra cost. While several tools exist that make use of short-read second generation and third-generation long-read sequencing data for chloroplast genome assembly, these tools may have complex installation steps, inadequate error reporting, poor expandability, and/or lack scalability. Here, we present CLAW (Chloroplast Long-read Assembly Workflow), an easy to install, customise, and use Snakemake tool to assemble chloroplast genomes from chloroplast long-reads found in whole-genome read libraries (https://github.com/aaronphillips7493/CLAW). Using 19 publicly available reference chloroplast genome assemblies and long-read libraries from algal, monocot and eudicot species, we show that CLAW can rapidly produce chloroplast genome assemblies with high similarity to the reference assemblies. CLAW was designed such that users have complete control over parameterisation, allowing individuals to optimise CLAW to their specific use cases. We expect that CLAW will provide researchers (with varying levels of bioinformatics expertise) with an additional resource useful for contributing to the growing number of publicly available chloroplast genome assemblies.


Assuntos
Genoma de Cloroplastos , Humanos , Genoma de Cloroplastos/genética , Fluxo de Trabalho , Análise de Sequência de DNA , Biologia Computacional , Cloroplastos/genética , Sequenciamento de Nucleotídeos em Larga Escala
17.
BMC Genom Data ; 25(1): 16, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336648

RESUMO

BACKGROUND: Numerous species within the genus Caragana have high ecological and medicinal value. However, species identification based on morphological characteristics is quite complicated in the genus. To address this issue, we analyzed complete plastid genome data for the genus. RESULTS: We obtained chloroplast genomes of two species, Caragana arborescens and Caragana opulens, using Illumina sequencing technology, with lengths of 129,473 bp and 132,815 bp, respectively. The absence of inverted repeat sequences in the two species indicated that they could be assigned to the inverted repeat-lacking clade (IRLC). The genomes included 111 distinct genes (4 rRNA genes, 31 tRNA genes, and 76 protein-coding genes). In addition, 16 genes containing introns were identified in the two genomes, the majority of which contained a single intron. Repeat analyses revealed 129 and 229 repeats in C. arborescens and C. opulens, respectively. C. arborescens and C. opulens genomes contained 277 and 265 simple sequence repeats, respectively. The two Caragana species exhibited similar codon usage patterns. rpl20-clpP, rps19-rpl2, and rpl23-ycf2 showed the highest nucleotide diversity (pi). In an analysis of sequence divergence, certain intergenic regions (matK-rbcL, psbM-petN, atpA-psbI, petA-psbL, psbE-petL, and rps7-rps12) were highly variable. A phylogenetic analysis showed that C. arborescens and C. opulens were related and clustered together with four other Caragana species. The genera Astragalus and Caragana were relatively closely related. CONCLUSIONS: The present study provides valuable information about the chloroplast genomes of C. arborescens and C. opulens and lays a foundation for future phylogenetic research and molecular marker development.


Assuntos
Caragana , Genoma de Cloroplastos , Genomas de Plastídeos , Genoma de Cloroplastos/genética , Filogenia , Íntrons/genética
18.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 280-291, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38258647

RESUMO

In this study, the chloroplast genome of Camellia insularis Orel & Curry was sequenced using high-throughput sequencing technology. The results showed that the chloroplast genome of C. insularis was 156 882 bp in length with a typical tetrad structure, encoding 132 genes, including 88 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. Codon preference analysis revealed that the highest number of codons coded for leucine, with a high A/U preference in the third codon position. Additionally, 67 simple sequence repeats (SSR) loci were identified, with a preference for A and T bases. The inverted repeat (IR) boundary regions of the chloroplast genome of C. insularis were relatively conserved, except for a few variable regions. Phylogenetic analysis indicated that C. insularis was most closely related to C. fascicularis. Yellow camellia is a valuable material for genetic engineering breeding. This study provides fundamental genetic information on chloroplast engineering and offers valuable resources for conducting in-depth research on the evolution, species identification, and genomic breeding of yellow Camellia.


Assuntos
Camellia , Genoma de Cloroplastos , Genoma de Cloroplastos/genética , Filogenia , Melhoramento Vegetal , Camellia/genética , Cloroplastos/genética
19.
BMC Genomics ; 25(1): 108, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267876

RESUMO

BACKGROUND: Sect. Tuberculata belongs to Camellia, and its members are characterized by a wrinkled pericarp and united filaments. All the plants in this group, which are endemic to China, are highly valuable for exploring the evolution of Camellia and have great potential for use as an oil source. However, due to the complex and diverse phenotypes of these species and the difficulty of investigating them in the field, their complex evolutionary history and interspecific definitions have remained largely unelucidated. RESULTS: Therefore, we newly sequenced and annotated 12 chloroplast (cp) genomes and retrieved the published cp genome of Camellia anlungensis Chang in sect. Tuberculata. In this study, comparative analysis of the cp genomes of the thirteen sect. Tuberculata species revealed a typical quadripartite structure characterized by a total sequence length ranging from 156,587 bp to 157,068 bp. The cp.genome arrangement is highly conserved and moderately differentiated. A total of 130 to 136 genes specific to the three types were identified by annotation, including protein-coding genes (coding sequences (CDSs)) (87-91), tRNA genes (35-37), and rRNA genes (8). The total observed frequency ranged from 23,045 (C. lipingensis) to 26,557 (C. anlungensis). IR region boundaries were analyzed to show that the ycf1 gene of C. anlungensis is located in the IRb region, while the remaining species are present only in the IRa region. Sequence variation in the SSC region is greater than that in the IR region, and most protein-coding genes have high codon preferences. Comparative analyses revealed six hotspot regions (tRNA-Thr(GGT)-psbD, psbE-petL, ycf15-tRNA-Leu(CAA), ndhF-rpl32, ndhD, and trnL(CAA)-ycf15) in the cp genomes that could serve as potential molecular markers. In addition, the results of phylogenetic tree construction based on the cp genomes showed that the thirteen sect. Tuberculata species formed a monophyletic group and were divided into two evolutionarily independent clades, confirming the independence of the section. CONCLUSIONS: In summary, we obtained the cp genomes of thirteen sect. Tuberculata plants and performed the first comparative analysis of this group. These results will help us better characterize the plants in this section, deepen our understanding of their genetic characteristics and phylogenetic relationships, and lay the theoretical foundation for their accurate classification, elucidation of their evolutionary changes, and rational development and utilization of this section in the future.


Assuntos
Camellia , Genoma de Cloroplastos , Filogenia , Camellia/genética , Genoma de Cloroplastos/genética , Genômica , RNA de Transferência
20.
PLoS One ; 19(1): e0295550, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271463

RESUMO

Juniperus species are shrubs or trees in the family Cupressaceae that play an important role in forest ecosystems. In this study, we report the complete sequences of the plastid (pt) genomes of five Juniperus species collected in Kazakhstan (J. communis, J. sibirica, J. pseudosabina, J. semiglobosa, and J. davurica). The sequences of the pt genomes of the five species were annotated in addition to two full pt genome sequences from J. sabina and J. seravschanica, which we have previously reported. The pt genome sequences of these seven species were compared to the pt genomes of Juniperus species available in the public NCBI database. The total length of the pt genomes of Juniperus species, including previously published pt genome data, ranged from 127,469 bp (J. semiglobosa) to 128,097 bp (J. communis). Each Juniperus plastome consisted of 119 genes, including 82 protein-coding genes, 33 transfer RNA and 4 ribosomal RNA genes. Among the identified genes, 16 contained one or two introns, and 2 tRNA genes were duplicated. A comparative assessment of pt genome sequences suggested the identification of 1145 simple sequence repeat markers. A phylogenetic tree of 26 Juniperus species based on the 82 protein-coding genes separated the Juniperus samples into two major clades, corresponding to the Juniperus and Sabina sections. The analysis of pt genome sequences indicated that accD and ycf2 were the two most polymorphic genes. The phylogenetic evaluation of 26 Juniperus species using these two genes confirmed that they can be efficiently used as DNA barcodes for phylogenetic analyses in the genus. The sequenced plastomes of these Juniperus species have provided a large amount of genetic data that will be valuable for future genomic studies of this genus.


Assuntos
Genoma de Cloroplastos , Juniperus , Genoma de Cloroplastos/genética , Juniperus/genética , Filogenia , Cazaquistão , Ecossistema , Repetições de Microssatélites/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA