Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.920
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 12(4): e1222, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992963

RESUMO

Gentamicin is an aminoglycoside antibiotic with a rapid bactericidal effect on the treatment of many infections. However, its use at high concentrations for more than 7 days causes nephrotoxic side effects. This study investigated the potential of Resatorvid and alpha lipoic acid (ALA) in mitigating gentamicin-induced nephrotoxicity in rats, considering biochemical, histopathological, and molecular parameters. This study randomly distributed 34 Wistar albino rats into four groups: healthy control (n = 6), Gentamicin (80 mg/kg, n = 7), Gentamicin + Sham (%10 hydroalcoholic solution, n = 7), Gentamicin + Resatorvid (5 mg/kg, n = 7), and Gentamicin + ALA (100 mg/kg, n = 7). Resatorvid treatment led to a statistically significant decrease in urinary IL-18, KIM-1, and NGAL levels, whereas ALA treatment significantly reduced KIM-1 levels compared to the gentamicin-only group. Both Resatorvid and ALA showed partial reductions in urine creatinine levels. Moreover, treatments with Resatorvid and ALA resulted in statistically significant decreases in NRF-2, CAS-3, and NR4A2 expressions. However, only Resatorvid demonstrated a statistically significant decrease in NF-B expression. These findings highlight the potential of Resatorvid in ameliorating gentamicin-induced nephrotoxicity, thereby expanding the therapeutic utility of gentamicin and enhancing its efficacy against infections.


Assuntos
Antibacterianos , Gentamicinas , Ratos Wistar , Ácido Tióctico , Gentamicinas/toxicidade , Gentamicinas/efeitos adversos , Animais , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Ratos , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Creatinina/sangue , Creatinina/urina , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Moléculas de Adesão Celular
2.
ACS Appl Bio Mater ; 7(7): 4642-4653, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38967050

RESUMO

Titanium-based implants have long been studied and used for applications in bone tissue engineering, thanks to their outstanding mechanical properties and appropriate biocompatibility. However, many implants struggle with osseointegration and attachment and can be vulnerable to the development of infections. In this work, we have developed a composite coating via electrophoretic deposition, which is both bioactive and antibacterial. Mesoporous bioactive glass particles with gentamicin were electrophoretically deposited onto a titanium substrate. In order to validate the hypothesis that the quantity of particles in the coatings is sufficiently high and uniform in each deposition process, an easy-to-use image processing algorithm was designed to minimize human dependence and ensure reproducible results. The addition of loaded mesoporous particles did not affect the good adhesion of the coating to the substrate although roughness was clearly enhanced. After 7 days of immersion, the composite coatings were almost dissolved and released, but phosphate-related compounds started to nucleate at the surface. With a simple and low-cost technique like electrophoretic deposition, and optimized stir and suspension times, we were able to synthesize a hemocompatible coating that significantly improves the antibacterial activity when compared to the bare substrate for both Gram-positive and Gram-negative bacteria.


Assuntos
Antibacterianos , Quitosana , Eletroforese , Gentamicinas , Vidro , Teste de Materiais , Nanopartículas , Tamanho da Partícula , Propriedades de Superfície , Titânio , Gentamicinas/farmacologia , Gentamicinas/química , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Vidro/química , Nanopartículas/química , Quitosana/química , Quitosana/farmacologia , Porosidade , Testes de Sensibilidade Microbiana , Humanos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Próteses e Implantes , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
3.
FP Essent ; 542: 14-22, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39018126

RESUMO

Vertigo, an unexpected feeling of self-motion, is no longer characterized simply by symptom quality but by using triggers and timing. Evaluating vertigo by triggers and timing not only distinguishes serious central causes from benign peripheral causes, but also narrows the differential diagnosis by further classifying vertigo as spontaneous episodic vestibular syndrome, triggered episodic vestibular syndrome, or acute vestibular syndrome. A targeted physical examination can then be used to further delineate the cause within each of these three vestibular categories. Neuroimaging and vestibular testing are not routinely recommended. In the management of vertigo, vestibular hypofunction can be treated with vestibular rehabilitation, which can be self-administered or directed by a physical therapist. Pharmacotherapy sometimes is indicated for vertigo based on triggers, timing, and the specific condition, but it is not always beneficial and is used more often for symptom reduction than as a cure. Transtympanic corticosteroid or gentamicin injections are recommended for patients who do not benefit from nonablative therapy. Surgical ablative therapy is reserved for patients who have not benefited from less definitive therapy and have nonusable hearing.


Assuntos
Vertigem , Humanos , Vertigem/terapia , Vertigem/diagnóstico , Vertigem/etiologia , Diagnóstico Diferencial , Exame Físico/métodos , Medicina de Família e Comunidade/métodos , Gentamicinas/uso terapêutico , Antibacterianos/uso terapêutico , Testes de Função Vestibular/métodos
4.
Arch Microbiol ; 206(7): 292, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849633

RESUMO

In recent years, the evolution of antibiotic resistance has led to the inefficacy of several antibiotics, and the reverse of resistance was a novel method to solve this problem. We previously demonstrated that matrine (Mat) and berberine hydrochloride (Ber) had a synergistic effect against multidrug-resistant Escherichia coli (MDREC). This study aimed to demonstrate the effect of Mat combined with Ber in reversing the resistance of MDREC. The MDREC was sequenced passaged in the presence of Mat, Ber, and a combination of Mat and Ber, which did not affect its growth. The reverse rate was up to 39.67% after MDREC exposed to Mat + Ber for 15 days. The strain that reversed resistance was named drug resistance reversed E. coli (DRREC) and its resistance to ampicillin, streptomycin, gentamicin, and tetracycline was reversed. The MIC of Gentamicin Sulfate (GS) against DRREC decreased 128-fold to 0.63 µg/mL, and it was stable within 20 generations. Furthermore, the susceptible phenotype of DRREC remained stable within 20 generations, as well. The LD50 of DRREC for chickens was 8.69 × 109 CFU/mL. qRT-PCR assays revealed that the transcript levels of antibiotic-resistant genes and virulence genes in the DRREC strain were significantly lower than that in the MDREC strain (P < 0.05). In addition, GS decreased the death, decreased the bacterial loading in organs, alleviated the injury of the spleen and liver, and decreased the cytokine levels in the chickens infected by the DRREC strain. In contrast, the therapeutic effect of GS in chickens infected with MDREC was not as evident. These findings suggest that the combination of Mat and Ber has potential for reversing resistance to MDREC.


Assuntos
Alcaloides , Antibacterianos , Berberina , Galinhas , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Gentamicinas , Matrinas , Testes de Sensibilidade Microbiana , Doenças das Aves Domésticas , Quinolizinas , Animais , Gentamicinas/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Berberina/farmacologia , Antibacterianos/farmacologia , Quinolizinas/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Alcaloides/farmacologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/tratamento farmacológico , Virulência/efeitos dos fármacos , Sinergismo Farmacológico
5.
BMC Vet Res ; 20(1): 257, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867200

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is nowadays a major emerging challenge for public health worldwide. The over- and misuse of antibiotics, including those for cell culture, are promoting AMR while also encouraging the research and employment of alternative drugs. The addition of antibiotics to the cell media is strongly recommended in sperm preservation, being gentamicin the most used for boar semen. Because of its continued use, several bacterial strains present in boar semen have developed resistance to this antibiotic. Antimicrobial peptides and proteins (AMPPs) are promising candidates as alternative antibiotics because their mechanism of action is less likely to promote AMR. In the present study, we tested two AMPPs (lysozyme and nisin; 50 and 500 µg/mL) as possible substitutes of gentamicin for boar semen preservation up to 48 h of storage. RESULTS: We found that both AMPPs improved sperm plasma membrane and acrosome integrity during semen storage. The highest concentration tested for lysozyme also kept the remaining sperm parameters unaltered, at 48 h of semen storage, and reduced the bacterial load at comparable levels of the samples supplemented with gentamicin (p > 0.05). On the other hand, while nisin (500 µg/mL) reduced the total Enterobacteriaceae counts, it also decreased the rapid and progressive sperm population and the seminal oxidation-reduction potential (p < 0.05). CONCLUSIONS: The protective effect of lysozyme on sperm function together with its antimicrobial activity and inborn presence in body fluids, including semen and cervical mucus, makes this enzyme a promising antimicrobial agent for boar semen preservation.


Assuntos
Antibacterianos , Muramidase , Nisina , Preservação do Sêmen , Animais , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Masculino , Antibacterianos/farmacologia , Suínos , Muramidase/farmacologia , Nisina/farmacologia , Sêmen/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Gentamicinas/farmacologia , Acrossomo/efeitos dos fármacos
6.
Curr Aging Sci ; 17(2): 118-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904154

RESUMO

Containing information molecules from their parent cells and inclining to fuse with targeted cells, bone marrow mesenchymal stromal cells-derived extracellular vesicles (MSCs- EV) are valuable in nanomedicine. BACKGROUND: The effects of aging on the paracrine mechanism and in the production and action of MSCs-EV and their cargos of miR-26a and siRNA-26a for the treatment of tubular renal cells under nephrotoxicity injury remain unelucidated. OBJECTIVE: The purpose of this study was to evaluate MSCs-EV of different ages and their ability to deliver the cargos of miR-26a and siRNA-26a to target renal tubular cells affected by nephrotoxicity injury. METHODS: In a model of gentamicin-induced nephrotoxicity, renal tubular cells treated with MSCs-EV expressing or not expressing microRNA-26a were analyzed. Western blotting was utilized to evaluate cell cycle markers, and MTT assay was utilized to evaluate auto-renovation capacity. RESULTS: Tubular cells under nephrotoxicity injury showed decreased proliferative capacity, but the treatment in the tubular renal cells under nephrotoxicity injury with MSCs-EV expressing microRNA-26a showed nephroprotective effects, regardless of EV age. While the treatment with EV-mediated siRNA-26a failed to preserve the nephroprotective effects equally, regardless of age. CONCLUSION: Mesenchymal stromal cell nanovesicles carry microRNA with nephroprotective proprieties regardless of aging.


Assuntos
Proliferação de Células , Túbulos Renais , Células-Tronco Mesenquimais , MicroRNAs , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Envelhecimento/genética , Gentamicinas/toxicidade , Gentamicinas/efeitos adversos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Fatores Etários , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Linhagem Celular , Células Cultivadas , Comunicação Parácrina , Modelos Animais de Doenças , Humanos
7.
Molecules ; 29(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38893378

RESUMO

Metabolic reprogramming mediates antibiotic efficacy. However, metabolic adaptation of microbes evolving from antibiotic sensitivity to resistance remains undefined. Therefore, untargeted metabolomics was conducted to unveil relevant metabolic reprogramming and potential intervention targets involved in gentamicin resistance. In total, 61 metabolites and 52 metabolic pathways were significantly altered in gentamicin-resistant E. coli. Notably, the metabolic reprogramming was characterized by decreases in most metabolites involved in carbohydrate and amino acid metabolism, and accumulation of building blocks for nucleotide synthesis in gentamicin-resistant E. coli. Meanwhile, fatty acid metabolism and glycerolipid metabolism were also significantly altered in gentamicin-resistant E. coli. Additionally, glycerol, glycerol-3-phosphate, palmitoleate, and oleate were separately defined as the potential biomarkers for identifying gentamicin resistance in E. coli. Moreover, palmitoleate and oleate could attenuate or even abolished killing effects of gentamicin on E. coli, and separately increased the minimum inhibitory concentration of gentamicin against E. coli by 2 and 4 times. Furthermore, palmitoleate and oleate separately decreased intracellular gentamicin contents, and abolished gentamicin-induced accumulation of reactive oxygen species, indicating involvement of gentamicin metabolism and redox homeostasis in palmitoleate/oleate-promoted gentamicin resistance in E. coli. This study identifies the metabolic reprogramming, potential biomarkers and intervention targets related to gentamicin resistance in bacteria.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Escherichia coli , Ácidos Graxos Monoinsaturados , Gentamicinas , Ácido Oleico , Gentamicinas/farmacologia , Gentamicinas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Antibacterianos/farmacologia , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Testes de Sensibilidade Microbiana , Metabolômica/métodos , Redes e Vias Metabólicas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
8.
Bull Exp Biol Med ; 176(6): 816-819, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38896319

RESUMO

We studied the effect of antibiotic gentamicin at concentrations of 0.05, 0.1, 0.2, 0.4, and 1 mg/ml on the maintenance of sperm motility of the common toad Bufo bufo during cold storage of spermic urine samples at 4°C. Parameters of sperm motility during storage of samples with gentamicin at concentrations of 0.05-0.4 mg/ml did not differ significantly, but were higher (p<0.0001) than in the control (storage without antibiotic). Gentamicin at a concentration of 1 mg/ml had a negative effect on sperm motility. After 2 weeks of storage of toad spermic urine samples with gentamicin, the largest number of sperm was preserved when using antibiotic at a concentration of 0.4 mg/ml.


Assuntos
Antibacterianos , Bufo bufo , Gentamicinas , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Animais , Gentamicinas/farmacologia , Masculino , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Antibacterianos/farmacologia
9.
J Microorg Control ; 29(2): 81-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880620

RESUMO

Although recent propagation of carbapenemase-producing Enterobacterales (CPE) has become a problem worldwide, the picture of CPE infection in Japan has not fully been elucidated. In this study, we examined clinical and microbiological characteristics of invasive CPE infection occurring at 8 hospitals in Minami Ibaraki Area between July 2001 to June 2017. Of 7294 Enterobacterales strains isolated from independent cases of bacteremia and/or meningitis, 10 (0.14%) were CPE (8 Enterobacter cloacae-complex, 1 Escherichia coli, and 1 Edwardsiella tarda), all of which had the blaIMP-1 gene and susceptible to gentamicin and trimethoprim/sulfamethoxazole. These strains were isolated from 7 adult and 2 infant bacteremia (1 infant patient developed CPE bacteremia twice) after 2007. The most common portal of entry was intravenous catheters. All of the adult patients were recovered, while the infant patients eventually died. Genomic analyses showed that the 8 E. cloacae-complex strains were classified into 5 groups, each of which was exclusively detected in specific facilities at intervals of up to 3 years, suggesting persistent colonization in the facilities. This study showed that invasive CPE infection in the area was rare, caused by IMP-1-type CPE having susceptibility to various antibiotics, and nonfatal among adult patients.


Assuntos
Antibacterianos , Bacteriemia , Proteínas de Bactérias , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , beta-Lactamases , Humanos , Japão/epidemiologia , Bacteriemia/microbiologia , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Masculino , Feminino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lactente , Pessoa de Meia-Idade , Adulto , Idoso , Enterobacter cloacae/genética , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Idoso de 80 Anos ou mais , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação
10.
ACS Sens ; 9(5): 2622-2633, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38700898

RESUMO

Early diagnosis of drug-induced kidney injury (DIKI) is essential for clinical treatment and intervention. However, developing a reliable method to trace kidney injury origins through retrospective studies remains a challenge. In this study, we designed ordered fried-bun-shaped Au nanocone arrays (FBS NCAs) to create microarray chips as a surface-enhanced Raman scattering (SERS) analysis platform. Subsequently, the principal component analysis (PCA)-two-layer nearest neighbor (TLNN) model was constructed to identify and analyze the SERS spectra of exosomes from renal injury induced by cisplatin and gentamycin. The established PCA-TLNN model successfully differentiated the SERS spectra of exosomes from renal injury at different stages and causes, capturing the most significant spectral features for distinguishing these variations. For the SERS spectra of exosomes from renal injury at different induction times, the accuracy of PCA-TLNN reached 97.8% (cisplatin) and 93.3% (gentamicin). For the SERS spectra of exosomes from renal injury caused by different agents, the accuracy of PCA-TLNN reached 100% (7 days) and 96.7% (14 days). This study demonstrates that the combination of label-free exosome SERS and machine learning could serve as an innovative strategy for medical diagnosis and therapeutic intervention.


Assuntos
Cisplatino , Ouro , Aprendizado de Máquina , Análise de Componente Principal , Análise Espectral Raman , Análise Espectral Raman/métodos , Animais , Ouro/química , Exossomos/química , Gentamicinas/análise , Nanopartículas Metálicas/química
11.
Braz J Microbiol ; 55(2): 1189-1203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705960

RESUMO

Alginate is a major extra polymeric substance in the biofilm formed by mucoid Pseudomonas aeruginosa. It is the main proven perpetrator of lung infections in patients suffering from cystic fibrosis. Alginate lyases are very important in the treatment of cystic fibrosis. This study evaluated the role of standalone and in conjugation, effect of alginate lyase of SG4 + isolated from Paenibacillus lautus in enhancing in vitro bactericidal activity of gentamicin and amikacin on mucoid P. aeruginosa. Using Response Surface Methodology (RSM) alginate lyase SG4 + production was optimized in shake flask and there 8.49-fold enhancement in enzyme production. In fermenter, maximum growth (10.15 mg/ml) and alginate lyase (1.46 International Units) production, 1.71-fold was increased using Central Composite Design (CCD). Further, fermentation time was reduced from 48 to 20 h. To the best of our knowledge this is the first report in which CCD was used for fermenter studies to optimize alginate lyase production. The Km and Vmax of purified enzyme were found to be 2.7 mg/ml and 0.84 mol/ml-min, respectively. The half-life (t 1/2) of purified alginate lyase SG4 + at 37 °C was 180 min. Alginate lyase SG4 + in combination with gentamicin and amikacin eradiated 48.4- 52.3% and 58- 64.6%, alginate biofilm formed by P. aeruginosa strains, respectively. The study proves that alginate lyase SG4 + has excellent exopolysaccharide disintegrating ability and may be useful in development of potent therapeutic agent to treat P. aeruginosa biofilms.


Assuntos
Antibacterianos , Biofilmes , Paenibacillus , Polissacarídeo-Liases , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Polissacarídeo-Liases/metabolismo , Polissacarídeo-Liases/genética , Antibacterianos/farmacologia , Paenibacillus/genética , Paenibacillus/enzimologia , Paenibacillus/efeitos dos fármacos , Gentamicinas/farmacologia , Amicacina/farmacologia , Fermentação , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Alginatos/metabolismo
12.
Microbiology (Reading) ; 170(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739119

RESUMO

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Assuntos
Antibacterianos , Biofilmes , Ciprofloxacina , Modelos Animais de Doenças , Ceratite , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Antibacterianos/farmacologia , Suínos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Biofilmes/efeitos dos fármacos , Ceratite/microbiologia , Ceratite/tratamento farmacológico , Ciprofloxacina/farmacologia , Gentamicinas/farmacologia , Meropeném/farmacologia
13.
J Dent ; 146: 105046, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38729285

RESUMO

OBJECTIVES: The high prevalence of antibiotic-resistant bacteria poses a threat to the global public health. The appropriate use of adjuvants to restore the antimicrobial activity of antibiotics against resistant bacteria could be an effective strategy for combating antibiotic resistance. In this study, we investigated the counteraction of Triton X-100 (TX-100) and the mechanisms underlying the antibiotic resistance of Enterococcus faecalis (E. faecalis). METHODS: Standard, wild-type (WT), and induced antibiotic-resistant E. faecalis strains were used in this study. In vitro antibacterial experiments were conducted to evaluate the antimicrobial activities of gentamicin sulfate and ciprofloxacin hydrochloride in the presence and absence of 0.02 % TX-100 against both planktonic and biofilm bacteria. Transcriptomic and untargeted metabolomic analyses were performed to explore the molecular mechanisms of TX-100 as an antibiotic adjuvant. Additionally, membrane permeability, membrane potential, glycolysis-related enzyme activity, intracellular adenosine triphosphate (ATP), and expression levels of virulence genes were assessed. The biocompatibility of different drug combinations was also evaluated. RESULTS: A substantially low TX-100 concentration improved the antimicrobial effects of gentamicin sulfate or ciprofloxacin hydrochloride against antibiotic-resistant E. faecalis. Mechanistic studies demonstrated that TX-100 increased cell membrane permeability and dissipated membrane potential. Moreover, antibiotic resistance and pathogenicity of E. faecalis were attenuated by TX-100 via downregulation of the ABC transporter, phosphotransferase system (PTS), and ATP supply. CONCLUSIONS: TX-100 enhanced the antimicrobial activity of gentamicin sulfate and ciprofloxacin hydrochloride at a low concentration by improving antibiotic susceptibility and attenuating antibiotic resistance and pathogenicity of E. faecalis. CLINICAL SIGNIFICANCE: These findings provide a theoretical basis for developing new root canal disinfectants that can reduce antibiotic resistance.


Assuntos
Antibacterianos , Biofilmes , Ciprofloxacina , Farmacorresistência Bacteriana , Enterococcus faecalis , Gentamicinas , Testes de Sensibilidade Microbiana , Octoxinol , Enterococcus faecalis/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Gentamicinas/farmacologia , Octoxinol/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Trifosfato de Adenosina/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Glicólise/efeitos dos fármacos
14.
Mol Biol Rep ; 51(1): 655, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739285

RESUMO

BACKGROUND: There is limited data regarding the hazardous effect of gentamicin (GM) on the uterus and whether or not vinpocetine (Vinpo) ameliorates it. The present study aimed to identify the possible protective effect of Vinpo in GM-induced uterine injury in rats. METHODS: Female rats were assorted in control-group, Vinpo-group, GM-group, and Vinpo plus GM group. Serum and uterine GM concentration were measured. Uterine oxidative stress parameters besides inflammatory and apoptotic biomarkers were evaluated. Uterine histopathological examination and interlukin-1beta (IL-1ß) immune-histochemical study were detected. RESULTS: GM significantly increased uterine oxidative stress, inflammatory and apoptotic biomarkers. Histopathological picture of uterine damage and increased IL-1ß immunoexpression were detected. Vinpo significantly ameliorated the distributed GM concentration, oxidative stress, inflammatory and apoptotic biomarkers with a prompt improvement in histopathological picture and a decrease in IL-1ß immunoexpression. CONCLUSION: Vinpo protective effect against GM-induced uterine injury involves modulation of inflammasome/caspase-1/IL-1ß signaling pathway.


Assuntos
Caspase 1 , Gentamicinas , Inflamassomos , Interleucina-1beta , Estresse Oxidativo , Transdução de Sinais , Útero , Alcaloides de Vinca , Animais , Feminino , Interleucina-1beta/metabolismo , Alcaloides de Vinca/farmacologia , Ratos , Caspase 1/metabolismo , Gentamicinas/efeitos adversos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/metabolismo , Útero/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos
15.
Int Immunopharmacol ; 133: 112170, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691919

RESUMO

Acute kidney injury (AKI) is characterized by a sudden decline in renal function. Traditional Chinese medicine has employed Fuzi for kidney diseases; however, concerns about neurotoxicity and cardiotoxicity have constrained its clinical use. This study explored mesaconine, derived from processed Fuzi, as a promising low-toxicity alternative for AKI treatment. In this study, we assessed the protective effects of mesaconine in gentamicin (GM)-induced NRK-52E cells and AKI rat models in vitro and in vivo, respectively. Mesaconine promotes the proliferation of damaged NRK-52E cells and down-regulates intracellular transforming growth factor ß1 (TGF-ß1) and kidney injury molecule 1 (KIM-1) to promote renal cell repair. Concurrently, mesaconine restored mitochondrial morphology and permeability transition pores, reversed the decrease in mitochondrial membrane potential, mitigated mitochondrial dysfunction, decreased ATP production, inhibited inflammatory factor release, and reduced early apoptosis rates. In vivo, GM-induced AKI rat models exhibited elevated AKI biomarkers, in which mesaconine was effectively reduced, indicating improved renal function. Mesaconine enhanced superoxide dismutase activity, reduced malondialdehyde content, alleviated inflammatory infiltrate, mitigated tubular and glomerular lesions, and downregulated NF-κB (nuclear factor-κb) p65 expression, leading to decreased tumor necrosis factor-α (TNF-α) and IL-1ß (interleukin-1ß) levels in GM-induced AKI animals. Furthermore, mesaconine inhibited the expression of renal pro-apoptotic proteins (Bax, cytochrome c, cleaved-caspase 9, and cleaved-caspase 3) and induced the release of the anti-apoptotic protein bcl-2, further suppressing apoptosis. This study highlighted the therapeutic potential of mesaconine in GM-induced AKI. Its multifaceted mechanisms, including the restoration of mitochondrial dysfunction, anti-inflammatory and antioxidant effects, and apoptosis mitigation, make mesaconine a promising candidate for further exploration in AKI management.


Assuntos
Aconitum , Injúria Renal Aguda , Apoptose , Rim , Mitocôndrias , Ratos Sprague-Dawley , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Apoptose/efeitos dos fármacos , Aconitum/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Ratos , Linhagem Celular , Rim/efeitos dos fármacos , Rim/patologia , Gentamicinas/toxicidade , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Aconitina/análogos & derivados , Aconitina/farmacologia , Aconitina/uso terapêutico , Modelos Animais de Doenças , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Diterpenos
16.
PLoS One ; 19(5): e0303039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701045

RESUMO

The complexity of chronic wounds creates difficulty in effective treatments, leading to prolonged care and significant morbidity. Additionally, these wounds are incredibly prone to bacterial biofilm development, further complicating treatment. The current standard treatment of colonized superficial wounds, debridement with intermittent systemic antibiotics, can lead to systemic side-effects and often fails to directly target the bacterial biofilm. Furthermore, standard of care dressings do not directly provide adequate antimicrobial properties. This study aims to assess the capacity of human-derived collagen hydrogel to provide sustained antibiotic release to disrupt bacterial biofilms and decrease bacterial load while maintaining host cell viability and scaffold integrity. Human collagen harvested from flexor tendons underwent processing to yield a gellable liquid, and subsequently was combined with varying concentrations of gentamicin (50-500 mg/L) or clindamycin (10-100 mg/L). The elution kinetics of antibiotics from the hydrogel were analyzed using liquid chromatography-mass spectrometry. The gel was used to topically treat Methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens in established Kirby-Bauer and Crystal Violet models to assess the efficacy of bacterial inhibition. 2D mammalian cell monolayers were topically treated, and cell death was quantified to assess cytotoxicity. Bacteria-enhanced in vitro scratch assays were treated with antibiotic-embedded hydrogel and imaged over time to assess cell death and mobility. Collagen hydrogel embedded with antibiotics (cHG+abx) demonstrated sustained antibiotic release for up to 48 hours with successful inhibition of both MRSA and C. perfringens biofilms, while remaining bioactive up to 72 hours. Administration of cHG+abx with antibiotic concentrations up to 100X minimum inhibitory concentration was found to be non-toxic and facilitated mammalian cell migration in an in vitro scratch model. Collagen hydrogel is a promising pharmaceutical delivery vehicle that allows for safe, precise bacterial targeting for effective bacterial inhibition in a pro-regenerative scaffold.


Assuntos
Antibacterianos , Biofilmes , Colágeno , Hidrogéis , Staphylococcus aureus Resistente à Meticilina , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Humanos , Colágeno/química , Hidrogéis/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Clindamicina/farmacologia , Clindamicina/administração & dosagem , Testes de Sensibilidade Microbiana , Administração Tópica , Gentamicinas/farmacologia , Gentamicinas/administração & dosagem
17.
Sci Rep ; 14(1): 10196, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702355

RESUMO

Urinary tract infections (UTIs) are the most common bacterial infections and uropathogenic Escherichia coli (UPEC) is the main etiological agent of UTIs. UPEC can persist in bladder cells protected by immunological defenses and antibiotics and intracellular behavior leads to difficulty in eradicating the infection. The aim of this paper is to design, prepare and characterize surfactant-based nanocarriers (niosomes) able to entrap antimicrobial drug and potentially to delivery and release antibiotics into UPEC-infected cells. In order to validate the proposed drug delivery system, gentamicin, was chosen as "active model drug" due to its poor cellular penetration. The niosomes physical-chemical characterization was performed combining different techniques: Dynamic Light Scattering Fluorescence Spectroscopy, Transmission Electron Microscopy. Empty and loaded niosomes were characterized in terms of size, ζ-potential, bilayer features and stability. Moreover, Gentamicin entrapped amount was evaluated, and the release study was also carried out. In addition, the effect of empty and loaded niosomes was studied on the invasion ability of UPEC strains in T24 bladder cell monolayers by Gentamicin Protection Assay and Confocal Microscopy. The observed decrease in UPEC invasion rate leads us to hypothesize a release of antibiotic from niosomes inside the cells. The optimization of the proposed drug delivery system could represent a promising strategy to significatively enhance the internalization of antimicrobial drugs.


Assuntos
Antibacterianos , Gentamicinas , Lipossomos , Escherichia coli Uropatogênica , Gentamicinas/farmacologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Portadores de Fármacos/química , Infecções Urinárias/microbiologia , Infecções Urinárias/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Testes de Sensibilidade Microbiana
18.
Arch Toxicol ; 98(6): 1827-1842, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563869

RESUMO

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 µM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 µM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 µM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 µM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.


Assuntos
Antibacterianos , Bloqueadores dos Canais de Cálcio , Cálcio , Gentamicinas , Células Ciliadas Auditivas , Neomicina , Verapamil , Peixe-Zebra , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Verapamil/farmacologia , Neomicina/toxicidade , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Gentamicinas/toxicidade , Antibacterianos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/prevenção & controle , Aminoglicosídeos/toxicidade , Sistema da Linha Lateral/efeitos dos fármacos , Larva/efeitos dos fármacos , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle
19.
Sci Rep ; 14(1): 9690, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678140

RESUMO

Despite evidence suggesting the benefit of prophylactic regional antibiotic delivery (RAD) to sternal edges during cardiac surgery, it is seldom performed in clinical practice. The value of topical vancomycin and gentamicin for sternal wound infections (SWI) prophylaxis was further questioned by recent studies including randomized controlled trials (RCTs). The aim of this systematic review and meta-analysis was to comprehensively assess the safety and effectiveness of RAD to reduce the risk of SWI.We screened multiple databases for RCTs assessing the effectiveness of RAD (vancomycin, gentamicin) in SWI prophylaxis. Random effects meta-analysis was performed. The primary endpoint was any SWI; other wound complications were also analysed. Odds Ratios served as the primary statistical analyses. Trial sequential analysis (TSA) was performed.Thirteen RCTs (N = 7,719 patients) were included. The odds of any SWI were significantly reduced by over 50% with any RAD: OR (95%CIs): 0.49 (0.35-0.68); p < 0.001 and consistently reduced in vancomycin (0.34 [0.18-0.64]; p < 0.001) and gentamicin (0.58 [0.39-0.86]; p = 0.007) groups (psubgroup = 0.15). Similarly, RAD reduced the odds of SWI in diabetic and non-diabetic patients (0.46 [0.32-0.65]; p < 0.001 and 0.60 [0.44-0.83]; p = 0.002 respectively). Cumulative Z-curve passed the TSA-adjusted boundary for SWIs suggesting adequate power has been met and no further trials are needed. RAD significantly reduced deep (0.60 [0.43-0.83]; p = 0.003) and superficial SWIs (0.54 [0.32-0.91]; p = 0.02). No differences were seen in mediastinitis and mortality, however, limited number of studies assessed these endpoints. There was no evidence of systemic toxicity, sternal dehiscence and resistant strains emergence. Both vancomycin and gentamicin reduced the odds of cultures outside their respective serum concentrations' activity: vancomycin against gram-negative strains: 0.20 (0.01-4.18) and gentamicin against gram-positive strains: 0.42 (0.28-0.62); P < 0.001. Regional antibiotic delivery is safe and effectively reduces the risk of SWI in cardiac surgery patients.


Assuntos
Antibacterianos , Antibioticoprofilaxia , Gentamicinas , Ensaios Clínicos Controlados Aleatórios como Assunto , Infecção da Ferida Cirúrgica , Vancomicina , Humanos , Infecção da Ferida Cirúrgica/prevenção & controle , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Antibioticoprofilaxia/métodos , Vancomicina/administração & dosagem , Gentamicinas/administração & dosagem , Gentamicinas/uso terapêutico , Esterno/cirurgia , Esterno/microbiologia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos
20.
Open Vet J ; 14(1): 438-448, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633178

RESUMO

Background: Nowadays veterinarians and poultry producers use antibiotics to increase growth rates, bird health, and feed efficiency, egg production, for preventative and therapeutic purposes, and to lessen the prevalence of poultry diseases. Most poultry producers have used a variety of antibiotics, either with or without veterinarian instruction. Although antibiotics are beneficial for the majority of their uses, their unauthorized use has resulted in residues accumulated in poultry products intended for human consumption which represents a serious risk to the general public that could be toxicological, microbiological, or immunological. Aim: This study aimed to the estimation of the residues of three major antimicrobials used in the intensive chicken-rearing systems in Egypt, namely Oxytetracycline (OTC), Gentamicin, and Ciprofloxacin. Moreover, the effect of cooking on such residues was investigated. Methods: A total of 100 chicken meat samples (breast, thigh, gizzard, liver, 25 each) were examined for detection of the aforementioned antimicrobials using the microbial inhibition assay and high-performance liquid chromatography (HPLC). Besides, samples containing the highest antimicrobial residues were examined for the effect of boiling for 30 minutes on such residues. Results: The obtained results revealed that 23%, 21%, and 17% of the examined samples were positive for OTC, gentamicin, and ciprofloxacin residues , respectively . Cooking (boiling) for 30 minutes showed a reduction of the antibiotic residue by 88.2%, 95.2%, and 31.3%, respectively. Conclusion: Antimicrobial residues were detected in the chicken meat parts retailed in Egypt. Cooking can reduce the antimicrobial residues at least in part.


Assuntos
Anti-Infecciosos , Oxitetraciclina , Animais , Humanos , Antibacterianos/farmacologia , Galinhas , Aves Domésticas/microbiologia , Ciprofloxacina , Gentamicinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA