Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
Colloids Surf B Biointerfaces ; 238: 113925, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657556

RESUMO

Antibiotic-loaded calcium phosphate cement (CPC) has emerged as a promising biomaterial for drug delivery in orthopedics. However, there are problems such as the burst release of antibiotics, low cumulative release ratio, inappropriate release cycle, inferior mechanical strength, and poor anti-collapse properties. In this research, montmorillonite-gentamicin (MMT-GS) was fabricated by solution intercalation method and served as the drug release pathways in CPC to avoid burst release of GS, achieving promoted cumulative release ratios and a release cycle matched the time of inflammatory response. The results indicated that the highest cumulative release ratio and release concentration of GS in CPC/MMT-GS was 94.1 ± 2.8 % and 1183.05 µg/mL, and the release cycle was up to 504 h. In addition, the hierarchical GS delivery system was divided into three stages, and the kinetics followed the Korsmeyer-Peppas model, the zero-order model, and the diffusion-dissolution model, respectively. Meanwhile, the compressive strength of CPC/MMT-GS was up to 51.33 ± 3.62 MPa. Antibacterial results demonstrated that CPC/MMT-GS exhibited excellent in vitro long-lasting antibacterial properties to E. coli and S. aureus. Furthermore, CPC/MMT-GS promoted osteoblast proliferation and exhibited excellent in vivo histocompatibility. Therefore, CPC/MMT-GS has favorable application prospects in the treatment of bone defects with bacterial infections and inflammatory reactions.


Assuntos
Antibacterianos , Bentonita , Cimentos Ósseos , Fosfatos de Cálcio , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Escherichia coli , Gentamicinas , Staphylococcus aureus , Bentonita/química , Antibacterianos/farmacologia , Antibacterianos/química , Gentamicinas/farmacologia , Gentamicinas/química , Gentamicinas/administração & dosagem , Gentamicinas/farmacocinética , Fosfatos de Cálcio/química , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Animais , Escherichia coli/efeitos dos fármacos , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula
2.
Mol Pharm ; 20(8): 4236-4255, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37455392

RESUMO

A surgically implantable device is an inevitable treatment option for millions of people worldwide suffering from diseases arising from orthopedic injuries. A global paradigm shift is currently underway to tailor and personalize replacement or reconstructive joints. Additive manufacturing (AM) has provided dynamic outflow to the customized fabrication of orthopedic implants by enabling need-based design and surface modification possibilities. Surgical grade 316L Stainless Steel (316L SS) is promising with its cost, strength, composition, and corrosion resistance to fabricate 3D implants. This work investigates the possibilities of application of the laser powder bed fusion (L-PBF) technique to fabricate 3D-printed (3DP) implants, which are functionalized with a multilayered antimicrobial coating to treat potential complications arising due to postsurgical infections (PSIs). Postsurgical implant-associated infection is a primary reason for implantation failure and is complicated mainly by bacterial colonization and biofilm formation at the installation site. PLGA (poly-d,l-lactide-co-glycolide), a biodegradable polymer, was utilized to impart multiple layers of coating using the airbrush spray technique on 3DP implant surfaces loaded with gentamicin (GEN). Various PLGA-based polymers were tested to optimize the ideal lactic acid: glycolic acid ratio and molecular weight suited for our investigation. 3D-Printed PLGA-GEN substrates sustained the release of gentamicin from the surface for approximately 6 weeks. The 3DP surface modification with PLGA-GEN facilitated cell adhesion and proliferation compared to control surfaces. The cell viability studies showed that the implants were safe for application. The 3DP PLGA-GEN substrates showed good concentration-dependent antibacterial efficacy against the common PSI pathogen Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). The GEN-loaded substrates demonstrated antimicrobial longevity and showed significant biofilm growth inhibition compared to control. The substrates offered great versatility regarding the in vitro release rates, antimicrobial properties, and biocompatibility studies. These results radiate great potential in future human and veterinary clinical applications pertinent to complications arising from PSIs, focusing on personalized sustained antibiotic delivery.


Assuntos
Anti-Infecciosos , Gentamicinas , Humanos , Gentamicinas/farmacologia , Gentamicinas/química , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus epidermidis , Polímeros , Impressão Tridimensional
3.
ACS Infect Dis ; 9(4): 916-927, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926826

RESUMO

Combined therapy with penicillins and aminoglycosides has been proved beneficial to address many persistent bacterial infections with possible synergistic effects. However, the different pharmacokinetic profiles of these two antibiotic classes may not guarantee a concerted spatio-temporal delivery at the site of action, decreasing the efficacy of this combination and promoting resistance. Herein, we propose a multifunctional antibiotic-polymer conjugate, designed to colocalize ampicillin and gentamicin to tackle persistent biofilm infections. The two antibacterial molecules were grafted along with the amino acid l-arginine to a biocompatible polymer backbone with peptidomimetic hydrophilic structure, obtaining the antimicrobial poly(argilylaspartamide-co-aspartic) acid-ampicillin, gentamicin (PAA-AG) conjugate. The PAA-AG conjugate displayed excellent biocompatibility on human cell lines if compared with free drugs, potentially enlarging their therapeutic window and safety, and suitable mucoadhesive characteristics which may help local treatments of mucosal infections. Studies on planktonic cultures of clinical and reference strains of S. aureus, P. aeruginosa, and E. coli revealed that PAA-AG holds a broad-spectrum antibacterial efficacy, revealing high potency in inhibiting the growth of the tested strains. More interestingly, PAA-AG exhibited excellent antibiofilm activity on both Gram+ and Gram- communities, showing inhibition of their formation at subMIC concentrations as well as inducing the regression of mature biofilms. Given the high biocompatibility and broad antibiofilm efficacy, combined with the opportunity for synchronous co-delivery, the PAA-AG conjugate could be a valuable tool to increase the success of ampicillin/gentamicin-based antibiotic multitherapy.


Assuntos
Infecção Hospitalar , Peptidomiméticos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Gentamicinas/farmacologia , Gentamicinas/química , Peptidomiméticos/farmacologia , Staphylococcus aureus , Escherichia coli , Arginina , Ampicilina/farmacologia , Biofilmes
4.
Int J Biol Macromol ; 235: 123766, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36841390

RESUMO

The main purpose of this study is to synthesize and characterize Persian gum-based hydrogel composited with gentamicin (Gen)-loaded natural zeolite (Clinoptilolite) and to evaluate its biological properties. Clinoptilolite (CLN) was decorated with Gen, and the conjugation was confirmed using computational and experimental assessments. The Monte Carlo adsorption locator module was used to reveal the physicochemical nature of the adsorption processes of Gen on CLN and ALG and gum on Gen@ CLN in Materials Studio 2017 software. Based on the high negative results, the adsorption process was found to be endothermic in all studied cases, and the interaction energies were in the range of physisorption for Gen on CLN and ALG and gum on Gen@CLN. Dynamic light scattering (DLS) and zeta potential analysis showed that the size of pristine CLN was around 2959 nm and the conjugation decreased the size significantly to approximately 932 nm. The hydrogel characterizations showed that the Gen-decorated CLNs are homogenously dispersed into the hydrogel matrix, and the resultant hydrogels have a porous structure with interconnected pores. The release kinetics evaluation showed that around 80 % of Gen was released from the nanocomposite drug during the first 10 h. In vitro studies revealed hemocompatibility and cytocompatibility of the nanocomposite. Microbial assessments indicated dose-dependent antibacterial activity of the hydrogel against gram (+) and gram (-) bacteria. The results showed that the fabricated hydrogel nanocomposite exhibits favorable physicochemical and biological properties.


Assuntos
Gentamicinas , Zeolitas , Gentamicinas/farmacologia , Gentamicinas/química , Hidrogéis/química , Antibacterianos/farmacologia , Antibacterianos/química
5.
Biophys Chem ; 294: 106958, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682087

RESUMO

Gentamicin is used to treat brucellosis, an infectious disease caused by the Brucella species but the drug faces several issues such as low efficacy, instability, low solubility, and toxicity. It also has a very short half-life, therefore, requiring frequent dosing. Consequently, several other antibiotics are also being used for the treatment of brucellosis as a single dose as well as in combination with other antibiotics but none of these therapies are satisfactory. Nanoparticles in particular polymer-based ones utilizing polymers that are biodegradable and biocompatible for instance PLGA are a method of choice to overcome such drug delivery issues and enable potential targeted delivery. The current study focuses on the evaluation of the structural and dynamical properties of a drug-polymer system consisting of gentamicin drug and PLGA polymer nanoparticles in the water representing a targeted drug delivery system for the treatment of brucellosis. For this purpose, all-atom molecular dynamics simulations were carried out on the drug-polymer systems in the absence and presence of the surfactant bis(2-Ethylhexyl) sulfosuccinate (AOT) to determine the structural and dynamical properties as well as the effect of the surfactant on these properties. We also investigated systems in which the polymer constituents were in the form of monomeric units toward decoupling the primary interactions of the monomer units and polymer effects. The simulation results explain the nature of the interactions between the drug and the polymer as well as transport properties in terms of drug diffusion coefficients, which characterize the molecular behavior of gentamicin-polymer nanoparticles for use in brucellosis.


Assuntos
Brucelose , Nanopartículas , Humanos , Gentamicinas/química , Gentamicinas/uso terapêutico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Ácido Poliglicólico/química , Ácido Poliglicólico/uso terapêutico , Simulação de Dinâmica Molecular , Teoria da Densidade Funcional , Ácido Láctico/química , Ácido Láctico/uso terapêutico , Antibacterianos/química , Sistemas de Liberação de Medicamentos , Brucelose/tratamento farmacológico , Glicolatos/uso terapêutico , Tensoativos
6.
Org Lett ; 24(46): 8564-8567, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36375034

RESUMO

Gentamicin C1a and the minor isomer C2b have been reported to have favorable properties in terms of antibacterial activity and toxicity compared to the commercial mixture from which they have previously been isolated by preparative high-performance liquid chromatography. We report straightforward syntheses of both compounds from readily available sisomicin by selective oxidation of the side chain in ring I, hydrogenation of the double bond in ring I to give the 5'-epi series, inversion of configuration at position 5' under thermodynamic conditions, and installation of the 6'-amino group by reductive amination.


Assuntos
Antibacterianos , Gentamicinas , Gentamicinas/farmacologia , Gentamicinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Cromatografia Líquida de Alta Pressão
7.
Dalton Trans ; 50(40): 14216-14222, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34550146

RESUMO

Matching of charge periodicity between a guest and a host enabled effective immobilization of highly water-soluble antibiotic drug, gentamicin C, in a bentonite clay by cation exchange. X-ray diffraction, infrared spectroscopy and CHNS analysis revealed the immobilization manner of gentamicin C, which was immobilized between bentonite layers via periodic charge-charge interaction with tilted arrangement, as a trication. Both gentamicin alone and a gentamicin/bentonite hybrid were coated onto a polyurethane substrate using water-borne polyurethane binder. The antibiotic character of both films was investigated as prepared or after immersion in phosphate-buffered saline till 5 days against E. coli and B. subtilis bacteria. It was clearly shown that the gentamicin/bentonite hybrid-coated film showed sustained antibacterial efficacy even after exposure to phosphate-buffered saline, while gentamicin only-coated film gradually lost its performance under the same condition.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Argila/química , Escherichia coli/efeitos dos fármacos , Gentamicinas/farmacologia , Nanopartículas/química , Antibacterianos/química , Bentonita/química , Gentamicinas/química , Testes de Sensibilidade Microbiana , Conformação Molecular , Poliuretanos/química
8.
Mar Drugs ; 19(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34564141

RESUMO

Hydrogels, possessing high biocompatibility and adaptability to biological tissue, show great usability in medical applications. In this research, a series of novel cross-linked chitosan quaternary ammonium salt loading with gentamicin sulfate (CTMCSG) hydrogel films with different cross-linking degrees were successfully obtained by the reaction of chitosan quaternary ammonium salt (TMCS) and epichlorohydrin. Fourier transform infrared spectroscopy (FTIR), thermal analysis, and scanning electron microscope (SEM) were used to characterize the chemical structure and surface morphology of CTMCSG hydrogel films. The physicochemical property, gentamicin sulphate release behavior, cytotoxicity, and antibacterial activity of the CTMCSG against Escherichia coli and Staphylococcus aureus were determined. Experimental results demonstrated that CTMCSG hydrogel films exhibited good water stability, thermal stability, drug release capacity, as well as antibacterial property. The inhibition zone of CTMCSG hydrogel films against Escherichia coli and Staphylococcus aureus could be up to about 30 mm. Specifically, the increases in maximum decomposition temperature, mechanical property, water content, swelling degree, and a reduction in water vapor permeability of the hydrogel films were observed as the amount of the cross-linking agent increased. The results indicated that the CTMCSG-4 hydrogel film with an interesting physicochemical property, admirable antibacterial activity, and slight cytotoxicity showed the potential value as excellent antibacterial wound dressing.


Assuntos
Antibacterianos , Quitosana , Gentamicinas , Hidrogéis , Compostos de Amônio Quaternário , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Bandagens , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quitosana/administração & dosagem , Quitosana/química , Reagentes de Ligações Cruzadas/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Epicloroidrina/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Gentamicinas/administração & dosagem , Gentamicinas/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Camundongos , Permeabilidade , Compostos de Amônio Quaternário/administração & dosagem , Compostos de Amônio Quaternário/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Resistência à Tração , Água/química , Cicatrização/efeitos dos fármacos
9.
Arch Pharm (Weinheim) ; 354(12): e2100260, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34427364

RESUMO

In 1998, the aminoglycoside antibiotic gentamicin sulfate caused several cases of deaths in the United States, after the switch from twice- to once-daily application. Endotoxins were discussed as the cause for the adverse effects and sisomicin was identified as the lead impurity; batches containing sisomicin were contaminated with more impurities and were responsible for the fatalities. In 2016, anaphylactic reactions in horses, and later in humans with one fatality, were observed after application of gentamicin sulfate contaminated with histamine. To determine whether histamine was responsible for the 1990s death cases as well, histamine was quantified by means of liquid chromatography-tandem mass spectrometry (LC-MS/MS) in 30 samples of gentamicin sulfate analyzed in previous studies. Furthermore, a relative quantification of sisomicin was performed to check for a correlation between histamine and the lead impurity. A maximum amount of 11.52 ppm histamine was detected, which is below the limit for anaphylactic reactions of 16 ppm, and no correlation of the two impurities was observed. However, the European Medicines Agency recommends a stricter limit with regard to the maximum single dose of gentamicin sulfate to reach a greater gap between the maximum histamine exposition of 4.3 µg and the quantity known to cause hypotension of 7 µg. The low amounts of histamine and the fact that there is no connection with the contamination with sisomicin showed that histamine was not the cause for the death cases in the United States in 1998, and endotoxins remain the most probable explanation.


Assuntos
Antibacterianos/análise , Gentamicinas/análise , Histamina/análise , Sisomicina/análise , Antibacterianos/efeitos adversos , Antibacterianos/química , Cromatografia Líquida , Contaminação de Medicamentos , Gentamicinas/efeitos adversos , Gentamicinas/química , Espectrometria de Massas em Tandem
10.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200814

RESUMO

Multi-drug resistant pathogens are a rising danger for the future of mankind. Iodine (I2) is a centuries-old microbicide, but leads to skin discoloration, irritation, and uncontrolled iodine release. Plants rich in phytochemicals have a long history in basic health care. Aloe Vera Barbadensis Miller (AV) and Salvia officinalis L. (Sage) are effectively utilized against different ailments. Previously, we investigated the antimicrobial activities of smart triiodides and iodinated AV hybrids. In this work, we combined iodine with Sage extracts and pure AV gel with polyvinylpyrrolidone (PVP) as an encapsulating and stabilizing agent. Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-Vis), Surface-Enhanced Raman Spectroscopy (SERS), microstructural analysis by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-Ray-Diffraction (XRD) analysis verified the composition of AV-PVP-Sage-I2. Antimicrobial properties were investigated by disc diffusion method against 10 reference microbial strains in comparison to gentamicin and nystatin. We impregnated surgical sutures with our biohybrid and tested their inhibitory effects. AV-PVP-Sage-I2 showed excellent to intermediate antimicrobial activity in discs and sutures. The iodine within the polymeric biomaterial AV-PVP-Sage-I2 and the synergistic action of the two plant extracts enhanced the microbial inhibition. Our compound has potential for use as an antifungal agent, disinfectant and coating material on sutures to prevent surgical site infections.


Assuntos
Antibacterianos/química , Antibacterianos/síntese química , Aloe/química , Antifúngicos/química , Gentamicinas/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura/métodos , Nistatina/química , Extratos Vegetais/química , Povidona/química , Salvia/química , Salvia officinalis/química , Espectrometria por Raios X/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
11.
J Biomed Mater Res A ; 109(11): 2255-2268, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33950552

RESUMO

The high incidence of osteomyelitis associated with critical-sized bone defects raises clinical challenges in fracture healing. Clinical use of antibiotic-loaded bone cement as an adjunct therapy is limited by incompatibility with many antimicrobials, sub-optimal release kinetics, and requirement of surgical removal. Furthermore, overuse of antibiotics can lead to bacterial modifications that increase efflux, decrease binding, or cause inactivation of the antibiotics. Herein, we compared the efficacy of gallium maltolate, a new metal-based antimicrobial, to gentamicin sulfate released from electrospun poly(lactic-co-glycolic) acid (PLGA) wraps in the treatment of osteomyelitis. In vitro evaluation demonstrated sustained release of each antimicrobial up to 14 days. A Kirby Bauer assay indicated that the gentamicin sulfate-loaded wrap inhibited the growth of osteomyelitis-derived isolates, comparable to the gentamicin sulfate powder control. In contrast, the gallium maltolate-loaded wrap did not inhibit bacteria growth. Subsequent microdilution assays indicated a lower than expected sensitivity of the osteomyelitis strain to the gallium maltolate with release concentrations below the threshold for bactericidal activity. A comparison of the selectivity indices indicated that gentamicin sulfate was less toxic and more efficacious than gallium maltolate. A pilot study in a contaminated femoral defect model confirmed that the sustained release of gentamicin sulfate from the electrospun wrap resulted in bacteria density reduction on the surrounding bone, muscle, and hardware below the threshold that impedes healing. Overall, these findings demonstrate the efficacy of a resorbable, antimicrobial wrap that can be used as an adjunct or stand-alone therapy for controlled release of antimicrobials in the treatment of osteomyelitis.


Assuntos
Cimentos Ósseos , Gentamicinas , Compostos Organometálicos , Osteomielite , Pironas , Infecções Estafilocócicas , Staphylococcus aureus/metabolismo , Animais , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Linhagem Celular , Gentamicinas/química , Gentamicinas/farmacocinética , Gentamicinas/farmacologia , Masculino , Camundongos , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Osteomielite/tratamento farmacológico , Osteomielite/metabolismo , Osteomielite/microbiologia , Pironas/química , Pironas/farmacologia , Ratos , Ratos Sprague-Dawley , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo
12.
ACS Appl Mater Interfaces ; 13(20): 23452-23468, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34000197

RESUMO

Utilization of antibacterial components-conjugated nanoparticles (NPs) is emerging as an attractive strategy for combating various pathogens. Herein, we demonstrate that Ag/BN NPs and antibiotic-loaded BN and Ag/BN nanoconjugates are promising carriers to fight bacterial and fungal infections. Extensive biological tests included two types of Gram-positive methicillin-resistant Staphylococcus aureus strains (B8469 and MW2), two types of Gram-negative Pseudomonas aeruginosa strains (ATCC27853 and B1307/17), and 47 types of Escherichia coli strains (including 41 multidrug-resistant ones), as well as five types of fungal cultures: Candida albicans (candidiasis-thrush) ATCC90028 and ATCC24433, Candida parapsilosis ATCC90018, Candida auris CBS109113, and Neurospora crassa wt. We have demonstrated that, even within a single genus Escherichia, there are many hospital E. coli strains with multi-drug resistance to different antibiotics. Gentamicin-loaded BN NPs have high bactericidal activity against S. aureus, P. aeruginosa, and 38 types of the E. coli strains. For the rest of the tested E. coli strains, the Ag nanoparticle-containing nanohybrids have shown superior bactericidal efficiency. The Ag/BN nanohybrids and amphotericin B-loaded BN and Ag/BN NPs also reveal high fungicidal activity against C. albicans, C. auris, C. parapsilosis, and N. crassa cells. In addition, based on the density functional theory calculations, the nature of antibiotic-nanoparticle interaction, the sorption capacity of the BN and Ag/BN nanohybrids for gentamicin and amphotericin B, and the most energetically favorable positions of the drug molecules relative to the carrier surface, which lead to lowest binding energies, have been determined. The obtained results clearly show high therapeutic potential of the antibiotic-loaded Ag/BN nanocarriers providing a broad bactericidal and fungicidal protection against all of the studied pathogens.


Assuntos
Antibacterianos , Compostos de Boro/química , Portadores de Fármacos/química , Nanopartículas/química , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Candida/efeitos dos fármacos , Gentamicinas/química , Gentamicinas/farmacologia
13.
J Mater Sci Mater Med ; 32(4): 38, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792786

RESUMO

The use of drug delivery systems is a good technique to leave the right quantity of medicine in the patient's body in a suitable dose, because the drug application is delivered directly to the affected region. The current techniques such as HPLC and UV-Vis for the drug delivery calculation has some disadvantages, as the accuracy and the loss of the sample after characterization. With the aim of reducing the amount of material used during the characterization and have a non-destructive test with instantaneous results, the present paper shows the possibility of using electrochemical impedance spectroscopy (EIS) to have a drug delivery measurement during the release phenomena for a calcium phosphate cement (CFC) delivery system with gentamicin sulfate (GS) and lidocaine hydrochloride (LH), at a ratio of 1% and 2%, respectively. The equivalent circuit and the chemical mechanism involved during the measurements have been proposed as a tool to determine the drug delivery profile. The method has been compared with the UV-Vis technique. XRD was realized to verify conditions, before and after release. It was possible to verify the potential for using EIS as an instant technique to quantify drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Eletroquímica/métodos , Antibacterianos/administração & dosagem , Cimentos Ósseos/química , Fosfatos de Cálcio/química , Cromatografia Líquida de Alta Pressão , Materiais Dentários , Espectroscopia Dielétrica , Liberação Controlada de Fármacos , Impedância Elétrica , Eletrólitos , Desenho de Equipamento , Gentamicinas/química , Cimentos de Ionômeros de Vidro , Humanos , Cinética , Lidocaína/química , Modelos Teóricos , Espectrofotometria , Espectrofotometria Ultravioleta , Difração de Raios X
14.
J Biomater Appl ; 36(2): 219-236, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33853425

RESUMO

The ever-growing threats of bacterial infection and chronic wound healing have provoked an urgent need for novel antibacterial wound dressings. In this study, we developed a wound dressing for the treatment of infected wounds, which can reduce the inflammatory period (through the use of gentamycin sulfate (GS)) and enhance the granulation stage (through the addition of platelet-rich plasma (PRP)). Herein, the sustained antimicrobial CMC/GMs@GS/PRP wound dressings were developed by using gelatin microspheres (GMs) loading GS and PRP, covalent bonding to carboxymethyl chitosan (CMC). The prepared dressings exhibited high water uptake capability, appropriate porosity, excellent mechanical properties, sustain release of PRP and GS. Meanwhile, the wound dressing showed good biocompatibility and excellent antibacterial ability against Gram-negative and Gram-positive bacteria. Moreover, in vivo experiments further demonstrated that the prepared dressings could accelerate the healing process of E. coli and S. aureus-infected full-thickness wounds in vivo, reepithelialization, collagen deposition and angiogenesis. In addition, the treatment of CMC/GMs@GS/PRP wound dressing could reduce bacterial count, inhibit pro-inflammatory factors (TNF-α, IL-1ß and IL-6), and enhance anti-inflammatory factors (TGF-ß1). The findings of this study suggested that biocompatible wound dressings with dual release of GS and PRP have great potential in the treatment of chronic and infected wounds.


Assuntos
Antibacterianos/farmacologia , Bandagens , Materiais Biocompatíveis/química , Plasma Rico em Plaquetas/química , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Quitosana/análogos & derivados , Quitosana/química , Gelatina , Gentamicinas/química , Gentamicinas/metabolismo , Gentamicinas/farmacologia , Gentamicinas/uso terapêutico , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Porosidade , Ratos
15.
Bioprocess Biosyst Eng ; 44(7): 1461-1476, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33818638

RESUMO

Biomediated ecofriendly method for the synthesis of nickel oxide nanoparticles using plants extracts (Toona ciliata, Ficus carica and Pinus roxburghii) has been reported. The nanoparticles so obtained were characterized by various techniques such as ultraviolet-visible, powder X-ray diffraction, Fourier transform infrared spectroscopy, attenuated total reflectance spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis and fluorescence spectroscopy. Formation of nickel oxide nanoparticles was confirmed by Fourier transform infrared spectroscopy and X-ray diffraction where the former technique ascertains the formation of bond between nickel and oxygen. The nickel oxide nanoparticles were found to be crystalline cubic face centered and show intense photoluminescence emission at 416, 414 and 413 nm, respectively. The antibacterial activity was studied against gram positive and gram negative bacterial species by agar well diffusion method. The nickel oxide nanoparticles show better activity against some bacterial strains with reference to the standard drugs Ciprofloxacin and Gentamicin. The anthelmintic activity against Pheretima posthuma of nanomaterials obtained from Pinus roxburghii was found to be greater than that derived from Toona ciliata and Ficus carica using the standard drug Albendazole. This method takes the advantage of the sustainable and economic approach for the synthesis of metal oxide nanoparticles.


Assuntos
Biotecnologia/métodos , Ficus/metabolismo , Níquel/química , Pinus/metabolismo , Toona/metabolismo , Albendazol/química , Ciprofloxacina/química , Gentamicinas/química , Química Verde/métodos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Oxigênio/química , Tamanho da Partícula , Extratos Vegetais/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Difração de Raios X
16.
Biotechnol Lett ; 43(6): 1241-1251, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33768381

RESUMO

PURPOSE: McCarey-Kaufman's (MK) medium and Optisol-GS medium are the most commonly employed media for human donor corneal preservation. In this study, we evaluated the preservation efficacy of discarded human donor corneas using a Thermo-reversible gelation polymer (TGP) added to these two media. METHODS: Thirteen human corneal buttons collected from deceased donors, which were otherwise discarded due to low endothelial cell density (ECD) were used. They were stored in four groups: MK medium, MK medium with TGP, Optisol-GS and Optisol-GS with TGP at 4 °C for 96 h. Slit lamp examination and specular microscopy were performed. Corneal limbal tissues from these corneas were then cultured using explant methodology one with and the other without TGP scaffold, for 21 days. RESULTS: MK + TGP and Optisol-GS + TGP preserved corneas better than without TGP, which was observed by maintenance of ECD which was significantly higher in Optisol-GS + TGP than MK + TGP (p-value = 0.000478) and corneal thickness remaining the same for 96 h. Viable corneal epithelial cells could be grown from the corneas stored only in MK + TGP and Optisol-GS + TGP. During culture, the TGP scaffold helped maintain the native epithelial phenotype and progenitor/stem cell growth was confirmed by RT-PCR characterization. CONCLUSION: TGP reconstituted with MK and Optisol-GS media yields better preservation of human corneal buttons in terms of relatively higher ECD maintenance and better in vitro culture outcome of corneal limbal tissue. This method has the potential to become a standard donor corneal transportation-preservation methodology and it can also be extended to other tissue or organ transportation upon further validation.


Assuntos
Meios de Cultura/química , Endotélio Corneano/citologia , Preservação de Tecido/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Cadáver , Sulfatos de Condroitina/química , Misturas Complexas/química , Dextranos/química , Feminino , Gentamicinas/química , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Orgânicos/química , Microscopia com Lâmpada de Fenda
17.
Microb Cell Fact ; 20(1): 65, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750386

RESUMO

BACKGROUND: The C-3',4'-dideoxygenation structure in gentamicin can prevent deactivation by aminoglycoside 3'-phosphotransferase (APH(3')) in drug-resistant pathogens. However, the enzyme catalyzing the dideoxygenation step in the gentamicin biosynthesis pathway remains unknown. RESULTS: Here, we report that GenP catalyzes 3' phosphorylation of the gentamicin biosynthesis intermediates JI-20A, JI-20Ba, and JI-20B. We further demonstrate that the pyridoxal-5'-phosphate (PLP)-dependent enzyme GenB3 uses these phosphorylated substrates to form 3',4'-dideoxy-4',5'-ene-6'-oxo products. The following C-6'-transamination and the GenB4-catalyzed reduction of 4',5'-olefin lead to the formation of gentamicin C. To the best of our knowledge, GenB3 is the first PLP-dependent enzyme catalyzing dideoxygenation in aminoglycoside biosynthesis. CONCLUSIONS: This discovery solves a long-standing puzzle in gentamicin biosynthesis and enriches our knowledge of the chemistry of PLP-dependent enzymes. Interestingly, these results demonstrate that to evade APH(3') deactivation by pathogens, the gentamicin producers evolved a smart strategy, which utilized their own APH(3') to activate hydroxyls as leaving groups for the 3',4'-dideoxygenation in gentamicin biosynthesis.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/metabolismo , Vias Biossintéticas/fisiologia , Gentamicinas/biossíntese , Gentamicinas/metabolismo , Antibacterianos/química , Biocatálise , Vias Biossintéticas/genética , Gentamicinas/química , Canamicina Quinase/metabolismo , Micromonospora/enzimologia , Micromonospora/genética , Fosforilação
18.
J Biomed Mater Res B Appl Biomater ; 109(11): 1677-1688, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33749111

RESUMO

Mandibular osteomyelitis (OM) is a challenging disease. Our objective was to assess a new OM model in rabbits induced by arsenic trioxide and to assess the efficacy of local treatment of OM using injectable gentamicin-collagen hydrogels (GNT-COLL). OM was induced unilaterally by controlled confinement of arsenic trioxide paste to the root canal of lower incisors of rabbits, while OM progression was characterized for 16 weeks. On the other hand, two injectable COLL hydrogels functionalized with GNT were prepared and characterized for physicochemical properties; a simple GNT-COLL and a nanohydroxyapatite (nHA)- loaded hydrogel (GNT-COLL/nHA). The two hydrogels were evaluated to treat OM model, while a multidose intramuscular GNT solution served as positive control. Outcomes were assessed by standard methods at 4 and 12 weeks post-surgery. The clinical, radiographical, and histopathological findings provided evidence for the validity of the arsenic-induced OM. The results demonstrated that a single intra-lesional injection of the two hydrogels was more suppressive to OM compared to multidose systemic GNT. The composite GNT-COLL/nHA hydrogel proved to induce early preservation of alveolar bone (ridge) length and higher amount of bone area\total area at 4 weeks (40.53% ± 2.34) followed by GNT-COLL (32.21% ± 0.72). On the other hand, the positive control group revealed the least ridge length and bone area\total area (26.22% ± 1.32) at 4 weeks. Both hydrogels successfully arrested OM with no signs of recurrence for up to 12 weeks. Therefore, results support the greater advantages of the composite hydrogel as an osteogenic/antibiotic delivery system in OM treatment.


Assuntos
Materiais Biomiméticos/farmacologia , Portadores de Fármacos/farmacologia , Gentamicinas/farmacologia , Hidrogéis/farmacologia , Doenças Mandibulares/tratamento farmacológico , Osteomielite/tratamento farmacológico , Animais , Materiais Biomiméticos/química , Modelos Animais de Doenças , Portadores de Fármacos/química , Gentamicinas/química , Hidrogéis/química , Doenças Mandibulares/metabolismo , Doenças Mandibulares/patologia , Osteomielite/metabolismo , Osteomielite/patologia , Coelhos
19.
Carbohydr Polym ; 257: 117593, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541634

RESUMO

In this work, we treated chitin with 2-(azidomethyl)oxirane and successfully involved the resultant azido chitin derivatives in the ultrasound-assisted Cu(I)-catalyzed azido-alkyne click (CuAAC) reaction with propargylic ester of N,N,N-trimethyl glycine. Thus, we obtained novel water-soluble triazole chitin derivatives. The triazole chitin derivatives and their nanoparticles are characterized by a high in vitro antibacterial activity, which is the same or even higher than that of commercial antibiotics ampicillin and gentamicin. The obtained derivatives are non-toxic. Moreover, the obtained water-soluble polymers are highly efficient green catalysts for the aldol reaction in green solvent water. The catalysts can be easily extracted from the reaction mixture by its precipitation with green solvent ethanol followed by centrifugation and they can be reused at least 10 times.


Assuntos
Antibacterianos/química , Quitosana/síntese química , Quitosana/farmacologia , Óxido de Etileno/química , Nanopartículas/química , Triazóis/química , Aldeídos/química , Ampicilina/química , Exoesqueleto , Animais , Anti-Infecciosos , Catálise , Química Click , Ésteres , Gentamicinas/química , Química Verde , Íons , Espectroscopia de Ressonância Magnética , Solubilidade , Solventes , Viscosidade
20.
ACS Appl Bio Mater ; 4(6): 4936-4945, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35007042

RESUMO

Infection is the second leading cause of failure of orthopedic implants following incomplete osseointegration. Materials that increase the antimicrobial properties of surfaces while maintaining the ability for bone cells to attach and proliferate could reduce the failure rates of orthopedic implants. In this study, titania nanotubes (Nts) were modified with chitosan/heparin polyelectrolyte multilayers (PEMs) for gentamicin delivery. The antimicrobial activity of the surfaces was tested by coculturing bacteria with mammalian cells. Over 60% of gentamicin remained on the surface after an initial burst release on the first day. Antimicrobial activity of these surfaces was determined by exposure to Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) for up to 24 h. Gentamicin surfaces had less live E. coli and S. aureus by 6 h and less E. coli by 24 h compared to Nt surfaces. S. aureus and human adipose-derived stem cells (hADSCs) were cocultured on surfaces for up to 7 days to characterize the so-called "race to the surface" between bacteria and mammalian cells, which is hypothesized to ultimately determine the outcome of orthopedic implants. By day 7, there was no significant difference in bacteria between surfaces with gentamicin adsorbed on the surface and surfaces with gentamicin in solution. However, gentamicin delivered in solution is toxic to hADSCs. Alternatively, gentamicin presented from PEMs enhances the antimicrobial properties of the surfaces without inhibiting hADSC attachment and cell growth. Delivering gentamicin from the surfaces is therefore superior to delivering gentamicin in solution and represents a strategy that could improve the antimicrobial activity of orthopedic implants and reduce risk of failure due to infection, without reducing mammalian cell attachment.


Assuntos
Antibacterianos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Gentamicinas/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanotubos , Staphylococcus aureus/efeitos dos fármacos , Titânio/administração & dosagem , Antibacterianos/química , Células Cultivadas , Técnicas de Cocultura , Liberação Controlada de Fármacos , Gentamicinas/química , Humanos , Nanotubos/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA