Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(4): e0220921, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465020

RESUMO

Geobacter sulfurreducens is a model microbe for elucidating the mechanisms for extracellular electron transfer in several biogeochemical cycles, bioelectrochemical applications, and microbial metal corrosion. Multiple lines of evidence previously suggested that electrically conductive pili (e-pili) are an essential conduit for long-range extracellular electron transport in G. sulfurreducens. However, it has recently been reported that G. sulfurreducens does not express e-pili and that filaments comprised of multi-heme c-type cytochromes are responsible for long-range electron transport. This possibility was directly investigated by examining cells, rather than filament preparations, with atomic force microscopy. Approximately 90% of the filaments emanating from wild-type cells had a diameter (3 nm) and conductance consistent with previous reports of e-pili harvested from G. sulfurreducens or heterologously expressed in Escherichia coli from the G. sulfurreducens pilin gene. The remaining 10% of filaments had a morphology consistent with filaments comprised of the c-type cytochrome OmcS. A strain expressing a modified pilin gene designed to yield poorly conductive pili expressed 90% filaments with a 3-nm diameter, but greatly reduced conductance, further indicating that the 3-nm diameter conductive filaments in the wild-type strain were e-pili. A strain in which genes for five of the most abundant outer-surface c-type cytochromes, including OmcS, were deleted yielded only 3-nm-diameter filaments with the same conductance as in the wild type. These results demonstrate that e-pili are the most abundant conductive filaments expressed by G. sulfurreducens, consistent with previous functional studies demonstrating the need for e-pili for long-range extracellular electron transfer. IMPORTANCE Electroactive microbes have significant environmental impacts, as well as applications in bioenergy and bioremediation. The composition, function, and even existence of electrically conductive pili (e-pili) has been one of the most contentious areas of investigation in electromicrobiology, in part because e-pili offer a mechanism for long-range electron transport that does not involve the metal cofactors common in much of biological electron transport. This study demonstrates that e-pili are abundant filaments emanating from Geobacter sulfurreducens, which serves as a model for long-range extracellular electron transfer in direct interspecies electron transfer, dissimilatory metal reduction, microbe-electrode exchange, and corrosion caused by direct electron uptake from Fe(0). The methods described in this study provide a simple strategy for evaluating the distribution of conductive filaments throughout the microbial world with an approach that avoids artifactual production and/or enrichment of filaments that may not be physiologically relevant.


Assuntos
Condutividade Elétrica , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/metabolismo , Geobacter/metabolismo , Microscopia de Força Atômica/métodos , Elétrons , Escherichia coli/genética , Geobacter/citologia , Oxirredução
2.
Nature ; 597(7876): 430-434, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471289

RESUMO

Extracellular electron transfer by Geobacter species through surface appendages known as microbial nanowires1 is important in a range of globally important environmental phenomena2, as well as for applications in bio-remediation, bioenergy, biofuels and bioelectronics. Since 2005, these nanowires have been thought to be type 4 pili composed solely of the PilA-N protein1. However, previous structural analyses have demonstrated that, during extracellular electron transfer, cells do not produce pili but rather nanowires made up of the cytochromes OmcS2,3 and OmcZ4. Here we show that Geobacter sulfurreducens binds PilA-N to PilA-C to assemble heterodimeric pili, which remain periplasmic under nanowire-producing conditions that require extracellular electron transfer5. Cryo-electron microscopy revealed that C-terminal residues of PilA-N stabilize its copolymerization with PilA-C (to form PilA-N-C) through electrostatic and hydrophobic interactions that position PilA-C along the outer surface of the filament. PilA-N-C filaments lack π-stacking of aromatic side chains and show a conductivity that is 20,000-fold lower than that of OmcZ nanowires. In contrast with surface-displayed type 4 pili, PilA-N-C filaments show structure, function and localization akin to those of type 2 secretion pseudopili6. The secretion of OmcS and OmcZ nanowires is lost when pilA-N is deleted and restored when PilA-N-C filaments are reconstituted. The substitution of pilA-N with the type 4 pili of other microorganisms also causes a loss of secretion of OmcZ nanowires. As all major phyla of prokaryotes use systems similar to type 4 pili, this nanowire translocation machinery may have a widespread effect in identifying the evolution and prevalence of diverse electron-transferring microorganisms and in determining nanowire assembly architecture for designing synthetic protein nanowires.


Assuntos
Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Geobacter , Nanofios , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biopolímeros , Condutividade Elétrica , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Geobacter/citologia , Geobacter/metabolismo , Multimerização Proteica
3.
J Biol Chem ; 296: 100711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33915126

RESUMO

Geobacter bacteria are able to transfer electrons to the exterior of the cell and reduce extracellular electron acceptors including toxic/radioactive metals and electrode surfaces, with potential applications in bioremediation or electricity harvesting. The triheme c-type cytochrome PpcA from Geobacter metallireducens plays a crucial role in bridging the electron transfer from the inner to the outer membrane, ensuring an effective extracellular electron transfer. This cytochrome shares 80% identity with PpcA from Geobacter sulfurreducens, but their redox properties are markedly different, thus determining the distinctive working redox potential ranges in the two bacteria. PpcA from G. metallireducens possesses two extra aromatic amino acids (Phe-6 and Trp-45) in its hydrophobic heme core, whereas PpcA from G. sulfurreducens has a leucine and a methionine in the equivalent positions. Given the different nature of these residues in the two cytochromes, we have hypothesized that the extra aromatic amino acids could be partially responsible for the observed functional differences. In this work, we have replaced Phe-6 and Trp-45 residues by their nonaromatic counterparts in PpcA from G. sulfurreducens. Using redox titrations followed by UV-visible and NMR spectroscopy we observed that residue Trp-45 shifted the redox potential range 33% toward that of PpcA from G. sulfurreducens, whereas Phe-6 produced a negligible effect. For the first time, it is shown that the inclusion of an aromatic residue at the heme core can modulate the working redox range in abundant periplasmic proteins, paving the way to engineer bacterial strains for optimal microbial bioelectrochemical applications.


Assuntos
Citocromos/química , Citocromos/metabolismo , Geobacter/citologia , Geobacter/enzimologia , Heme , Periplasma/enzimologia , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Oxirredução , Domínios Proteicos
4.
Bioelectrochemistry ; 138: 107683, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33421898

RESUMO

Dissimilatory metal-reducing bacteria (DMRB) have a variety of c-type cytochromes (OM c-cyts) intercalated in their outer membrane, and this structure serves as the physiological basis for DMRB to carry out the extracellular electron transfer processes. Using Geobacter sulfurreducens as a model DMRB, we demonstrated that visible-light illumination could alter the electronic state of OM c-cyts from the ground state to the excited state in vivo. The existence of excited-state OM c-cyts in vivo was confirmed by spectroscopy. More importantly, excited-state OM c-cyts had a more negative potential compared to their ground-state counterparts, conferring DMRB with an extra pathway to transfer electrons to semi-conductive electron acceptors. To demonstrate this, using a TiO2-coated electrode as an electron acceptor, we showed that G. sulfurreducens could directly utilise the conduction band of TiO2 as an electron acceptor under visible-light illumination (λ > 420 nm) without causing TiO2 charge separation. When G. sulfurreducens was subject to visible-light illumination, the rate of extracellular electron transfer (EET) to TiO2 accelerated by over 8-fold compared to that observed under dark conditions. Results of additional electrochemical tests provided complementary evidence to support that G. sulfurreducens utilised excited-state OM c-cyts to enhance EET to TiO2.


Assuntos
Membrana Celular/enzimologia , Citocromos c/metabolismo , Espaço Extracelular/metabolismo , Espaço Extracelular/efeitos da radiação , Geobacter/citologia , Geobacter/metabolismo , Luz , Transporte de Elétrons/efeitos da radiação , Geobacter/efeitos da radiação , Titânio/química
5.
Biochemistry (Mosc) ; 85(8): 955-965, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33045956

RESUMO

The concept of "electric cables" involved in bioenergetic processes of a living cell was proposed half a century ago [Skulachev, V. P. (1971) Curr. Top. Bioenerg., Elsevier, pp. 127-190]. For many decades, only cell membrane structures have been considered as probable pathways for the electric current, namely, for the transfer of transmembrane electrochemical potential. However, the last ten to fifteen years have brought the discovery of bacterial "electric cables" of a new type. In 2005, "nanowires" conducting electric current over distances of tens of micrometers were discovered in metal- and sulphate-reducing bacteria [Reguera, G. et al. (2005) Nature, 435, pp. 1098-1101]. The next five years have witnessed the discovery of microbial electric currents over centimeter distances [Nielsen, L. P. et al. (2010) Nature, 463, 1071-1074]. This new group of bacteria allowing electric currents to flow over macroscopic distances was later called cable bacteria. Nanowires and conductive structures of cable bacteria serve to solve a special problem of membrane bioenergetics: they connect two redox half-reactions. In other words, unlike membrane "cables", their function is electron transfer in the course of oxidative phosphorylation for the generation of membrane energy rather than of the end-product. The most surprising is the protein nature of these cables (at least of some of them) indicated by recent data, since no protein wires for the long-distance electron transport had been previously known in living systems.


Assuntos
Condutividade Elétrica , Geobacter/citologia , Geobacter/metabolismo , Citocromos/metabolismo , Transporte de Elétrons , Elétrons , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Potenciais da Membrana/fisiologia , Oxirredução , Fosforilação Oxidativa , Conformação Proteica
6.
Anal Chem ; 92(15): 10606-10612, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633502

RESUMO

Electrochemically active bacteria (EAB) are capable of extracellular electron transfer (EET) to insoluble metal oxides, and thus play a great role in the fields of environment, energy, and geosciences. However, rapid and accurate quantification of the EET ability of EAB is still challenging. In this work, we develop a riboflavin-based fluorescence method for facile, accurate, and in situ measurement of the EET ability of EAB. This method is successfully used to quantify the single-cellular EET ability of Geobacter sulfurreducens DL-1 (60.29 ± 13.02 fA) and Shewanella oneidensis MR-1 (2.11 ± 0.47 fA), the two widely present EAB in the environment. It also enables quantitative identification of EET-related c-type cytochromes in the outer membrane of S. oneidensis MR-1. This method provides a useful tool to rapidly identify EAB in diverse environments and elucidate their electron transfer mechanisms.


Assuntos
Espaço Extracelular/metabolismo , Geobacter/citologia , Riboflavina/metabolismo , Shewanella/citologia , Transporte de Elétrons , Corantes Fluorescentes/metabolismo , Geobacter/metabolismo , Shewanella/metabolismo
7.
Biomed Res Int ; 2019: 6151587, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886232

RESUMO

Microorganisms can transfer electrons directly to extracellular acceptors, during which organic compounds are oxidized to carbon dioxide. One of these microbes, Geobacter sulfurreducens, is well known for the "metallic-like" conductivity of its type IV pili. However, there is no consensus on what the mechanism for electron transfer along these conductive pili is. Based on the aromatic distances and orientations of our predicted models, the mechanism of electron transfer in the Geobacter sulfurreducens (GS) pili was explored by quantum chemical calculations with Marcus theory of electron transfer reactions. Three aromatic residues from the N-terminal α-helix of the GS pilin subunit are packed together, resulting in a continuous pi-pi interaction chain. The theoretical conductance (4.69 µS/3.85 µS) of the predicted models is very similar to that in the experiments reported recently (3.40 µS). These findings offer a new concept that the GS pili belongs to a new class of proteins that can transport electrons through pi-pi interaction between aromatic residues and also provide a valuable tool for guiding further researches of these conductive pili, to investigate their roles in biogeochemical cycling, and potential applications in biomaterials, bioelectronics, and bioenergy.


Assuntos
Aminoácidos Aromáticos , Transporte de Elétrons/fisiologia , Espaço Extracelular , Fímbrias Bacterianas , Geobacter , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/metabolismo , Condutividade Elétrica , Espaço Extracelular/química , Espaço Extracelular/metabolismo , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Geobacter/química , Geobacter/citologia , Geobacter/metabolismo , Simulação de Dinâmica Molecular
8.
J Phys Chem B ; 123(24): 5035-5047, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31095388

RESUMO

The electrically conductive pili of Geobacter sulfurreducens are of both fundamental and practical interest. They facilitate extracellular and interspecies electron transfer (ET) and also provide an electrical interface between living and nonliving systems. We examine the possible mechanisms of G. sulfurreducens electron transfer in regimes ranging from incoherent to coherent transport. For plausible ET parameters, electron transfer in G. sulfurreducens bacterial nanowires mediated only by the protein is predicted to be dominated by incoherent hopping between phenylalanine (Phe) and tyrosine (Tyr) residues that are 3 to 4 Å apart, where Phe residues in the hopping pathways may create delocalized "islands." This mechanism could be accessible in the presence of strong oxidants that are capable of oxidizing Phe and Tyr residues. We also examine the physical requirements needed to sustain biological respiration via nanowires. We find that the hopping regimes with ET rates on the order of 108 s-1 between Phe islands and Tyr residues, and conductivities on the order of mS/cm, can support ET fluxes that are compatible with cellular respiration rates, although sustaining this delocalization in the heterogeneous protein environment may be challenging. Computed values of fully coherent electron fluxes through the pili are orders of magnitude too low to support microbial respiration. We suggest experimental probes of the transport mechanism based on mutant studies to examine the roles of aromatic amino acids and yet to be identified redox cofactors.


Assuntos
Geobacter/metabolismo , Condutividade Elétrica , Transporte de Elétrons , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Geobacter/química , Geobacter/citologia , Modelos Moleculares , Termodinâmica
9.
ACS Nano ; 13(4): 4834-4842, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30943001

RESUMO

Geobacter sulfurreducens is of interest for the highest efficiency of power generation and extremely long extracellular electron transfer (EET) between the bacterium and electrodes. Despite more than 15 years of intensive molecular biological research, there is still no clear answer which molecules are responsible for these processes. In the present work, we look at the problem from another (atomic) perspective and identify the location and shape of the compounds that are known to be conductive, particularly those containing Fe atoms. By using highly sophisticated energy dispersive X-ray spectroscopy combined with high-angle annular dark-field transmission electron microscopy enabling detection, identification, and localization of chemical compounds on the surface at nearly atomic spatial resolution, we analyze Fe spatial distribution within the G. sulfurreducens community. We discover the presence of small Fe-containing particles on the surface of the bacterium cells. The size of the particles (diameter 5.6 nm) is highly reproducible and comparable with the size of a single protein. The particles cover about 2% of the cell surface, which is similar to that expected for molecular conductors responsible for electron transfer through the bacterium cell wall. We find that G. sulfurreducens filaments ("bacterial molecular wires") also contain Fe atoms in their bundles. We observe that the bacterium enable changing the distance between the Fe-containing bundles in the filaments from separated to attached (the latter is needed for the efficient electron transfer between the Fe-containing particles), depending on the bacterium metabolic activity and attachment to extracellular substrates. These results are consistent with the recently published research about the role of Fe atoms in protein molecular conductance ( Phys. Chem. Chem. Phys. , 2018 , 20 , 14072 - 14081 ) and show what type of Fe-containing particles are involved in the bacterial extracellular communication. They can be used for the design and construction of artificial biomolecular wires and bioinorganic interfaces.


Assuntos
Fímbrias Bacterianas/química , Geobacter/química , Ferro/análise , Condutividade Elétrica , Transporte de Elétrons , Fímbrias Bacterianas/ultraestrutura , Geobacter/citologia , Geobacter/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
10.
Res Microbiol ; 169(10): 582-589, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29886258

RESUMO

Dissimilatory iron-reducing bacteria (DIRB) play an important role in controlling the redox chemistry of Fe and other transition metals and radionuclides in the environment. During bacterial iron reduction, electrons are transferred from the outer membrane to poorly soluble Fe(III) minerals, although the precise physiological mechanisms and local impact on minerals of these redox processes remain unclear. The aim of this work was to use a range of microscopic techniques to examine the local environment of Geobacter sulfurreducens grown on thin films of Fe(III)-bearing minerals, to provide insight into spatial patterns of Fe(III) reduction and electron transfer. Confocal fluorescence microscopy showed that sparse biofilms formed on the mineral coatings, while the selective Fe(II) probe RhoNox-1 revealed Fe(II) patches on the minerals sometimes co-located with cells. Atomic force microscopy highlighted thin filamentous structures extending radially from the cell surface. Further analysis using fluorescent redox dyes showed redox-active, linear nanowires that formed cell to cell connections, although they were not implicated in playing a dominant role in direct electron transfer to the Fe(III) minerals. Overall this paper provides new methods and insights on studying Fe(III) reduction and other redox transformations in situ.


Assuntos
Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Geobacter/citologia , Geobacter/metabolismo , Microscopia de Força Atômica/métodos , Minerais/metabolismo , Geobacter/crescimento & desenvolvimento , Minerais/química , Oxirredução
11.
J Bacteriol ; 199(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28138101

RESUMO

Geobacter sulfurreducens, an anaerobic metal-reducing bacterium, possesses type IV pili. These pili are intrinsic structural elements in biofilm formation and, together with a number of c-type cytochromes, are thought to serve as conductive nanowires enabling long-range electron transfer (ET) to metal oxides and graphite anodes. Here, we report that a posttranslational modification of a nonconserved amino acid residue within the PilA protein, the structural subunit of the type IV pili, is crucial for growth on insoluble extracellular electron acceptors. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of the secreted PilA protein revealed a posttranslational modification of tyrosine-32 with a moiety of a mass consistent with a glycerophosphate group. Mutating this tyrosine into a phenylalanine inhibited cell growth with Fe(III) oxides as the sole electron acceptor. In addition, this amino acid substitution severely diminished biofilm formation on graphite surfaces and impaired current output in microbial fuel cells. These results demonstrate that the capability to attach to insoluble electron acceptors plays a crucial role for the cells' ability to utilize them. The work suggests that glycerophosphate modification of Y32 is a key factor contributing to the surface charge of type IV pili, influencing the adhesion of Geobacter to specific surfaces.IMPORTANCE Type IV pili are bacterial appendages that function in cell adhesion, virulence, twitching motility, and long-range electron transfer (ET) from bacterial cells to insoluble extracellular electron acceptors. The mechanism and role of type IV pili for ET in Geobacter sulfurreducens is still a subject of research. In this study, we identified a posttranslational modification of the major G. sulfurreducens type IV pilin, suggested to be a glycerophosphate moiety. We show that a mutant in which the glycerophosphate-modified tyrosine-32 is replaced with a phenylalanine has reduced abilities for ET and biofilm formation compared with those of the wild type. The results show the importance of the glycerophosphate-modified tyrosine for surface attachment and electron transfer in electrode- or Fe(III)-respiring G. sulfurreducens cells.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Geobacter/fisiologia , Sequência de Aminoácidos , Técnicas Bacteriológicas , Fontes de Energia Bioelétrica/microbiologia , Meios de Cultura , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Geobacter/citologia , Geobacter/genética , Geobacter/metabolismo , Glicerofosfatos/química , Processamento de Proteína Pós-Traducional
12.
Int J Mol Sci ; 18(1)2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28067820

RESUMO

Geobacter species are capable of utilizing solid-state compounds, including anodic electrodes, as electron acceptors of respiration via extracellular electron transfer (EET) and have attracted considerable attention for their crucial role as biocatalysts of bioelectrochemical systems (BES's). Recent studies disclosed that anode potentials affect power output and anodic microbial communities, including selection of dominant Geobacter species, in various BES's. However, the details in current-generating properties and responses to anode potentials have been investigated only for a model species, namely Geobacter sulfurreducens. In this study, the effects of anode potentials on the current generation and the EET paths were investigated by cultivating six Geobacter species with different anode potentials, followed by electrochemical analyses. The electrochemical cultivation demonstrated that the G. metallireducens clade species (G. sulfurreducens and G. metallireducens) constantly generate high current densities at a wide range of anode potentials (≥-0.3 or -0.2 V vs. Ag/AgCl), while the subsurface clades species (G. daltonii, G. bemidjensis, G. chapellei, and G. pelophilus) generate a relatively large current only at limited potential regions (-0.1 to -0.3 V vs. Ag/AgCl). The linear sweep voltammetry analyses indicated that the G. metallireducens clade species utilize only one EET path irrespective of the anode potentials, while the subsurface clades species utilize multiple EET paths, which can be optimized depending on the anode potentials. These results clearly demonstrate that the response features to anode potentials are divergent among species (or clades) of Geobacter.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Geobacter/citologia , Eletricidade , Eletrodos , Transporte de Elétrons , Geobacter/classificação , Geobacter/metabolismo
13.
Bioelectrochemistry ; 113: 20-25, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27622557

RESUMO

Microbial electrolysis cells (MECs) can generate methane by fixing carbon dioxide without using expensive catalysts, but the impact of acclimation procedures on subsequent performance has not been investigated. Granular activated carbon (GAC) was used to pre-enrich electrotrophic methanogenic communities, as GAC has been shown to stimulate direct transfer of electrons between different microbial species. MEC startup times using pre-acclimated GAC were improved compared to controls (without pre-acclimation or without GAC), and after three fed batch cycles methane generation rates were similar (P>0.4) for GAC acclimated to hydrogen (22±9.3nmolcm-3d-1), methanol (25±9.7nmolcm-3d-1), and a volatile fatty acid (VFA) mix (22±11nmolcm-3d-1). However, MECs started with GAC but no pre-acclimation had lower methane generation rates (13±4.1nmolcm-3d-1), and MECs without GAC had the lowest rates (0.7±0.8nmolcm-3d-1 after cycle 2). Microbes previously found in methanogenic MECs, or previously shown to be capable of exocellular electron transfer, were enriched on the GAC. Pre-acclimation using GAC is therefore a simple approach to enrich electroactive communities, improve methane generation rates, and decrease startup times in MECs.


Assuntos
Reatores Biológicos/microbiologia , Carvão Vegetal/química , Carvão Vegetal/metabolismo , Eletrólise , Geobacter/citologia , Geobacter/metabolismo , Metano/metabolismo
14.
Phys Chem Chem Phys ; 17(34): 22217-26, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26243427

RESUMO

Geobacter sulfurreducens (GS) electronically connects with extracellular electron acceptors using conductive protein filaments or pili. To gain insights into their role as biological nanowires, we investigated the structural dynamics of the GS pilus in solution via molecular dynamics simulations. In the model, all of the pilin's aromatics clustered as a right-handed helical band along the pilus, maintaining inter-aromatic distances and dimer configurations optimal for multistep hopping. The aromatics were interspersed within the regions of highest negative potential, which influenced the type and configuration of the aromatic contacts and the rates of electron transfer. Small foci of positive potential were also present but were neutralized within uncharged regions, thus minimizing charge trapping. Consistent with the model predictions, mutant strains with reduced aromatic contacts or negative potentials had defects in pili functions such as the reduction of Fe(III) oxides and electrodes. The results therefore support the notion of a pilus fiber evolved to function as an electronic conduit between the cell and extracellular electron acceptors.


Assuntos
Condutividade Elétrica , Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Geobacter/citologia , Simulação de Dinâmica Molecular , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Conformação Proteica , Eletricidade Estática
15.
Dalton Trans ; 44(20): 9335-44, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25906375

RESUMO

Geobacter bacteria have a remarkable respiratory versatility that includes the dissimilatory reduction of insoluble metal oxides in natural habitats and electron transfer to electrode surfaces from which electricity can be harvested. In both cases, electrons need to be exported from the cell interior to the exterior via a mechanism designated as extracellular electron transfer (EET). Several c-type cytochromes from G. sulfurreducens (Gs) were identified as key players in this process. Biochemical and biophysical data have been obtained for ten Gs cytochromes, including inner-membrane associated (MacA), periplasmic (PpcA, PpcB, PpcC, PpcD, PpcE and GSU1996) and outer membrane-associated (OmcF, OmcS and OmcZ). The redox properties of these cytochromes have been determined, except for PpcC and GSU1996. In this perspective, the reduction potentials of these two cytochromes were determined by potentiometric redox titrations followed by visible spectroscopy. The data obtained are taken together with those available for other key cytochromes to present a thorough overview of the current knowledge of Gs EET mechanisms and provide a possible rationalization for the existence of several multiheme cytochromes involved in the same respiratory pathways.


Assuntos
Citocromos/metabolismo , Espaço Extracelular/metabolismo , Geobacter/citologia , Geobacter/enzimologia , Transporte de Elétrons , Geobacter/metabolismo
16.
Bioelectrochemistry ; 106(Pt A): 194-206, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25921352

RESUMO

A modeling platform for microbial electrodes based on electroactive microbial biofilms performing direct electron transfer (DET) is presented. Microbial catabolism and anabolism were coupled with intracellular and extracellular electron transfer, leading to biofilm growth and current generation. The model includes homogeneous electron transfer from cells to a conductive biofilm component, biofilm matrix conduction, and heterogeneous electron transfer to the electrode. Model results for Geobacter based anodes, both at constant electrode potential and in voltammetric (dynamic electrode potential) conditions, were compared to experimental data from different sources. The model can satisfactorily describe microscale (concentration, pH and redox gradients) and macroscale (electric currents, biofilm thickness) properties of Geobacter biofilms. The concentration of electrochemically accessible redox centers, here denominated as cytochromes, involved in the extracellular electron transfer, plays the key role and may differ between constant potential (300 mM) and dynamic potential (3mM) conditions. Model results also indicate that the homogeneous and heterogeneous electron transfer rates have to be within the same order of magnitude (1.2 s(-1)) for reversible extracellular electron transfer.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes/crescimento & desenvolvimento , Geobacter/metabolismo , Modelos Biológicos , Condutividade Elétrica , Transporte de Elétrons , Geobacter/citologia , Geobacter/fisiologia , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo
17.
Phys Chem Chem Phys ; 16(40): 22229-36, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25212846

RESUMO

A direct electron transfer process between bacterial cells of electrogenic species Geobacter sulfurreducens (Gs) and electrified electrode surfaces was studied to exploit the reactivity of Gs submonolayers on gold and silver surfaces. A submonolayer of Gs was prepared and studied to explore specifically the heterogeneous electron transfer properties at the bacteria/electrode interface. In situ microscopic techniques characterised the morphology of the Gs submonolayers under the operating conditions. In addition, complementary in situ spectroscopic techniques that allowed us to access in situ molecular information of the Gs with high surface selectivity and sensitivity were employed. The results provided clear evidence that the outermost cytochrome C in Gs is responsible for the heterogeneous electron transfer, which is in direct contact with the metal electrode. Feasibility of single cell in situ studies under operating conditions was demonstrated where the combination of surface-electrochemical tools at the nano- and micro-scale with microbiological approaches can offer unique opportunities for the emerging field of electro-microbiology to explore processes and interactions between microorganisms and electrical devices.


Assuntos
Técnicas Eletroquímicas , Geobacter/citologia , Ouro/química , Prata/química , Eletrodos , Eletrólitos/química , Transporte de Elétrons , Geobacter/química , Estrutura Molecular , Propriedades de Superfície
18.
Phys Chem Chem Phys ; 16(42): 23003-11, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25238285

RESUMO

The ability of dissimilatory metal-reducing microorganisms (DMRM) to conduct extracellular electron transfer with conductive cellular components grants them great potential for bioenergy and environmental applications. Crystalline Fe(III) oxide, a type of widespread electron acceptor for DMRM in nature, can be excited by light for photocatalysis and microbial culture-mediated photocurrent production. However, the feasibility of direct electron transfer from living cells to light-excited Fe(III) oxides has not been well documented and the cellular physiology in this process has not been clarified. To resolve these problems, an electrochemical system composed of Geobacter sulfurreducens and hematite (α-Fe2O3) was constructed, and direct electron transfer from G. sulfurreducens cells to the light-excited α-Fe2O3 in the absence of soluble electron shuttles was observed. Further studies evidenced the efficient excitation of α-Fe2O3 and the dependence of photocurrent production on the biocatalytic activity. Light-induced electron transfer on the cell-α-Fe2O3 interface correlated linearly with the rates of microbial respiration and substrate consumption. In addition, the G. sulfurreducens cells were found to survive on light-excited α-Fe2O3. These results prove a direct mechanism behind the DMRM respiration driven by photo-induced charge separation in semiconductive acceptors and also imply new opportunities to design photo-bioelectronic devices with living cells as a catalyst.


Assuntos
Biocatálise/efeitos da radiação , Compostos Férricos/química , Compostos Férricos/metabolismo , Geobacter/metabolismo , Geobacter/efeitos da radiação , Luz , Transporte de Elétrons/efeitos da radiação , Geobacter/química , Geobacter/citologia
19.
Appl Biochem Biotechnol ; 174(7): 2471-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25227685

RESUMO

The performance of a single-chamber microbial fuel cell (MFC) using wastewater containing phenol as the anodic fuel was evaluated. The evaluation was performed considering the effects of the presence of different phenol concentrations in the anodic fuel and the external resistance at which the cells were adapted. Maximum power and current densities of 49.8 mW m(-2) and 292.8 mA m(-2) were obtained, respectively. Microbial diversity on the anode surface remained relatively stable when the phenol concentration was increased. Pseudomonas sp. was the most abundant microorganism in the MFC, followed by the genus Geobacter and Shewanella. Phenol degradation was mainly conducted by bacteria present in the wastewater, and its presence did not affect the electricity generation. The operation of the MFC with a resistance different to the adaptation resistance produced lower current and power densities; however, the variation in external resistances did not adversely affect the phenol degradation.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Geobacter/metabolismo , Fenol/metabolismo , Pseudomonas/metabolismo , Shewanella/metabolismo , Águas Residuárias/microbiologia , Impedância Elétrica , Geobacter/citologia , Fenol/química , Pseudomonas/citologia , Shewanella/citologia
20.
Environ Sci Technol ; 48(18): 10878-87, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25105899

RESUMO

Contemporary microbial monitoring of aquifers relies on groundwater samples to enumerate nonattached cells of interest. One-dimensional column studies quantified the distribution of bacterial cells in solid and the aqueous phases as a function of microbial species, growth substrate availability and porous medium (i.e., Appling soil versus Federal Fine Ottawa sand with 0.75% and 0.01% [w/w] organic carbon, respectively). Without supplied growth substrates, effluent from columns inoculated with the tetrachloroethene- (PCE-) to-ethene-dechlorinating bacterial consortium BDI-SZ containing Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ), or inoculated with Anaeromyxobacter dehalogenans strain W (AdehalW), captured 94-96, 81-99, and 73-84% of the Dhc, GeoSZ, and AdehalW cells, respectively. Cell retention was organism-specific and increased in the order Dhc < GeoSZ < AdehalW. When amended with 10 mM lactate and 0.11 mM PCE, aqueous samples accounted for 1.3-27 and 0.02-22% of the total Dhc and GeoSZ biomass, respectively. In Appling soil, up to three orders-of-magnitude more cells were associated with the solid phase, and attachment rate coefficients (katt) were consistently greater compared to Federal Fine sand. Cell-solid interaction energies ranged from -2.5 to 787 kT and were consistent with organism-specific deposition behavior, where GeoSZ and AdehalW exhibited greater attachment than Dhc cells. The observed disparities in microbial cell distributions between the aqueous and solid phases imply that groundwater analysis can underestimate the total cell abundance in the aquifer by orders-of-magnitude under conditions of growth and in porous media with elevated organic carbon content. The implications of these findings for monitoring chlorinated solvent sites are discussed.


Assuntos
Bactérias/metabolismo , Halogênios/metabolismo , Compostos Orgânicos/metabolismo , Aerobiose , Bactérias/citologia , Aderência Bacteriana , Transporte Biológico , Chloroflexi/citologia , Chloroflexi/metabolismo , Monitoramento Ambiental , Geobacter/citologia , Geobacter/metabolismo , Halogenação , Hidrodinâmica , Tetracloroetileno/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA