Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.375
Filtrar
1.
J Agric Food Chem ; 72(19): 10879-10896, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38686994

RESUMO

Mammary gland aging is one of the most important problems faced by humans and animals. How to delay mammary gland aging is particularly important. Puerarin is a kind of isoflavone substance extracted from Pueraria lobata, which has anti-inflammatory, antioxidant, and other pharmacological effects. However, the role of puerarin in delaying lipopolysaccharide (LPS)-induced mammary gland aging and its underlying mechanism remains unclear. On the one hand, we found that puerarin could significantly downregulate the expression of senescence-associated secretory phenotype (SASP) and age-related indicators (SA-ß-gal, p53, p21, p16) in mammary glands of mice. In addition, puerarin mainly inhibited the p38MAPK signaling pathway to repair mitochondrial damage and delay mammary gland aging. On the other hand, puerarin could also delay the cellular senescence of mice mammary epithelial cells (mMECs) by targeting gut microbiota and promoting the secretion of gut microbiota metabolites. In conclusion, puerarin could not only directly act on the mMECs but also regulate the gut microbiota, thus, playing a role in delaying the aging of the mammary gland. Based on the above findings, we have discovered a new pathway for puerarin to delay mammary gland aging.


Assuntos
Envelhecimento , Microbioma Gastrointestinal , Isoflavonas , Glândulas Mamárias Animais , Proteínas Quinases p38 Ativadas por Mitógeno , Isoflavonas/farmacologia , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Envelhecimento/efeitos dos fármacos , Humanos , Pueraria/química , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/isolamento & purificação , Transdução de Sinais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Senescência Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL
2.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673850

RESUMO

Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches.


Assuntos
Isotiocianatos , Fator 2 Relacionado a NF-E2 , Quassinas , Sulfóxidos , Transcriptoma , Animais , Bovinos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Isotiocianatos/farmacologia , Quassinas/farmacologia , Sulfóxidos/farmacologia , Transcriptoma/efeitos dos fármacos , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Simulação por Computador , Estresse Oxidativo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
3.
Res Vet Sci ; 172: 105253, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579632

RESUMO

The aim of the study was to examine the effects of repeated administrations of antioxidant multiminerals and vitamins in transition buffaloes on udder defense mechanism, antioxidant activity and occurrence of intramammary infection (IMI) in early lactation period. Forty clinically healthy pregnant buffaloes were enrolled 45 days before expected date of calving and randomly allocated into five different supplementation groups (n = 8): only basal ration (control), vitamin E and selenium (VES), multiminerals (MM), ascorbic acid (AA) and chromium (Cr) picolinate in basal diet. The udder defense mechanism was monitored by measuring phagocytic activity (PA), myeloperoxidase (MPO) and nitric oxide (NO) productions in milk leukocytes, antioxidant activity was evaluated by measuring total antioxidant capacity (TAC) in plasma and occurrence of IMI was assessed by milk cytology, bacterial count in milk and visible clinical signs of udder until day 28 post-calving. The results showed that the VES and MM supplementations exhibited significantly higher PA, MPO and NO productions of milk leukocytes till first week of lactation whereas, elevated mean TAC in plasma was maintained from day -7 to 1 of calving in MM supplementation group as compared to control group. Statistically, no significant difference in occurrences of subclinical or clinical IMI was noted across the groups until four weeks of lactation. Taken together, it is concluded that repeated administrations of VES and MM to transition buffaloes could be an effective strategy to maintain good udder health by augmenting milk leukocyte functions and antioxidant status and preventing incidence of IMI in early lactation.


Assuntos
Antioxidantes , Búfalos , Suplementos Nutricionais , Lactação , Glândulas Mamárias Animais , Vitaminas , Animais , Feminino , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Lactação/efeitos dos fármacos , Vitaminas/administração & dosagem , Vitaminas/farmacologia , Glândulas Mamárias Animais/efeitos dos fármacos , Leite/química , Dieta/veterinária , Ração Animal/análise , Minerais/administração & dosagem , Gravidez , Distribuição Aleatória
4.
Mol Nutr Food Res ; 68(9): e2300703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38676329

RESUMO

Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκß) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.


Assuntos
Galactagogos , Lactação , Polifenóis , Lactação/efeitos dos fármacos , Polifenóis/farmacologia , Feminino , Humanos , Galactagogos/farmacologia , Animais , Suplementos Nutricionais , Glândulas Mamárias Animais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/metabolismo
5.
Pestic Biochem Physiol ; 201: 105866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685242

RESUMO

Pea Albumin 1, subunit b (PA1b) is a 37 amino acid peptide. It was extracted from pea seeds and showed significant insecticidal activity against certain insects, such as the mosquitoes Culex pipiens and Aedes aegyptii, cereal weevils (genus Sitophilus), and certain species of aphids. Considering that pea seeds are regularly consumed by humans and mammals, PA1b is assumed to be a promising bioinsecticide with no allergenicity or toxicity to hosts. To clarify this aspect, PA1b was applied to bovine mammary epithelial cells challenged with lipopolysaccharide (LPS). The results revealed that LPS induced inflammatory cytokine tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL6) and monocyte chemoattractant protein 1 (MCP-1) secretion, while PA1b depressed these cytokines release via inhibiting NF-κB signaling activation. In addition, PA1b protected mammary epithelial cells from impairment caused by LPS, because it reduced cell membrane permeability and subsequently reconstructed mammary epithelial cell viability. Moreover, it inhibited cell apoptosis accompanied with alleviated oxidative stress. Furthermore, PA1b prevented opening of mitochondrial permeability transition pores, in turn up-regulated mitochondrial membrane potential and ATP production. Therefore, PA1b improved mitochondrial function, which contributed to re-construction of mammary epithelial cell viability. In conclusion, PA1b alleviates LPS-induced inflammation of bovine mammary epithelial cells via inhibiting NF-κB signaling activation and protects bovine mammary epithelial cells by improving mitochondrial function. PA1b is a good therapeutic survival factor for mammary epithelial cells.


Assuntos
Células Epiteliais , Inflamação , Lipopolissacarídeos , Animais , Lipopolissacarídeos/farmacologia , Bovinos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inseticidas/toxicidade , Inseticidas/farmacologia , Feminino , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
PLoS One ; 19(4): e0300728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683862

RESUMO

Feeding high-gain diets and an inadequate energy and protein ratio during pre-puberty may lead to impaired growth and mammary gland development of heifers. Thus, frequent application of bovine somatotropin (bST) may prevent future losses in productivity, improve mammary development and animal performance. We aimed to evaluate the effects of bST on digestibility, performance, blood metabolites, mammary gland development, and carcass composition of high-performance prepubertal Holstein × Gyr heifers. Thirty-four Holstein × Gyr heifers with an average initial body weight of 218 ± 49 kg and 14 ± 4 months of age were submitted to an 84-day trial evaluating the effects of no bST or bST injections. Treatments were randomly assigned to each animal within one of the tree blocks. The bST did not influence digestibility or performance parameters. Regarding blood results, IGF1 concentration presented an interaction between treatment and day, where bST heifers had the highest IGF1 concentration. Heifers receiving bST also showed increased ribeye area; however, only an experimental day effect for backfat thickness was observed, with greater accumulation of carcass fat on day 84. Heifers receiving bST had lower pixels/mm² on parenchyma, characteristic of greater parenchymal tissue. Moreover, heifers on bST treatment also had reduced pixels/mm2, characteristic of reduced fat pad tissue. Lastly, bST injections did not influence liver and muscle gene expression, nor most genes evaluated in mammary gland tissue, except for IGFBP3 expression, which was greater for bST heifers. In summary, we confirm the efficacy of bST injections to overcome the detrimental effects of high-gain diets on mammary gland growth and to improve lean carcass gain of prepubertal Holstein × Gyr heifers.


Assuntos
Hormônio do Crescimento , Animais , Bovinos , Feminino , Hormônio do Crescimento/sangue , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Dieta/veterinária , Ração Animal/análise , Maturidade Sexual/efeitos dos fármacos , Composição Corporal/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo
7.
Toxicol Appl Pharmacol ; 485: 116876, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437955

RESUMO

BACKGROUND: Olanzapine antagonizes dopamine receptors and is prescribed to treat multiple psychiatric conditions. The main side effect of concern for olanzapine is weight gain and metabolic syndrome. Olanzapine induces hyperprolactinemia, however its effect on the mammary gland is poorly documented. METHODS: Rats received olanzapine by gavage or in drinking water at 1, 3, and 6 mg/kg/day for 5-40 days or 100 days, with and without coadministration of bromocriptine or aripiprazole and using once daily or continuous administration strategies. Histomorphology of the mammary gland, concentrations of prolactin, estradiol, progesterone, and olanzapine in serum, mammary gland and adipose tissue, and mRNA and protein expressions of prolactin receptors were analyzed. RESULTS: In adult and prepubescent female rats and male rats, olanzapine induced significant development of mammary glands in dose- and time-dependent manners, with histopathological hyperplasia of mammary ducts and alveoli with lumen dilation and secretion, marked increase of mammary prolactin receptor expression, a marker of breast tissue, and with mild increase of circulating prolactin. This side effect can be reversed after medication withdrawal, but long-term olanzapine treatment for 100 days implicated tumorigenic potentials indicated by usual ductal epithelial hyperplasia. Olanzapine induced mammary development was prevented with the coaddition of the dopamine agonist bromocriptine or partial agonist aripiprazole, or by continuous administration of medication instead of a once daily regimen. CONCLUSIONS: These results shed light on the previously overlooked effect of olanzapine on mammary development and present experimental evidence to support current clinical management strategies of antipsychotic induced side effects in the breast.


Assuntos
Antipsicóticos , Aripiprazol , Benzodiazepinas , Bromocriptina , Glândulas Mamárias Animais , Olanzapina , Prolactina , Animais , Olanzapina/toxicidade , Feminino , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Aripiprazol/toxicidade , Ratos , Prolactina/sangue , Antipsicóticos/toxicidade , Antipsicóticos/efeitos adversos , Benzodiazepinas/toxicidade , Masculino , Ratos Sprague-Dawley , Receptores da Prolactina/metabolismo , Estradiol/sangue , Relação Dose-Resposta a Droga , Progesterona/sangue , Quinolonas/toxicidade , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Piperazinas/toxicidade
8.
Br J Nutr ; 130(10): 1665-1677, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36946032

RESUMO

The G protein-coupled receptors (GPCR) sensing nutritional signals (amino acids, fatty acids, glucose, etc.) are not fully understood. In this research, we used transcriptome sequencing to analyse differentially expressed genes (DEG) in mouse mammary gland tissues at puberty, lactation and involution stages, in which eight GPCR were selected out and verified by qRT-PCR assay. It was further identified the role of GPR110-mediating nutrients including palmitic acid (PA) and methionine (Met) to improve milk synthesis using mouse mammary epithelial cell line HC11. PA but not Met affected GPR110 expression in a dose-dependent manner. GPR110 knockdown decreased milk protein and fat synthesis and cell proliferation and blocked the stimulation of PA on mechanistic target of rapamycin (mTOR) phosphorylation and sterol-regulatory element binding protein 1c (SREBP-1c) expression. In summary, these experimental results disclose DEG related to lactation and reveal that GPR110 mediates PA to activate the mTOR and SREBP-1c pathways to promote milk protein and fat synthesis.


Assuntos
Lactação , Glândulas Mamárias Animais , Proteínas do Leite , Animais , Feminino , Camundongos , Células Epiteliais/metabolismo , Lactação/genética , Lactação/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Metionina/metabolismo , Proteínas do Leite/metabolismo , Ácido Palmítico/farmacologia , Receptores Acoplados a Proteínas G/genética , Maturidade Sexual , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma
9.
Gynecol Endocrinol ; 38(2): 181-185, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34463181

RESUMO

AIMS: To evaluate the concentration of hyaluronan acid and proliferation/cellular death in mammary gland of ovariectomized female rat after estroprogestative therapy. MATERIALS AND METHODS: Forty ovariectomized female rats were divided into four groups with 10 animals/each: OG (vehicle); EG: (Estradiol, 7 days of treatment), PG (Progesterone acetate, 23 days of treatment), and EPG: (Estradiol, 7 days of treatment, and next Progesterone acetate, 23 days of treatment). Twenty-four hours after the last treatment, all animals were euthanized, the mammary gland removed, then, a fragment was immersed in acetone to quantifying of the hyaluronan acid biochemical method (ELISA-Like fluorometric assay), and a fragment fixed for 24 h in 10% formaldehyde in phosphate-buffered saline (PBS) processed for immunohistochemistry method for detection of the cell marker proliferation (Ki67) and cellular marker death by DNA fragmentation the TUNEL method. RESULTS: The estradiol-treatment alone (EG) or associated with progesterone (EPG) affected the concentration of hyaluronan acid, increased cell proliferation, and decreased cell death compared to OG and PG (p < .05) in the mammary tissue. CONCLUSIONS: Our results suggest that the excessive reduction of HA in mammary tissue, as occurred with progesterone treatment, can lead to a breakdown of the extracellular matrix. These changes may be indicative of mammary pathology such as the development of tumor.


Assuntos
Estradiol , Ácido Hialurônico , Glândulas Mamárias Animais , Progesterona , Animais , Morte Celular , Proliferação de Células , Estradiol/farmacologia , Feminino , Ácido Hialurônico/análise , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Progesterona/farmacologia , Ratos
10.
Environ Toxicol Pharmacol ; 89: 103785, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34896274

RESUMO

In the mammary gland (MG), the developmental window for gestational/lactational differentiation and growth is highly vulnerable to hormonal disruption. Here we describe that the MG involution process in female gerbil mothers is delayed by bisphenol A (BPA) exposure during gestation and lactation. The process is directly influenced by changes in expression of extracellular matrix proteases MMP-2, MMP-9, and FAP, and the incidence of collagen and elastin is reduced after 7 and 14 days of weaning. A pro-inflammatory environment in the late involution process was confirmed by higher expression of TNF-α, COX-2 and phospho-STAT3 n the MG stroma, allied to increases in the incidence of macrophages and mast cells. These aspects impacted the proliferative pattern of epithelial cells, which decreased on the 14th post-weaning day. These data confirm that the milk production window of susceptibility is vulnerable to the impact of BPA, which promotes a suggestive pro-tumoral microenvironment during mammary involution.


Assuntos
Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade , Lactação , Glândulas Mamárias Animais/efeitos dos fármacos , Fenóis/toxicidade , Animais , Células Epiteliais/efeitos dos fármacos , Feminino , Gerbillinae , Inflamação , Glândulas Mamárias Animais/crescimento & desenvolvimento , Metaloproteinases da Matriz/metabolismo , Gravidez , Células Estromais/metabolismo , Desmame
11.
Endocrinology ; 163(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34918063

RESUMO

Successful lactation and the risk for developing breast cancer depend on growth and differentiation of the mammary gland (MG) epithelium that is regulated by ovarian steroids (17ß-estradiol [E] and progesterone [P]) and pituitary-derived prolactin (PRL). Given that the MG of pigs share histomorphogenic features present in the normal human breast, we sought to define the transcriptional responses within the MG of pigs following exposure to all combinations of these hormones. Hormone-ablated female pigs were administered combinations of E, medroxyprogesterone 17-acetate (source of P), and either haloperidol (to induce PRL) or 2-bromo-α-ergocryptine. We subsequently monitored phenotypic changes in the MG including mitosis, receptors for E and P (ESR1 and PGR), level of phosphorylated STAT5 (pSTAT5), and the frequency of terminal ductal lobular unit (TDLU) subtypes; these changes were then associated with all transcriptomic changes. Estrogen altered the expression of approximately 20% of all genes that were mostly associated with mitosis, whereas PRL stimulated elements of fatty acid metabolism and an inflammatory response. Several outcomes, including increased pSTAT5, highlighted the ability of E to enhance PRL action. Regression of transcriptomic changes against several MG phenotypes revealed 1669 genes correlated with proliferation, among which 29 were E inducible. Additional gene expression signatures were associated with TDLU formation and the frequency of ESR1 or PGR. These data provide a link between the hormone-regulated genome and phenome of the MG in a species having a complex histoarchitecture like that in the human breast, and highlight an underexplored synergy between the actions of E and PRL during MG development.


Assuntos
Estrogênios/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Progesterona/fisiologia , Prolactina/fisiologia , Porco Miniatura/fisiologia , Transcriptoma/fisiologia , Animais , Bromocriptina/administração & dosagem , Sinergismo Farmacológico , Estradiol/administração & dosagem , Receptor alfa de Estrogênio/análise , Receptor alfa de Estrogênio/genética , Estrogênios/deficiência , Feminino , Haloperidol/administração & dosagem , Glândulas Mamárias Animais/química , Glândulas Mamárias Animais/efeitos dos fármacos , Acetato de Medroxiprogesterona/administração & dosagem , Modelos Animais , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Ovariectomia , Progesterona/deficiência , Prolactina/deficiência , Receptores de Progesterona/análise , Receptores de Progesterona/genética , Suínos , Transcriptoma/efeitos dos fármacos
12.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884959

RESUMO

Thoracic pair of mammary glands from steroid hormone-pretreated mice respond to hormones structurally and functionally in organ culture. A short exposure of glands for 24 h to 7,12 Dimethylbenz(a)anthracene (DMBA) during a 24-day culture period induced alveolar or ductal lesions. Methods: To differentiate the functional significance of ERα and ERß, we employed estrogen receptor (ER) knockout mice. We compared the effects of DMBA on the development of preneoplastic lesions in the glands in the absence of ERα (αERKO) and ERß (ßERKO) using an MMOC protocol. Glands were also subjected to microarray analyses. We showed that estradiol can be replaced by EGF for pretreatment of mice. The carcinogen-induced lesions developed under both steroids and EGF pretreatment protocols. The glands from αERKO did not develop any lesions, whereas in ßERKO mice in which ERα is intact, mammary alveolar lesions developed. Comparison of microarrays of control, αERKO and ßERKO mice showed that ERα was largely responsible for proliferation and the MAP kinase pathways, whereas ERß regulated steroid metabolism-related genes. The results indicate that ERα is essential for the development of precancerous lesions. Both subtypes, ERα and Erß, differentially regulated gene expression in mammary glands in organ cultures.


Assuntos
Antracenos/efeitos adversos , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Glândulas Mamárias Animais/citologia , Técnicas de Cultura de Órgãos/métodos , Piperidinas/efeitos adversos , Lesões Pré-Cancerosas/patologia , Animais , Fator de Crescimento Epidérmico/administração & dosagem , Fator de Crescimento Epidérmico/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/genética , Transdução de Sinais/efeitos dos fármacos
13.
Oxid Med Cell Longev ; 2021: 5048375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938382

RESUMO

Mastitis is mainly induced by gram-negative bacterial infections, causing devastating economic losses to the global cattle industry. Both selenium (Se) and taurine (Tau) exhibit multiple biological effects, including reducing inflammation. However, no studies have reported the protective effect of the combined use of Se and Tau against mastitis, and the underlying mechanisms remain unclear. In this study, lipopolysaccharide (LPS), the vital virulence factor of gram-negative bacteria, was used to construct the in vivo and vitro mastitis models. The results of in vivo model showed that Se and Tau combination was more effective than either substance alone in reducing tissue hyperemia, edema, and neutrophil infiltration in the mammary acinar cavity, improving the blood-milk barrier in LPS-induced mice mastitis, and decreasing the expression of proinflammatory factors and the activity of MPO. Moreover, Se and Tau combination significantly increased the levels of LPS-induced reduction in PI3K/Akt/mTOR, but the expressions of TLRs and NLRP3 were not significantly changed in the mammary tissue. In the in vitro experiments, the effects of Se and Tau combination or alone on inflammatory factors, inflammatory mediators, MPO activity, and blood-milk barrier were consistent with those in vivo. The Se and Tau combination has also been found to increase the survival rate of BMECs compared with each substance alone via promoting cellular proliferation and inhibiting apoptosis. Also, it has been confirmed that this combination could restore the LPS-induced inhibition in the PI3K/Akt/mTOR signaling pathway. Inhibition of mTOR by Rapamycin counteracted the combined protection of SeMet and Tau against LPS-induced inflammatory damage, the inhibition of PI3K by LY294002 blocked the activation of mTOR, and the accumulation of ROS by the ROS agonist blocked the activation of PI3K. In conclusion, these findings suggested that Se and Tau combination was better than either substance alone in protecting LPS-induced mammary inflammatory lesions by upregulating the PI3K/Akt/mTOR signaling pathway.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/prevenção & controle , Glândulas Mamárias Animais/efeitos dos fármacos , Mastite/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia , Taurina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Bovinos , Quimioterapia Combinada , Feminino , Sequestradores de Radicais Livres , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Mastite/induzido quimicamente , Mastite/imunologia , Mastite/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
14.
Aging (Albany NY) ; 13(23): 25377-25392, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890369

RESUMO

Mammary gland fibrosis is a chronic and irreversible disease. Tartary buckwheat flavonoids (TBF) are a natural product of flavonoid extracts from buckwheat and have a wide range of biological activities. The purpose of this experiment was to explore whether HFD during pregnancy and lactation induces fibrosis of the mammary tissue and whether TBF alleviates the damage caused by HFD, along with its underlying mechanism. The HFD significantly increased the levels of TNF-α, IL-6, IL-1ß, and MPO; significantly damaged the integrity of the blood-milk barrier; significantly increased the levels of collagen 1, vimentin and α-SMA, and reduced the level of E-cadherin. However, these effects were alleviated by TBF. Mechanistic studies showed that TBF inhibited the activation of AKT/NF-κB signaling and predicted the AKT amino acid residues that formed hydrogen bonds with TBF; in addition, these studies not only revealed that TBF promoted the expression of the tight junction proteins (TJs) claudin-3, occludin and ZO-1 and inhibited the activation of TGF-ß/Smad signaling but also predicted the Smad MH2 amino acid residues that formed hydrogen bonds with TBF. Conclusion: HFD consumption during pregnancy and lactation induced the tendency of mammary fibrosis. TBF alleviated the tendency of mammary fibrosis by inhibiting the activation of AKT/NF-κB, repairing the blood-milk barrier and inhibiting the activation of TGF-ß/Smad signaling.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fagopyrum/química , Flavonoides/farmacologia , Glândulas Mamárias Animais/patologia , Extratos Vegetais/farmacologia , Animais , Western Blotting , Feminino , Fibrose , Lactação/efeitos dos fármacos , Masculino , Glândulas Mamárias Animais/efeitos dos fármacos , Camundongos Endogâmicos ICR , Gravidez/efeitos dos fármacos
15.
Life Sci ; 285: 120010, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34606849

RESUMO

AIMS: Hormone receptors are the main markers applied for prognosis of breast cancer subtypes. Among modulators, exogenous chemical agents known as endocrine disruptors interact with certain receptors, triggering molecular pathways or increasing their expression. Bisphenol A (BPA), a xenoestrogen, interacts with several hormone receptors. Thus, our aim was to characterize the hormone receptor status in the mammary gland (MG) of aged female Mongolian gerbils exposed to BPA in pregnancy and lactation. METHODS: We evaluated the expression of receptors for estrogens (ERα and ERß), progesterone (PR), prolactin (PRL-R), HER2/ErbB2, and androgen (AR) in normal and hyperplastic mammary tissue and in carcinomas developed after BPA exposure. KEY FINDINGS: BPA-exposed MG presented increased ERα, whereas ERß, PR, and PRL-R showed lower expression. AR and HER2/ErbB2 showed similar expression in normal and hyperplastic tissue from control, vehicle, and BPA groups. Both receptors were found in cytoplasm and nucleus in BPA-induced carcinoma. We demonstrate the presence of EZH2 expression, an epigenetic and epithelial-mesenchymal transition (EMT) marker, with a high H-score in BPA-exposed MG, which was associated with poor prognosis of cancer. Co-localization of ERα and EZH2 was present in normal and carcinoma features, corroborating the installation of ERα-positive mammary cancer associated with the EMT process. Enhanced EZH2 in BPA-exposed mammary tissue could decrease ERß expression and promote tumorigenesis progress through HER2/ErbB2. SIGNIFICANCE: The present study proposes the Mongolian gerbil as an experimental model for mammary carcinogenesis studies, based on BPA disruption that triggers a phenotype of increased ERα/HER2 positivity and depletion of ERß/PR expression.


Assuntos
Envelhecimento , Compostos Benzidrílicos/efeitos adversos , Neoplasias da Mama/induzido quimicamente , Carcinogênese/induzido quimicamente , Disruptores Endócrinos/efeitos adversos , Glândulas Mamárias Animais/efeitos dos fármacos , Exposição Materna , Fenóis/efeitos adversos , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Animais , Neoplasias da Mama/metabolismo , Carcinogênese/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Gerbillinae , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/metabolismo
16.
Mol Pharm ; 18(9): 3401-3417, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34482696

RESUMO

The need of pharmacological strategies to preclude breast cancer development motivated us to develop a non-aqueous microemulsion (ME) capable of forming a depot after administration in the mammary tissue and uptake of interstitial fluids for prolonged release of the retinoid fenretinide. The selected ME was composed of phosphatidylcholine/tricaprylin/propylene glycol (45:5:50, w/w/w) and presented a droplet diameter of 175.3 ± 8.9 nm. Upon water uptake, the ME transformed successively into a lamellar phase, gel, and a lamellar phase-containing emulsion in vitro as the water content increased and released 30% of fenretinide in vitro after 9 days. Consistent with the slow release, the ME formed a depot in cell cultures and increased fenretinide IC50 values by 68.3- and 13.2-fold in MCF-7 and T-47D cells compared to a solution, respectively. At non-cytotoxic concentrations, the ME reduced T-47D cell migration by 75.9% and spheroid growth, resulting in ∼30% smaller structures. The depot formed in vivo prolonged a fluorochrome release for 30 days without producing any sings of local irritation. In a preclinical model of chemically induced carcinogenesis, ME administration every 3 weeks for 3 months significantly reduced (4.7-fold) the incidence of breast tumors and increased type II collagen expression, which might contribute to limit spreading. These promising results support the potential ME applicability as a preventive therapy of breast cancer.


Assuntos
Anticarcinógenos/administração & dosagem , Neoplasias da Mama/prevenção & controle , Fenretinida/administração & dosagem , Neoplasias Mamárias Experimentais/prevenção & controle , Animais , Anticarcinógenos/farmacocinética , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Emulsões , Feminino , Fenretinida/farmacocinética , Humanos , Concentração Inibidora 50 , Células MCF-7 , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Metilnitrosoureia/administração & dosagem , Metilnitrosoureia/toxicidade , Camundongos , Ratos
17.
Breast Cancer Res ; 23(1): 78, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344445

RESUMO

BACKGROUND: The ovarian hormones estrogen and progesterone (EP) are implicated in breast cancer causation. A specific consequence of progesterone exposure is the expansion of the mammary stem cell (MSC) and luminal progenitor (LP) compartments. We hypothesized that this effect, and its molecular facilitators, could be abrogated by progesterone receptor (PR) antagonists administered in a mouse model. METHODS: Ovariectomized FVB mice were randomized to 14 days of treatment: sham, EP, EP + telapristone (EP + TPA), EP + mifepristone (EP + MFP). Mice were then sacrificed, mammary glands harvested, and mammary epithelial cell lineages separated by flow cytometry using cell surface markers. RNA from each lineage was sequenced and differential gene expression was analyzed using DESeq. Quantitative PCR was performed to confirm the candidate genes discovered in RNA seq. ANOVA with Tukey post hoc analysis was performed to compare relative expression. Alternative splicing events were examined using the rMATs multivariate analysis tool. RESULTS: Significant increases in the MSC and luminal mature (LM) cell fractions were observed following EP treatment compared to control (p < 0.01 and p < 0.05, respectively), whereas the LP fraction was significantly reduced (p < 0.05). These hormone-induced effects were reversed upon exposure to TPA and MFP (p < 0.01 for both). Gene Ontology analysis of RNA-sequencing data showed EP-induced enrichment of several pathways, with the largest effect on Wnt signaling in MSC, significantly repressed by PR inhibitors. In LP cells, significant induction of Wnt4 and Rankl, and Wnt pathway intermediates Lrp2 and Axin2 (confirmed by qRTPCR) were reversed by TPA and MFP (p < 0.0001). Downstream signaling intermediates of these pathways (Lrp5, Mmp7) showed similar effects. Expression of markers of epithelial-mesenchymal transition (Cdh1, Cdh3) and the induction of EMT regulators (Zeb1, Zeb2, Gli3, Snai1, and Ptch2) were significantly responsive to progesterone. EP treatment was associated with large-scale alternative splicing events, with an enrichment of motifs associated with Srsf, Esrp, and Rbfox families. Exon skipping was observed in Cdh1, Enah, and Brd4. CONCLUSIONS: PR inhibition reverses known tumorigenic pathways in the mammary gland and suppresses a previously unknown effect of progesterone on RNA splicing events. In total, our results strengthen the case for reconsideration of PR inhibitors for breast cancer prevention.


Assuntos
Glândulas Mamárias Animais/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/antagonistas & inibidores , Células-Tronco/citologia , Processamento Alternativo/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Antagonistas de Hormônios/farmacologia , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Camundongos , Progesterona/farmacologia , Fatores de Processamento de RNA/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
18.
Biochem Biophys Res Commun ; 573: 55-61, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34388455

RESUMO

Mammary epithelial cells are the only cells in the mammary glands that are capable of lactation and they are ideal for studying cellular and molecular biology mechanisms during growth, development and lactation of the mammary glands. The limiting factors in most of the currently available mammary epithelial cells are low cell viability, transgenerational efficiency and lactation function that renders them unsuitable for subsequent studies on mammary gland's cellular and lactation mechanisms and utilizing them as bioreactors. Hence, new methods are required to obtain mammary epithelial cells with high transgenerational efficiency and lactation function. In this study, transdifferentiation of goat ear fibroblasts (GEFs) into goat mammary epithelial cells (CiMECs) was induced in only eight days by five small molecule compounds, including 500 µg/mL VPA, 10 µM Tranylcypromine, 10 µM Forskolin, 1 µM TTNPB, 10 µM RepSox. Morphological observation, marker genes comparison, specific antigen expression and comparison of gene expression levels by transcriptome sequencing between the two types of cells that led to the primary deduction that CiMECs have similar biological properties to goat mammary epithelial cells (GMECs) and comparatively more lactation capacity. Therefore, we establish a novel reprogramming route to convert fibroblasts into CiMECs under fully chemically conditions. This study is expected to provide an in vitro platform for understanding cellular mechanisms such as mammary epithelial cells' fate determination and developmental differentiation, and also to find a new way to obtain a large number of functional mammary epithelial cells in vitro.


Assuntos
Benzoatos/farmacologia , Colforsina/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Retinoides/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tranilcipromina/farmacologia , Ácido Valproico/farmacologia , Animais , Benzoatos/química , Transdiferenciação Celular/efeitos dos fármacos , Colforsina/química , Relação Dose-Resposta a Droga , Orelha , Células Epiteliais/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Cabras , Glândulas Mamárias Animais/efeitos dos fármacos , Pirazóis/química , Piridinas/química , Retinoides/química , Bibliotecas de Moléculas Pequenas/química , Tranilcipromina/química , Ácido Valproico/química
19.
Mol Immunol ; 137: 134-144, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34247099

RESUMO

Mastitis is one of the most serious diseases in humans and animals, especially in the modern dairy industry. Seeking safe and effective mastitis prevention strategies is urgent since food safety and drug residues in milk remain an enormous concern, despite the contribution of antibiotics to control mastitis. Kynurenic acid (KYNA), derived from the kynurenine pathway of tryptophan metabolism, has been shown to exhibit anti-inflammatory and immunomodulatory effects in many diseases. Recently, it was reported that impaired KYNA levels were associated with mastitis. However, the physiological role of KYNA in mastitis has not yet been elucidated. Therefore, the aim of this study was to investigate the protective role of KYNA in pathogen-induced mastitis in mice, as well as the underlying mechanism of this effect. We first evaluated the effects of KYNA on LPS-induced mastitis in mice. Additionally, the underlying anti-inflammatory mechanism of KYNA was investigated in mammary epithelial cells (MMECs). Furthermore, we examined the effects of KYNA on S. aureus and E. coli induced mastitis in mice. Our results demonstrated that KYNA alleviated LPS-induced mastitis by reducing inflammatory responses and enhancing blood-milk barrier integrity. The fundamental mechanisms involved the inhibition of NF-κB and activation of Nrf2/Ho-1, which is probably mediated by G protein-coupled receptor 35 but not aryl hydrocarbon receptor. Notably, KYNA also protected against S. aureus and E. coli induced mastitis in mice. In conclusion, our results highlight the role of KYNA in mastitis and serve as a basis for using endogenous metabolite as a novel preventative or therapeutic strategy for disease intervention.


Assuntos
Inflamação/tratamento farmacológico , Ácido Cinurênico/farmacologia , Mastite/tratamento farmacológico , Leite/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/microbiologia , Mastite/metabolismo , Mastite/microbiologia , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade
20.
Cell Biol Int ; 45(11): 2264-2274, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34288236

RESUMO

The mammary gland (MG) and female prostate are plastic reproductive organs which are highly responsive to hormones. Thus, endocrine disruptors, such as bisphenol A (BPA) and exogenous estrogens, negatively affect glandular homeostasis. In addition to previously described alterations, changes in inflammatory markers expression also trigger the development of a microenvironment that contributes to tumor progression. The current work aimed to evaluate the inflammatory responses of the MG and prostate gland to BPA (50 µg/kg) and 17-ß estradiol (35 µg/kg) exposure during the perinatal window of susceptibility. The results showed that at 6 months of age there was an increase in the number of phospho-STAT3 (P-STAT3) positive cells in the female prostate from animals perinatally exposed to 50 µg/kg BPA daily. In addition, the number of macrophages increased in these animals in comparison with nonexposed animals, as shown by the F4/80 marker. Despite an increase in the incidence of lobuloalveolar and intraductal hyperplasia, the MG did not show any difference in the expression of the four inflammatory markers evaluated: tumor necrosis factor-α, COX-2, P-STAT3, and F4/80. Analysis of both glands from the same animal led to the conclusion that exposure to endocrine disruptors during the perinatal window of susceptibility leads to different inflammatory responses in different reproductive organs. As the prostate is more susceptible to these inflammatory mechanisms, it is reasonable to affirm that possible neoplastic alterations in this organ are related to changes in the inflammatory pattern of the stroma, a characteristic that is not evident in the MG.


Assuntos
Disruptores Endócrinos/farmacologia , Glândulas Endócrinas/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Animais , Animais Recém-Nascidos/metabolismo , Compostos Benzidrílicos/farmacologia , Disruptores Endócrinos/metabolismo , Glândulas Endócrinas/metabolismo , Estradiol/farmacologia , Feminino , Genitália Feminina/efeitos dos fármacos , Genitália Feminina/metabolismo , Gerbillinae , Humanos , Inflamação/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Fenóis/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Esteroides/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA