Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Mol Ecol ; 32(1): 244-257, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218009

RESUMO

Fungal endophytes are critical members of the plant microbiome, but their community dynamics throughout an entire growing season are underexplored. Additionally, most fungal endophyte research has centred on seed-reproducing hosts, while spore-reproducing plants also host endophytes and may be colonized by unique community members. In order to examine annual fungal endophyte community dynamics in a spore-reproducing host, we explored endophytes in a single population of ferns, Polystichum munitum, in the Pacific Northwest. Through metabarcoding, we characterized the community assembly and temporal turnover of foliar endophytes throughout a growing season. From these results, we selected endophytes with outsized representations in sequence data and performed in vitro competition assays. Finally, we inoculated sterile fern gametophytes with dominant fungi observed in the field and determined their effects on host performance. Sequencing demonstrated that ferns were colonized by a diverse community of fungal endophytes in newly emerged tissue, but diversity decreased throughout the season leading to the preponderance of a single fungus in later sampling months. This previously undescribed endophyte appears to abundantly colonize the host to the detriment of other microfungi. Competition assays on a variety of media types failed to demonstrate that the dominant fungus was competitive against other fungi isolated from the same hosts, and inoculation onto sterile fern gametophytes did not alter growth compared to sterile controls, suggesting its effects are not antagonistic. The presence of this endophyte in the fern population probably demonstrates a case of repeated colonization driving competitive exclusion of other fungal community members.


Assuntos
Gleiquênias , Microbiota , Endófitos , Gleiquênias/microbiologia , Fungos/genética , Plantas/microbiologia
2.
Microb Genom ; 7(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181515

RESUMO

Species of the floating, freshwater fern Azolla form a well-characterized symbiotic association with the non-culturable cyanobacterium Nostoc azollae, which fixes nitrogen for the plant. However, several cyanobacterial strains have over the years been isolated and cultured from Azolla from all over the world. The genomes of 10 of these strains were sequenced and compared with each other, with other symbiotic cyanobacterial strains, and with similar strains that were not isolated from a symbiotic association. The 10 strains fell into three distinct groups: six strains were nearly identical to the non-symbiotic strain, Nostoc (Anabaena) variabilis ATCC 29413; three were similar to the symbiotic strain, Nostoc punctiforme, and one, Nostoc sp. 2RC, was most similar to non-symbiotic strains of Nostoc linckia. However, Nostoc sp. 2RC was unusual because it has three sets of nitrogenase genes; it has complete gene clusters for two distinct Mo-nitrogenases and an alternative V-nitrogenase. Genes for Mo-nitrogenase, sugar transport, chemotaxis and pili characterized all the symbiotic strains. Several of the strains infected the liverwort Blasia, including N. variabilis ATCC 29413, which did not originate from Azolla but rather from a sewage pond. However, only Nostoc sp. 2RC, which produced highly motile hormogonia, was capable of high-frequency infection of Blasia. Thus, some of these strains, which grow readily in the laboratory, may be useful in establishing novel symbiotic associations with other plants.


Assuntos
Cianobactérias/genética , Gleiquênias/microbiologia , Genômica , Simbiose/genética , Quimiotaxia/genética , Cianobactérias/classificação , Cianobactérias/fisiologia , Fímbrias Bacterianas , Água Doce , Genes Bacterianos/genética , Nostoc/classificação , Nostoc/genética , Filogenia , Plantas/microbiologia
3.
PLoS One ; 15(5): e0232699, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374760

RESUMO

The metal hyperaccumulator Azolla filiculoides is accompanied by a microbiome potentially supporting plant during exposition to heavy metals. We hypothesized that the microbiome exposition to selected heavy metals will reveal metal tolerant strains. We used Next Generation Sequencing technique to identify possible metal tolerant strains isolated from the metal-treated plant (Pb, Cd, Cr(VI), Ni, Au, Ag). The main dominants were Cyanobacteria and Proteobacteria constituting together more than 97% of all reads. Metal treatment led to changes in the composition of the microbiome and showed significantly higher richness in the Pb-, Cd- and Cr-treated plant in comparison with other (95-105 versus 36-44). In these treatments the share of subdominant Actinobacteria (0.4-0.8%), Firmicutes (0.5-0.9%) and Bacteroidetes (0.2-0.9%) were higher than in non-treated plant (respectively: 0.02, 0.2 and 0.001%) and Ni-, Au- and Ag-treatments (respectively: <0.4%, <0.2% and up to 0.2%). The exception was Au-treatment displaying the abundance 1.86% of Bacteroidetes. In addition, possible metal tolerant genera, namely: Acinetobacter, Asticcacaulis, Anabaena, Bacillus, Brevundimonas, Burkholderia, Dyella, Methyloversatilis, Rhizobium and Staphylococcus, which form the core microbiome, were recognized by combining their abundance in all samples with literature data. Additionally, the presence of known metal tolerant genera was confirmed: Mucilaginibacter, Pseudomonas, Mycobacterium, Corynebacterium, Stenotrophomonas, Clostridium, Micrococcus, Achromobacter, Geobacter, Flavobacterium, Arthrobacter and Delftia. We have evidenced that A. filiculoides possess a microbiome whose representatives belong to metal-resistant species which makes the fern the source of biotechnologically useful microorganisms for remediation processes.


Assuntos
Cádmio/farmacologia , Cromo/farmacologia , Gleiquênias/microbiologia , Chumbo/farmacologia , Microbiota/efeitos dos fármacos , Microbiota/genética , Poluentes do Solo/farmacologia , Actinobacteria/efeitos dos fármacos , Actinobacteria/genética , Actinobacteria/metabolismo , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/genética , Bacteroidetes/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Cromo/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Firmicutes/efeitos dos fármacos , Firmicutes/genética , Firmicutes/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Chumbo/metabolismo , RNA Ribossômico 16S/genética , Microbiologia do Solo
4.
J Nat Prod ; 83(5): 1368-1373, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32301614

RESUMO

A new isoindolinone alkaloid, irpexine (1), was isolated as a racemate, along with a known green pigment, hypoxyxylerone (2), from the coculture of two endophytic fungi, Irpex lacteus and Phaeosphaeria oryzae. Compound 1 was found to be a newly produced metabolite of I. lacteus in the coculture with P. oryzae. Although 2 was produced in a monoculture of I. lacteus, its production was markedly enhanced by the coculture.


Assuntos
Ascomicetos/metabolismo , Endófitos/metabolismo , Polyporales/metabolismo , Bactérias/efeitos dos fármacos , Técnicas de Cocultura , Gleiquênias/microbiologia , Células HeLa , Houttuynia/microbiologia , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular
5.
Environ Microbiol Rep ; 12(3): 342-354, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32216046

RESUMO

Arbuscular mycorrhizal fungi (AMF) play central roles in terrestrial ecosystems by interacting with both above and belowground communities as well as by influencing edaphic properties. The AMF communities associated with the roots of the fern Botrychium lunaria (Ophioglossaceae) were sampled in four transects at 2400 m a.s.l. in the Swiss Alps and analyzed using metabarcoding. Members of five Glomeromycota genera were identified across the 71 samples. Our analyses revealed the existence of a core microbiome composed of four abundant Glomus operational taxonomic units (OTUs), as well as a low OTU turnover between samples. The AMF communities were not spatially structured, which contrasts with most studies on AMF associated with angiosperms. pH, microbial connectivity and humus cover significantly shaped AMF beta diversity but only explained a minor fraction of variation in beta diversity. AMF OTUs associations were found to be significant by both cohesion and co-occurrence analyses, suggesting a role for fungus-fungus interactions in AMF community assembly. In particular, OTU co-occurrences were more frequent between different genera than among the same genus, rising the hypothesis of functional complementarity among the AMF associated to B. lunaria. Altogether, our results provide new insights into the ecology of fern symbionts in alpine grasslands.


Assuntos
Gleiquênias/microbiologia , Micobioma/genética , Micorrizas/genética , Genes Fúngicos , Glomeromycota/classificação , Glomeromycota/genética , Glomeromycota/isolamento & purificação , Pradaria , Metagenômica , Interações Microbianas , Microbiota , Filogenia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Suíça
6.
Mycologia ; 111(6): 1041-1055, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31647754

RESUMO

Acrospermum is a poorly known genus of epibiotic and saprophytic species with a subcosmopolitan distribution. Here, we investigate the intriguing relationship between Acrospermum and its host plants in the fern family Polypodiaceae, where it occurs upon approximately 45 neotropical species. We conducted phylogenetic analyses using an eight-marker comprehensive ascomycete data set comprising 719 species representing all major lineages along with 23 new Acrospermum specimens sampled from ferns. We ask whether fern-dwelling Acrospermum are monophyletic, whether epibiotic Acrospermum have evolved independently from saprophytic ancestors, and identify anamorphic phases by incorporating sequences for all suspected taxa. Our results corroborate the placement of Acrospermales within the Dothideomycetes with strong support. However, the order remains incertae sedis due to weak support along the branches subtending the clade that includes the Acrospermales plus Dyfrolomycetales. Our results show a strong phylogenetic pattern in lifestyles but do not clearly identify an ancestral life history state. The first divergence in Acrospermaceae splits fungicolous taxa from taxa that inhabit plants; saprophytes and anamorphic phases found on angiosperms occur in both clades. Fungicolous species are monophyletic, whereas species with an epibiotic or necrotic life history upon plants are nonmonophyletic due to the position of the saprophyte A. longisporium. Previously, all Acrospermum collected from ferns were identified as A. maxonii. Our results indicate that this is not monophyletic due to the inclusion of Gonatophragmium triuniae. Two species are described herein as A. gorditum, sp. nov., and A. leucocephalum, sp. nov. We find no instances of co-cladogenesis; however, our ability to detect this is limited by the lack of resolution in the A. maxonii clade. Rather, we see that that the distribution of epibiotic Acrospermum is explained by the overlap between the ecological niche of the Acrospermum species and its host.


Assuntos
Ascomicetos/classificação , Gleiquênias/microbiologia , Filogenia , Ascomicetos/isolamento & purificação , Primers do DNA/genética , Evolução Molecular , Análise de Sequência de DNA
7.
J Plant Res ; 132(5): 581-588, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31292767

RESUMO

Mycorrhizal symbiosis between plants and fungi is ubiquitous, and has been played key roles in plant terrestrialization and diversification. Although arbuscular mycorrhizal (AM) symbioses with Glomeromycotina fungi have long been recognized as both ancient and widespread symbionts, recent studies showed that Mucoromycotina fungi were also ancestral symbionts and would thus be expected to co-exist with many land plants. To explore whether Mucoromycotina colonize fern gametophytes, we subjected fungal associations with gametophytes of two distantly related ferns, Angiopteris lygodiifolia (Marattiales) and Osmunda japonica (Osmundales), to molecular analysis. Direct PCR amplification from intracellular hyphal coils was also performed. We detected Mucoromycotina sequences in the gametophytes of A. lygodiifolia and O. japonica at rates of 41% (7/17) and 50% (49/98) of gametophytes, respectively, and assigned them to 10 operational taxonomic units of Endogonales lineages. In addition, we used AM fungal-specific primers and detected Glomeromycotina sequences in all individuals examined. The results suggest that Glomeromycotina and Mucoromycotina colonized fern gametophytes simultaneously. We found that Mucoromycotina were present in fern gametophytes of Marratiales and Osmundales, which implies that a variety of fern taxa have Mucoromycotina associations.


Assuntos
Gleiquênias/microbiologia , Fungos/fisiologia , Células Germinativas Vegetais/microbiologia , Simbiose , DNA Fúngico/análise , Fungos/classificação , Filogenia , RNA Ribossômico 18S/análise , Especificidade da Espécie
8.
Int J Syst Evol Microbiol ; 69(6): 1634-1649, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31033433

RESUMO

The extent of the diversity of yeasts in tropical rain forest and different environments from French Guiana was investigated. A total of 365 samples were collected from various substrates, such as plants, fruits and insects, at 13 locations, yielding 276 pure yeast isolates. Sequence analysis of the D1/D2 domains of the large subunit rRNA gene indicated that 210 isolates out of 276 belonged to 82 described species (67 Saccharomycotina, 14 Basidiomycota and 1 Pezizomycotina). In addition to these, a total of 54 Saccharomycotina isolates could not be assigned to a known species. These belonged to 14 genera and should be studied further from a taxonomic point of view. In addition, among the 43 Basidiomycotina isolates found, 12 could not be assigned to a known species. This report shows an unexpected biodiversity and indicates that oversea territories, such as French Guiana, constitute a largely unexplored reservoir for yeast diversity. Two Saccharomycotina strains, CLIB 1706 and CLIB 1725, isolated from an insect and from a fern respectively, were characterized further and were shown to belong to the Suhomyces clade on the basis of the rDNA sequence comparison. CLIB 1706TrDNA sequences showed nine substitutions and three indels out of 556 bp (D1/D2 domains) and 32 substitutions and 12 indels out of 380 bp [internal transcribed spacer (ITS)] with that of the most closely related species Suhomyces guaymorum CBS 9823T. CLIB 1725T rDNA sequences presented 18 substitutions and one indel out of 549 bp (D1/D2 domains) and 48 substitutions and 11 indels out of 398 bp (ITS) with that of its closest relative Suhomyces vadensis CBS 9454T. Two novel species of the genus Suhomyces were described to accommodate these two strains: Suhomyces coccinellae f.a. sp. nov. (CLIB 1706T=CBS 14298T) and Suhomyces faveliae f.a. sp. nov. (CLIB 1725T=CBS 14299T).


Assuntos
Biodiversidade , Filogenia , Floresta Úmida , Saccharomycetales/classificação , Animais , Composição de Bases , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Gleiquênias/microbiologia , Guiana Francesa , Mutação INDEL , Insetos/microbiologia , Técnicas de Tipagem Micológica , Saccharomycetales/isolamento & purificação , Análise de Sequência de DNA
9.
Sci Rep ; 9(1): 1341, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718700

RESUMO

In the present study rice straw (R, control) was mixed with Cowdung (C), Azolla (A) and cellulolytic fungus Aspergillus terreus (F) in different combinations viz. RC, RA, RF, RCF, RCA, RFA and RCFA and subjected to aerobic composting (Acom) and vermicomposting (Vcom - with Eisenia fetida). It was found that addition of azolla and cattledung to two parts straw(RCA-666: 314:20 g) caused fastest degradation (105 days), gave maximum population buildup of E. fetida (cocoons, hatchlings and worm biomass), highest decline in pH, EC, TOC and C/N ratio and maximum increase over control in N(17.72%), P(44.64%), K(43.17%), H (7.93%), S (14.85%), Ca(10.16%), Na(145.97%), Fe(68.56%), Zn(12.10%) and Cu(32.24%). Rice straw (R) took longest time for degradation i.e. 120 and 140 days and had lowest content of nutrients in Vcom as well as Acom group. RCFA was also converted into Vcom at the same time but other parameters were less than RCA except for highest content of B (19.87%), Mg(21.27%) and Mn (5.58%). Bioconversion of three parts straw (RCA-735:245:20 g) was also faster (110 days) with vermicomposting than all the mixtures of Acom group (130-140 days) but nutrient content was slightly less than RCA with 2 parts straw. The results show that azolla reduces dependence on cattledung for recycling the carbon rich rice straw and enhances its agronomic value.


Assuntos
Aspergillus/isolamento & purificação , Biomassa , Oryza/microbiologia , Aerobiose/fisiologia , Aspergillus/patogenicidade , Carbono/metabolismo , Compostagem , Gleiquênias/microbiologia , Oryza/metabolismo , Reciclagem
10.
Int J Syst Evol Microbiol ; 69(3): 752-760, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30648942

RESUMO

Assessment of the bacterial diversity associated with a decaying fern, Athyrium wallichianum Ching, revealed the presence of a novel bacterial strain named M46T. It was Gram-stain-negative, rod-shaped, non-motile and aerobic with cellulose and xylan degradation abilities. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain M46T was affiliated to the genus Sphingobacterium, exhibiting the highest sequence similarity of 97.9 % to Sphingobacterium ginsenosidimutans THG 07T, Sphingobacterium canadense CR11T and Sphingobacterium detergens6.2 ST. Multilocus sequence analysis (MLSA) based on concatenated sequences of the rpoB, cpn60 and 16S rRNA genes showed that strain M46T clustered together with S. canadense CR11T. The genome of strain M46T had a G+C content of 40.6 mol% and chromosome of 6 853 865 bp. Average nucleotide identity (ANI) between strain M46T and S. detergens 6.2 ST and S. siyangense SY1T was 85.1 and 78.1 %, respectively. DNA-DNA relatedness values among strain M46T and other closely related Sphingobacterium species were <70 %. ANI and DNA-DNA relatedness findings strongly supported M46T as a putative novel strain of Sphingobacterium. The predominant fatty acids of strain M46T were iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and iso-C17 : 0 3-OH, and MK-7 was the dominant isoprenoid quinone. The polar lipid profile of strain M46T contained phosphatidylethanolamine as the dominant component, while minor amounts of phosphoglycolipid, one unidentified aminophospholipid, two unidentified phospholipids and four unidentified lipids were also detected. Based on 16S rRNA gene sequence similarities, MLSA results, genomic characteristics, and phenotypic and biochemotaxonomic analyses, strain M46T is considered to represent a novel species in the genus Sphingobacterium, for which the name Sphingobacterium athyrii sp. nov. is proposed. The type strain is M46T (=CGMCC 1.13466T=JCM 32543T).


Assuntos
Gleiquênias/microbiologia , Filogenia , Sphingobacterium/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Celulose/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingobacterium/isolamento & purificação , Tibet , Vitamina K 2/análogos & derivados , Vitamina K 2/química , Xilanos/metabolismo
11.
Int J Syst Evol Microbiol ; 69(3): 846-851, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30663956

RESUMO

A Gram-negative, aerobic, coccus-shaped, non-spore-forming bacterium, designated M2BS4Y-1T, was isolated from a surface-sterilized leaf of Acrostichum aureum collected from Guangxi Zhuang Autonomous Region, China and investigated by a polyphasic approach to determine its taxonomic position. Strain M2BS4Y-1T grew optimally with 1 % (w/v) NaCl, at 30 °C and at pH 7.0-8.0. Substrate mycelia and aerial mycelia were not formed, and no diffusible pigments were observed on the media tested. Phylogenetic analysis based on its 16S rRNA gene sequence showed that strain M2BS4Y-1T was most closely related to species of the genus Aureimonas, and shared the highest 16S rRNA gene sequence similarity of 97.79 % to Aureimonas phyllosphaerae DSM 25026T. The average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) values between strain M2BS4Y-1T and A.phyllosphaerae DSM 25026T were 83.7 % and 26.5 %, respectively. The ANI and DDH values were below the recommended thresholds. The DNA G+C content of strain M2BS4Y-1T was 70.0 mol%. The cell-wall peptidoglycan contained meso-diaminobutyric acid and ubiquinone Q-10 was the respiratory lipoquinone. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, sulfoquinovosyldiacylglycerol, two unknown aminolipids, an unidentified phospholipid and four unidentified lipids, while the major fatty acids were C18 : 1ω7c and C16 : 0. On the basis of phylogenetic, chemotaxonomic and phenotyptic data, strain M2BS4Y-1T can be characterized to represent a novel species of the genus Aureimonas, for which the name Aureimonas flava sp. nov. is proposed. The type strain is M2BS4Y-1T (=KCTC 62837T=CGMCC 1.13747T).


Assuntos
Alphaproteobacteria/classificação , Gleiquênias/microbiologia , Filogenia , Folhas de Planta/microbiologia , Alphaproteobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
12.
Nat Plants ; 4(7): 460-472, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29967517

RESUMO

Ferns are the closest sister group to all seed plants, yet little is known about their genomes other than that they are generally colossal. Here, we report on the genomes of Azolla filiculoides and Salvinia cucullata (Salviniales) and present evidence for episodic whole-genome duplication in ferns-one at the base of 'core leptosporangiates' and one specific to Azolla. One fern-specific gene that we identified, recently shown to confer high insect resistance, seems to have been derived from bacteria through horizontal gene transfer. Azolla coexists in a unique symbiosis with N2-fixing cyanobacteria, and we demonstrate a clear pattern of cospeciation between the two partners. Furthermore, the Azolla genome lacks genes that are common to arbuscular mycorrhizal and root nodule symbioses, and we identify several putative transporter genes specific to Azolla-cyanobacterial symbiosis. These genomic resources will help in exploring the biotechnological potential of Azolla and address fundamental questions in the evolution of plant life.


Assuntos
Evolução Biológica , Cianobactérias , Gleiquênias/genética , Genoma de Planta/genética , Simbiose , Gleiquênias/microbiologia , Duplicação Gênica/genética , Genes de Plantas/genética , Filogenia , Simbiose/genética
13.
Int J Syst Evol Microbiol ; 68(8): 2473-2477, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29916801

RESUMO

Two strains, which formed pink colonies and produced ballistoconidia and represented a novel anamorphic yeast species, were isolated from peat (DMKU-SPS1-2) and fern leaf (ST-145) collected in Thailand. Analysis of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) regions showed that the two strains were identical to the sequences of the D1/D2 domains of the LSU rRNA gene and differed by two nucleotide substitutions in the ITS regions. Phylogenetic analysis based on the combined sequences of the ITS and the D1/D2 regions confirmed that the two strains represented a single species in the genus Cryptotrichosporon that was distinct from the other known species of the genus. Cryptotrichosporon argae (CBS 14376T) was the most closely related species, but with 2.2 % nucleotide substitutions in the D1/D2 domains of the LSU rRNA gene, and 6.8-8.0 % nucleotide substitutions in the ITS regions. Therefore, the two strains were assigned as a novel species, for which we propose the name Cryptotrichosporon siamense sp. nov. The type is DMKU-SPS1-2T. The MycoBank number of the novel species is MB82336.


Assuntos
Basidiomycota/classificação , Gleiquênias/microbiologia , Filogenia , Folhas de Planta/microbiologia , Basidiomycota/genética , Basidiomycota/isolamento & purificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , Pigmentação , Análise de Sequência de DNA , Solo , Esporos Fúngicos , Tailândia
14.
New Phytol ; 217(1): 453-466, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29084347

RESUMO

Dinitrogen fixation by Nostoc azollae residing in specialized leaf pockets supports prolific growth of the floating fern Azolla filiculoides. To evaluate contributions by further microorganisms, the A. filiculoides microbiome and nitrogen metabolism in bacteria persistently associated with Azolla ferns were characterized. A metagenomic approach was taken complemented by detection of N2 O released and nitrogen isotope determinations of fern biomass. Ribosomal RNA genes in sequenced DNA of natural ferns, their enriched leaf pockets and water filtrate from the surrounding ditch established that bacteria of A. filiculoides differed entirely from surrounding water and revealed species of the order Rhizobiales. Analyses of seven cultivated Azolla species confirmed persistent association with Rhizobiales. Two distinct nearly full-length Rhizobiales genomes were identified in leaf-pocket-enriched samples from ditch grown A. filiculoides. Their annotation revealed genes for denitrification but not N2 -fixation. 15 N2 incorporation was active in ferns with N. azollae but not in ferns without. N2 O was not detectably released from surface-sterilized ferns with the Rhizobiales. N2 -fixing N. azollae, we conclude, dominated the microbiome of Azolla ferns. The persistent but less abundant heterotrophic Rhizobiales bacteria possibly contributed to lowering O2 levels in leaf pockets but did not release detectable amounts of the strong greenhouse gas N2 O.


Assuntos
Alphaproteobacteria/fisiologia , Gleiquênias/microbiologia , Nitrogênio/metabolismo , Nostoc/fisiologia , Oxigênio/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Biomassa , Desnitrificação , Endófitos , Gleiquênias/crescimento & desenvolvimento , Metagenoma , Microbiota , Fixação de Nitrogênio , Isótopos de Nitrogênio/análise , Nostoc/genética , Nostoc/isolamento & purificação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Água , Microbiologia da Água
15.
Chembiochem ; 19(4): 312-316, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29131473

RESUMO

Hydroxynitrile lyase from the white rabbit's foot fern Davallia tyermannii (DtHNL) catalyzes the enantioselective synthesis of α-cyanohydrins, which are key building blocks for pharmaceutical and agrochemical industries. An efficient and competitive process necessitates the availability and robustness of the biocatalyst. Herein, the recombinant production of DtHNL1 in Komagataella phaffii, yielding approximately 900 000 U L-1 , is described. DtHNL1 constitutes approximately 80 % of the total protein content. The crude enzyme was immobilized. Crosslinked enzyme aggregates (CLEAs) resulted in significant enhancement of the biocatalyst stability under acidic conditions (activity retained after 168 h at pH 2.4). The DtHNL1-CLEA was employed for (R)-mandelonitrile synthesis (99 % conversion, 98 % enantiomeric excess) in a biphasic system, and evaluated for the synthesis of (R)-hydroxypivaldehyde cyanohydrin under reaction conditions that immediately inactivated non-immobilized DtHNL1. The results show the DtHNL1-CLEA to be a stable biocatalyst for the synthesis of enantiomerically pure cyanohydrins under acidic conditions.


Assuntos
Aldeído Liases/metabolismo , Biocatálise , Enzimas Imobilizadas/metabolismo , Gleiquênias/enzimologia , Nitrilas/metabolismo , Pichia/enzimologia , Aldeído Liases/biossíntese , Aldeído Liases/química , Enzimas Imobilizadas/biossíntese , Enzimas Imobilizadas/química , Gleiquênias/microbiologia , Nitrilas/química , Agregados Proteicos , Estereoisomerismo
16.
J Exp Bot ; 68(11): 2799-2811, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28505304

RESUMO

ABCE-class MADS domain transcription factors (MTFs) are key regulators of floral organ development in angiosperms. Aberrant expression of these genes can result in abnormal floral traits such as phyllody. Phyllogen is a virulence factor conserved in phytoplasmas, plant pathogenic bacteria of the class Mollicutes. It triggers phyllody in Arabidopsis thaliana by inducing degradation of A- and E-class MTFs. However, it is still unknown whether phyllogen can induce phyllody in plants other than A. thaliana, although phytoplasma-associated phyllody symptoms are observed in a broad range of angiosperms. In this study, phyllogen was shown to cause phyllody phenotypes in several eudicot species belonging to three different families. Moreover, phyllogen can interact with MTFs of not only angiosperm species including eudicots and monocots but also gymnosperms and a fern, and induce their degradation. These results suggest that phyllogen induces phyllody in angiosperms and inhibits MTF function in diverse plant species.


Assuntos
Toxinas Bacterianas , Proteínas de Domínio MADS/metabolismo , Phytoplasma/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas/microbiologia , Fatores de Virulência/fisiologia , Toxinas Bacterianas/genética , Cycadopsida/genética , Cycadopsida/microbiologia , Gleiquênias/genética , Gleiquênias/microbiologia , Flores/microbiologia , Regulação da Expressão Gênica de Plantas , Magnoliopsida/genética , Magnoliopsida/microbiologia , Phytoplasma/fisiologia , Proteólise , Fatores de Virulência/genética
17.
Sci Rep ; 7: 40635, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094773

RESUMO

Azolla caroliniana Willd. is widely used as a green manure accompanying rice, but its ecological importance remains unclear, except for its ability to fix nitrogen in association with cyanobacteria. To investigate the impacts of Azolla cultivation on methane emissions and environmental variables in paddy fields, we performed this study on the plain of Dongting Lake, China, in 2014. The results showed that the dual cropping of Azolla significantly suppressed the methane emissions from paddies, likely due to the increase in redox potential in the root region and dissolved oxygen concentration at the soil-water interface. Furthermore, the floodwater pH decreased in association with Azolla cultivation, which is also a factor significantly correlated with the decrease in methane emissions. An increase in methanotrophic bacteria population (pmoA gene copies) and a reduction in methanogenic archaea (16S rRNA gene copies) were observed in association with Azolla growth. During rice cultivation period, dual cropping of Azolla also intensified increasing trend of 1/Simpson of methanogens and significantly decreased species richness (Chao 1) and species diversity (1/Simpson, 1/D) of methanotrophs. These results clearly demonstrate the suppression of CH4 emissions by culturing Azolla and show the environmental and microbial responses in paddy soil under Azolla cultivation.


Assuntos
Gleiquênias/microbiologia , Gleiquênias/fisiologia , Metano , Microbiota , Oryza/microbiologia , Oryza/fisiologia , Análise de Variância , Archaea/genética , Biodiversidade , Análise por Conglomerados , Concentração de Íons de Hidrogênio , Metano/química , Estações do Ano , Solo/química , Microbiologia do Solo
18.
Mycologia ; 108(5): 882-890, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27302048

RESUMO

This study builds on previous investigations of paleomycological diversity within permineralized plants of a significant Eocene paleobotanical locality, the Princeton Chert. The fungal body fossils described here occur in decayed rhizomes of the extinct semi-aquatic fern Dennstaedtiopsis aerenchymata Fungi include vegetative hyphae throughout the plant tissue, as well as a dense assemblage of >100 dematiaceous spores. The spores occur in a discrete zone surrounding two extraneous rootlets of other plants, which penetrated the fern tissue post-mortem. Spores are obovoid and muriform, composed of 8-12 cells with constricted septa and produced from hyaline or slightly pigmented hyphae. The spores are morphologically similar to both asexual reproductive dictyospores of phylogenetically disparate microfungi attributed to the morphogenus Monodictys and perennating dictyochlamydospores that occur in the anamorph genus Phoma In addition to expanding the early Eocene fossil record for Ascomycota, these specimens also provide new insight into the rapidity of initial phases of the fossilization process in this important paleobotanical locality.


Assuntos
Organismos Aquáticos/microbiologia , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Gleiquênias/microbiologia , Fósseis/microbiologia , Rizoma/microbiologia , Ascomicetos/citologia , Colúmbia Britânica , Microscopia , Esporos Fúngicos/citologia
19.
Plant Physiol Biochem ; 106: 39-45, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27135817

RESUMO

Freshly separated cyanobionts of Azolla microphylla and Azolla caroliniana plants exposed to salinity showed decline in the cellular constituents such as chlorophyll (23.1 and 38.9%) and protein (12.9 and 19.3%). However, an increase in the carotenoid and sugar content was observed. Exposure to salinity stress reduced the heterocyst frequency (35.4 and 57.2%) and nitrogenase activity (37.7 and 46.3%) of the cyanobionts. Increase in the activity of antioxidant enzymes such as super oxide dismutase (50.6 and 11.5%), ascorbate peroxidase (63.7 and 57.9%), catalase (94.2 and 22.5%) as well as non-enzymatic antioxidant proline (18.8 and 13.3%) was also observed in response to salinity. The cyanobionts exhibited significant increase in the intracellular Na(+) level and reduced intracellular K(+)/Na(+) and Ca(2+)/Na(+) ratio in response to salinity. The results demonstrate the adverse impact of salinity on the freshly separated cyanobionts as similar to free living cyanobacteria. These results may be helpful in the critical evaluation of salinity tolerance mechanism of the cyanobiont and its interaction with the host.


Assuntos
Cianobactérias/metabolismo , Gleiquênias/microbiologia , Gleiquênias/fisiologia , Salinidade , Simbiose , Antioxidantes/metabolismo , Cianobactérias/efeitos dos fármacos , Gleiquênias/efeitos dos fármacos , Espaço Intracelular/metabolismo , Íons , Nitrogenase/metabolismo , Prolina/metabolismo , Cloreto de Sódio/farmacologia , Simbiose/efeitos dos fármacos
20.
Mycorrhiza ; 26(2): 87-97, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26047572

RESUMO

To determine the mycorrhizal status of pteridophyte gametophytes in diverse taxa, the mycorrhizal colonization of wild gametophytes was investigated in terrestrial cordate gametophytes of pre-polypod leptosporangiate ferns, i.e., one species of Osmundaceae (Osmunda banksiifolia), two species of Gleicheniaceae (Diplopterygium glaucum, Dicranopteris linearis), and four species of Cyatheales including tree ferns (Plagiogyriaceae: Plagiogyria japonica, Plagiogyria euphlebia; Cyatheaceae: Cyathea podophylla, Cyathea lepifera). Microscopic observations revealed that 58 to 97% of gametophytes in all species were colonized with arbuscular mycorrhizal (AM) fungi. Fungal colonization was limited to the multilayered midrib (cushion) tissue in all gametophytes examined. Molecular identification using fungal SSU rDNA sequences indicated that the AM fungi in gametophytes primarily belonged to the Glomeraceae, but also included the Claroideoglomeraceae, Gigasporaceae, Acaulosporaceae, and Archaeosporales. This study provides the first evidence for AM fungal colonization of wild gametophytes in the Plagiogyriaceae and Cyatheaceae. Taxonomically divergent photosynthetic gametophytes are similarly colonized by AM fungi, suggesting that mycorrhizal associations with AM fungi could widely occur in terrestrial pteridophyte gametophytes.


Assuntos
Biota , Gleiquênias/microbiologia , Micorrizas/classificação , Micorrizas/crescimento & desenvolvimento , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Microscopia , Micorrizas/citologia , Micorrizas/genética , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA