Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(9): 3541-3560, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39132738

RESUMO

C2 photosynthesis is a photosynthetic pathway in which photorespiratory CO2 release and refixation are enhanced in leaf bundle sheath (BS) tissues. The evolution of C2 photosynthesis has been hypothesized to be a major step in the origin of C4 photosynthesis, highlighting the importance of studying C2 evolution. In this study, physiological, anatomical, ultrastructural, and immunohistochemical properties of leaf photosynthetic tissues were investigated in six non-C4 Tribulus species and four C4 Tribulus species. At 42°C, T. cristatus exhibited a photosynthetic CO2 compensation point in the absence of respiration (C*) of 21 µmol mol-1, below the C3 mean C* of 73 µmol mol-1. Tribulus astrocarpus had a C* value at 42°C of 55 µmol mol-1, intermediate between the C3 species and the C2 T. cristatus. Glycine decarboxylase (GDC) allocation to BS tissues was associated with lower C*. Tribulus cristatus and T. astrocarpus allocated 86% and 30% of their GDC to the BS tissues, respectively, well above the C3 mean of 11%. Tribulus astrocarpus thus exhibits a weaker C2 (termed sub-C2) phenotype. Increased allocation of mitochondria to the BS and decreased length-to-width ratios of BS cells, were present in non-C4 species, indicating a potential role in C2 and C4 evolution.


Assuntos
Evolução Biológica , Fotossíntese , Folhas de Planta , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Dióxido de Carbono/metabolismo , Glicina Desidrogenase (Descarboxilante)/metabolismo
2.
Mol Genet Metab ; 142(3): 108496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761651

RESUMO

Non-Ketotic Hyperglycinemia (NKH) is a rare inborn error of metabolism caused by impaired function of the glycine cleavage system (GCS) and characterised by accumulation of glycine in body fluids and tissues. NKH is an autosomal recessive condition and the majority of affected individuals carry mutations in GLDC (glycine decarboxylase). Current treatments for NKH have limited effect and are not curative. As a monogenic condition with known genetic causation, NKH is potentially amenable to gene therapy. An AAV9-based expression vector was designed to target sites of GCS activity. Using a ubiquitous promoter to drive expression of a GFP reporter, transduction of liver and brain was confirmed following intra-venous and/or intra-cerebroventricular administration to neonatal mice. Using the same capsid and promoter with transgenes to express mouse or human GLDC, vectors were then tested in GLDC-deficient mice that provide a model of NKH. GLDC-deficient mice exhibited elevated plasma glycine concentration and accumulation of glycine in liver and brain tissues as previously observed. Moreover, the folate profile indicated suppression of folate one­carbon metabolism (FOCM) in brain tissue, as found at embryonic stages, and reduced abundance of FOCM metabolites including betaine and choline. Neonatal administration of vector achieved reinstatement of GLDC mRNA and protein expression in GLDC-deficient mice. Treated GLDC-deficient mice showed significant lowering of plasma glycine, confirming functionality of vector expressed protein. AAV9-GLDC treatment also led to lowering of brain tissue glycine, and normalisation of the folate profile indicating restoration of glycine-derived one­carbon supply. These findings support the hypothesis that AAV-mediated gene therapy may offer potential in treatment of NKH.


Assuntos
Encéfalo , Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Glicina Desidrogenase (Descarboxilante) , Glicina , Hiperglicinemia não Cetótica , Fígado , Animais , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/metabolismo , Hiperglicinemia não Cetótica/terapia , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Dependovirus/genética , Camundongos , Humanos , Vetores Genéticos/genética , Glicina/metabolismo , Fígado/metabolismo , Encéfalo/metabolismo , Biomarcadores/metabolismo , Ácido Fólico/metabolismo
3.
Am J Med Genet A ; 194(8): e63622, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38572626

RESUMO

Nonketotic hyperglycinemia (NKH) is a relatively well-characterized inborn error of metabolism that results in a combination of lethargy, hypotonia, seizures, developmental arrest, and, in severe cases, death early in life. Three genes encoding components of the glycine cleavage enzyme system-GLDC, AMT, and GCSH-are independently associated with NKH. We report on a patient with severe NKH in whom the homozygous pathogenic variant in AMT (NM_000481.3):c.602_603del (p.Lys201Thrfs*75) and the homozygous likely pathogenic variant in GLDC(NM_000170.2):c.2852C>A (p.Ser951Tyr) were both identified. Our patient demonstrates a novel combination of two homozygous disease-causing variants impacting the glycine cleavage pathway at two different components, and elicits management- and genetic counseling-related challenges for the family.


Assuntos
Homozigoto , Hiperglicinemia não Cetótica , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Masculino , Glicina Desidrogenase (Descarboxilante)/genética , Aminometiltransferase/genética , Feminino , Mutação/genética , Lactente , Glicina/genética , Recém-Nascido , Fenótipo , Predisposição Genética para Doença , Aminoácido Oxirredutases , Complexos Multienzimáticos , Transferases
4.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474060

RESUMO

The pathophysiology of nonketotic hyperglycinemia (NKH), a rare neuro-metabolic disorder associated with severe brain malformations and life-threatening neurological manifestations, remains incompletely understood. Therefore, a valid human neural model is essential. We aimed to investigate the impact of GLDC gene variants, which cause NKH, on cellular fitness during the differentiation process of human induced pluripotent stem cells (iPSCs) into iPSC-derived astrocytes and to identify sustainable mechanisms capable of overcoming GLDC deficiency. We developed the GLDC27-FiPS4F-1 line and performed metabolomic, mRNA abundance, and protein analyses. This study showed that although GLDC27-FiPS4F-1 maintained the parental genetic profile, it underwent a metabolic switch to an altered serine-glycine-one-carbon metabolism with a coordinated cell growth and cell cycle proliferation response. We then differentiated the iPSCs into neural progenitor cells (NPCs) and astrocyte-lineage cells. Our analysis showed that GLDC-deficient NPCs had shifted towards a more heterogeneous astrocyte lineage with increased expression of the radial glial markers GFAP and GLAST and the neuronal markers MAP2 and NeuN. In addition, we detected changes in other genes related to serine and glycine metabolism and transport, all consistent with the need to maintain glycine at physiological levels. These findings improve our understanding of the pathology of nonketotic hyperglycinemia and offer new perspectives for therapeutic options.


Assuntos
Hiperglicinemia não Cetótica , Células-Tronco Pluripotentes Induzidas , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Glicina Desidrogenase (Descarboxilante)/genética , Astrócitos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Glicina , Serina
5.
Plant Biol (Stuttg) ; 26(2): 270-281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168881

RESUMO

C3 -C4 intermediate photosynthesis has evolved at least five times convergently in the Brassicaceae, despite this family lacking bona fide C4 species. The establishment of this carbon concentrating mechanism is known to require a complex suite of ultrastructural modifications, as well as changes in spatial expression patterns, which are both thought to be underpinned by a reconfiguration of existing gene-regulatory networks. However, to date, the mechanisms which underpin the reconfiguration of these gene networks are largely unknown. In this study, we used a pan-genomic association approach to identify genomic features that could confer differential gene expression towards the C3 -C4 intermediate state by analysing eight C3 species and seven C3 -C4 species from five independent origins in the Brassicaceae. We found a strong correlation between transposable element (TE) insertions in cis-regulatory regions and C3 -C4 intermediacy. Specifically, our study revealed 113 gene models in which the presence of a TE within a gene correlates with C3 -C4 intermediate photosynthesis. In this set, genes involved in the photorespiratory glycine shuttle are enriched, including the glycine decarboxylase P-protein whose expression domain undergoes a spatial shift during the transition to C3 -C4 photosynthesis. When further interrogating this gene, we discovered independent TE insertions in its upstream region which we conclude to be responsible for causing the spatial shift in GLDP1 gene expression. Our findings hint at a pivotal role of TEs in the evolution of C3 -C4 intermediacy, especially in mediating differential spatial gene expression.


Assuntos
Brassicaceae , Brassicaceae/genética , Brassicaceae/metabolismo , Elementos de DNA Transponíveis/genética , Glicina/genética , Glicina/metabolismo , Fotossíntese/genética , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Folhas de Planta/metabolismo
6.
PeerJ ; 12: e16716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188180

RESUMO

Objective: The objective is to explore whether the flagellin-TLR5 complex signal can enhance the antigen presentation ability of myeloid DCs through the TRIF-ERK1/2 pathway, and the correlation between this pathway and intestinal mucosal inflammation response. Methods: Mouse bone marrow-derived DC line DC2.4 was divided into four groups: control group (BC) was DC2.4 cells cultured normally; flagellin single signal stimulation group (DC2.4+CBLB502) was DC2.4 cells stimulated with flagellin derivative CBLB502 during culture; TLR5-flagellin complex signal stimulation group (ov-TLR5-DC2.4+CBLB502) was flagellin derivative CBLB502 stimulated ov-TLR5-DC2.4 cells with TLR5 gene overexpression; TRIF signal interference group (ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA) was ov-TLR5-DC2.4 cells with TLR5 gene overexpression stimulated with flagellin derivative CBLB502 and intervened with TRIF-specific inhibitor Pepinh-TRIFTFA. WB was used to detect the expression of TRIF and p-ERK1/2 proteins in each group of cells; CCK8 was used to detect cell proliferation in each group; flow cytometry was used to detect the expression of surface molecules MHCI, MHCII, CD80, 86 in each group of cells; ELISA was used to detect the levels of IL-12 and IL-4 cytokines in each group. Results: Compared with the BC group, DC2.4+CBLB502 group, and ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, the expression of TRIF protein and p-ERK1/2 protein in ov-TLR5-DC2.4+CBLB502 group was significantly upregulated (TRIF: p = 0.02,  = 0.007,  = 0.048) (ERK1: p < 0.001, =0.0003,  = 0.0004; ERK2:p = 0.0003,  = 0.0012,  = 0.0022). The cell proliferation activity in ov-TLR5-DC2.4+CBLB502 group was enhanced compared with the other groups (p = 0.0001, p < 0.0001, p = 0.0015); at the same time, the expression of surface molecules MHCI, MHCII, CD80, 86 on DCs was upregulated (p < 0.05); and the secretion of IL-12 and IL-4 cytokines was increased, with significant differences (IL-12: p < 0.0001, p < 0.0001, p = 0.0005; IL-4: p =  < 0.0001, p =  < 0.0001, p = 0.0001). However, the ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, which was treated with TRIF signal interference, showed a decrease in intracellular TRIF protein and p-ERK1/2 protein, as well as a decrease in cell proliferation ability and surface stimulation molecules, and a decrease in the secretion of IL-12 and IL-4 cytokines (p < 0.05). Conclusion: After stimulation of flagellin protein-TLR5 complex signal, TRIF protein and p-ERK1/2 protein expression in myeloid dendritic cells were significantly up-regulated, accompanied by increased proliferation activity and maturity of DCs, enhanced antigen presentation function, increased secretion of pro-inflammatory cytokines IL-12 and IL-4. This process can be inhibited by the specific inhibitor of TRIF signal, suggesting that the TLR5-TRIF-ERK1/2 pathway may play an important role in abnormal immune response and mucosal chronic inflammation infiltration mediated by flagellin protein in DCs, which can provide a basis for our subsequent animal experiments.


Assuntos
Flagelina , Sistema de Sinalização das MAP Quinases , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/genética , Apresentação de Antígeno , Antígeno B7-1 , Proliferação de Células , Citocinas , Flagelina/farmacologia , Glicina Desidrogenase (Descarboxilante) , Interleucina-12 , Interleucina-4 , Mucosa Intestinal , Transdução de Sinais , Receptor 5 Toll-Like/genética
7.
Arch. argent. pediatr ; 115(4): e225-e229, ago. 2017. ilus
Artigo em Inglês, Espanhol | LILACS, BINACIS | ID: biblio-887351

RESUMO

La hiperglicinemia no cetósica es una encefalopatía por glicina autosómica recesiva y hereditaria sumamente rara, causada por una deficiencia en el sistema enzimatico de división de la glicina mitocondrial, que provoca síntomas clínicos graves. La hiperglicinemia no cetósica se caracteriza por fenotipos diversos y complejos, por ejemplo, hipotonía, convulsiones, deterioro cognitivo, retrasos del desarrollo y espasmos mioclónicos que podrían causar apnea e incluso la muerte. En este artículo, presentamos el caso de un niño de 1 año con convulsiones mioclónicas, hipotonía y coma, con aumento de la concentración de glicina en el plasma y el líquido cefalorraquídeo y con un índice de glicina en líquido cefalorraquídeo/plasma de 0,24. Existen dos mutaciones heterocigotas novedosas que confirman el diagnóstico de hiperglicinemia no cetósica. Una es una mutación de aminoácido, c.2516A>G (p.Y839C), y la otra es una mutación en los sitios de corte y empalme, c.2457+2T>A, en el gen GLDC.


Nonketotic hyperglycinemia is an extremely rare autosomal recessively inherited glycine encephalopathy caused by a deficiency in the mitochondrial glycine cleavage system, which leads to severe clinical symptoms. Nonketotic hyperglycinemia is characterized by complex and diverse phenotypes, such as hypotonia, seizures, cognitive impairment, developmental delays and myoclonic jerks that may lead to apnea and even death. Here we report a 1-year-old boy with myoclonic seizures, hypotonia and coma; he had elevated plasma and cerebrospinal fluid glycine levels, and cerebrospinal fluid/plasma glycine ratio was 0.24. Two novel heterozygous mutations confirm the diagnosis of nonketotic hyperglycinemia. One is a missense mutation c.2516A>G (p.Y839C) and the other one is a splicing mutation c.2457+2T>A in the GLDC gene.


Assuntos
Humanos , Masculino , Lactente , Hiperglicinemia não Cetótica/genética , Glicina Desidrogenase (Descarboxilante)/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA