Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.322
Filtrar
1.
J Agric Food Chem ; 72(19): 11041-11050, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700846

RESUMO

The function of polysaccharides is intimately associated with their size, which is largely determined by the processivity of transferases responsible for their synthesis. A tunnel active center architecture has been recognized as a key factor that governs processivity of several glycoside hydrolases (GHs), e.g., cellulases and chitinases. Similar tunnel architecture is also observed in the Limosilactobacillus reuteri 121 GtfB (Lr121 GtfB) α-glucanotransferase from the GH70 family. The molecular element underpinning processivity of these transglucosylases remains underexplored. Here, we report the synthesis of the smallest (α1 → 4)-α-glucan interspersed with linear and branched (α1 → 6) linkages by a novel 4,6-α-glucanotransferase from L. reuteri N1 (LrN1 GtfB) with an open-clefted active center instead of the tunnel structure. Notably, the loop swapping engineering of LrN1 GtfB and Lr121 GtfB based on their crystal structures clarified the impact of the loop-mediated tunnel/cleft structure at the donor subsites -2 to -3 on processivity of these α-glucanotransferases, enabling the tailoring of both product sizes and substrate preferences. This study provides unprecedented insights into the processivity determinants and evolutionary diversification of GH70 α-glucanotransferases and offers a simple route for engineering starch-converting α-glucanotransferases to generate diverse α-glucans for different biotechnological applications.


Assuntos
Proteínas de Bactérias , Glucanos , Limosilactobacillus reuteri , Glucanos/química , Glucanos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Limosilactobacillus reuteri/enzimologia , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/química , Domínio Catalítico , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Engenharia de Proteínas , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/química
2.
Carbohydr Polym ; 337: 122164, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710558

RESUMO

Water-insoluble α-glucans synthesized from sucrose by glucansucrases from Streptococcus spp. are essential in dental plaque and caries formation. Because limited information is available on the fine structure of these biopolymers, we analyzed the structures of unmodified glucans produced by five recombinant Streptococcus (S.) mutans DSM 20523 and S. salivarius DSM 20560 glucansucrases in detail. A combination of methylation analysis, endo-dextranase and endo-mutanase hydrolyses, and HPSEC-RI was used. Furthermore, crystal-like regions were analyzed by using XRD and 13C MAS NMR spectroscopy. Our results showed that the glucan structures were highly diverse: Two glucans with 1,3- and 1,6-linkages were characterized in detail besides an almost exclusively 1,3-linked and a linear 1,6-linked glucan. Furthermore, one glucan contained 1,3-, 1,4-, and 1,6-linkages and thus had an unusual, not yet described structure. It was demonstrated that the glucans had a varying structural architecture by using partial enzymatic hydrolyses. Furthermore, crystal-like regions formed by 1,3-glucopyranose units were observed for the two 1,3- and 1,6-linked glucans and the linear 1,3-linked glucan. 1,6-linked regions were mobile and not involved in the crystal-like areas. Altogether, our results broaden the knowledge of the structure of water-insoluble α-glucans from Streptococcus spp.


Assuntos
Glucanos , Glicosiltransferases , Água , Glucanos/química , Água/química , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Streptococcus/enzimologia , Solubilidade , Streptococcus mutans/enzimologia
3.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710561

RESUMO

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Assuntos
Antioxidantes , Glucanos , Glucanos/química , Glucanos/farmacologia , Glucanos/isolamento & purificação , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Agaricales/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Peso Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificação , Basidiomycota/química , Sobrevivência Celular/efeitos dos fármacos
4.
Carbohydr Polym ; 337: 122149, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710571

RESUMO

Phytopathogen cell wall polysaccharides have important physiological functions. In this study, we isolated and characterized the alkali-insoluble residue on the inner layers of the Rhizoctonia solani AG1 IA cell wall (RsCW-AIR). Through chemical composition and structural analysis, RsCW-AIR was mainly identified as a complex of chitin/chitosan and glucan (ChCsGC), with glucose and glucosamine were present in a molar ratio of 2.7:1.0. The predominant glycosidic bond linkage of glucan in ChCsGC was ß-1,3-linked Glcp, both the α and ß-polymorphic forms of chitin were presented in it by IR, XRD, and solid-state NMR, and the ChCsGC exhibited a degree of deacetylation measuring 67.08 %. RsCW-AIR pretreatment effectively reduced the incidence of rice sheath blight, and its induced resistance activity in rice was evaluated, such as inducing a reactive oxygen species (ROS) burst, leading to the accumulation of salicylic acid (SA) and the up-regulation of SA-related gene expression. The recognition of RsCW-AIR in rice is partially dependent on CERK1.


Assuntos
Parede Celular , Quitina , Quitosana , Glucanos , Oryza , Doenças das Plantas , Rhizoctonia , Rhizoctonia/efeitos dos fármacos , Oryza/microbiologia , Oryza/química , Parede Celular/química , Quitosana/química , Quitosana/farmacologia , Quitina/química , Quitina/farmacologia , Glucanos/química , Glucanos/farmacologia , Doenças das Plantas/microbiologia , Resistência à Doença , Espécies Reativas de Oxigênio/metabolismo
5.
Microbiology (Reading) ; 170(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739436

RESUMO

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Assuntos
Antibacterianos , Endopeptidases , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidases/farmacologia , Endopeptidases/química , Endopeptidases/metabolismo , Polimixina B/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiologia , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/virologia , Camundongos , Salmonella typhimurium/virologia , Salmonella typhimurium/efeitos dos fármacos , Bacteriófagos/fisiologia , Bacteriófagos/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia , Proteínas Virais/química
6.
Chem Rev ; 124(8): 4863-4934, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38606812

RESUMO

Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.


Assuntos
Bactérias , Glucanos , Glucanos/metabolismo , Glucanos/química , Bactérias/enzimologia , Bactérias/metabolismo , Evolução Molecular
7.
Int J Biol Macromol ; 267(Pt 1): 131306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574904

RESUMO

This study investigated the effect of in situ produced water-soluble α-glucan (LcWSG) and water-insoluble α-glucan (LcWIG) from Leuconostoc citreum SH12 on the physicochemical properties of fermented soymilk. α-Glucans produced by Leuc. citreum SH12 improved water-holding capacity, viscosity, viscoelasticity and texture of fermented soymilk. Gtf1365 and Gtf836 of the five putative glucansucrases were responsible for synthesizing LcWSG and LcWIG during soymilk fermentation, respectively. Co-fermentation of soymilk with Gtf1365 and Gtf836 and non-exopolysaccharide-producing Lactiplantibacillus plantarum D1031 indicated that LcWSG effectively hindered the whey separation of fermented soymilk by increasing viscosity, while LcWIG improved hardness, springiness and accelerated protein coagulation. Fermented soymilk gel formation was mainly based on hydrogen bonding and hydrophobic interactions, which were promoted by both LcWSG and LcWIG. LcWIG has a greater effect on α-helix to ß-sheet translation in fermented soymilk, causing more rapid protein aggregation and thicker cross-linked gel network. Structure-based exploration of LcWSG and LcWIG from Leuc. citreum SH12 revealed their distinct roles in the physicochemical properties of fermented soymilk due to their different ratio of α-1,6 and α-1,3 glucosidic linkages and various side chain length. This study may guide the application of the water-soluble and water-insoluble α-glucans in fermented plant protein foods for their quality improvement.


Assuntos
Fermentação , Glucanos , Leuconostoc , Solubilidade , Leite de Soja , Água , Leuconostoc/metabolismo , Leite de Soja/química , Água/química , Viscosidade , Glucanos/química , Fenômenos Químicos
8.
Carbohydr Polym ; 336: 122102, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670773

RESUMO

Skin wounds are susceptible to infection, leading to severe inflammatory reactions that can progress to chronic wounds, ultimately causing significant physical and mental distress to the patient. In this study, we propose an injectable composite hydrogel achieved through one-pot gelation of oxidized xyloglucan (OXG), cationic polyamide ε-poly-l-lysine (EPL), and surface amino-rich silicon nanoparticles (SiNPs). OXG exhibits commendable anti-inflammatory properties and provides crosslinking sites. SiNPs serve as mechanically reinforced crosslinkers, facilitating the construction of a dynamic Schiff base network. SiNPs significantly reduced the gelation time to 3 s and tripled the storage modulus of the hydrogels. Additionally, the combination of EPL and SiNPs demonstrated synergistic antimicrobial activity against both S. aureus and E. coli. Notably, the hydrogel effectively halted liver bleeding within 30 s. The hydrogel demonstrated outstanding shear-thinning and self-healing properties, crucial considerations for the design of injectable hydrogels. Furthermore, its efficacy was evaluated as a wound dressing in a mouse model with S. aureus infection. The results indicated that, compared to commercial products, the hydrogel exhibited a shorter wound healing time, decreased inflammation, thinner epithelium, increased hair follicles, enhanced neovascularization, and more substantial collagen deposition. These findings strongly suggest the promising potential of the proposed hydrogel as an effective wound dressing for the treatment of infected wounds.


Assuntos
Antibacterianos , Escherichia coli , Glucanos , Hidrogéis , Nanopartículas , Polilisina , Staphylococcus aureus , Cicatrização , Xilanos , Glucanos/química , Glucanos/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Xilanos/química , Xilanos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Polilisina/química , Polilisina/farmacologia , Camundongos , Nanopartículas/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Reagentes de Ligações Cruzadas/química , Infecção dos Ferimentos/tratamento farmacológico , Masculino
9.
Carbohydr Res ; 538: 109099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574411

RESUMO

Ganoderma lucidum, widely used in traditional medicine, has several biological properties. Polysaccharides, mainly glucans, are known as one of its main bioactive compounds. Consequently, the achievement and chemical investigation of such molecules are of pharmaceutical interest. Herein, we obtained water-insoluble and water-soluble polysaccharides from G. lucidum by alkaline extraction. Fractionation process yielded three fractions (GLC-1, GLC-2, and GLC-3). All samples showed to be composed mainly of glucans. GLC-1 is a linear (1 â†’ 3)-linked ß-glucan; GLC-2 is a mixture of three different linear polysaccharides: (1 â†’ 3)-ß-glucan, (1 â†’ 3)-α-glucan, and (1 â†’ 4)-α-mannan; while GLC-3 is a branched ß-glucan with a (1 â†’ 4)-linked main chain, which is branched at O-3 or O-6 by (1 â†’ 3)- or (1 â†’ 6)-linked side chains. This research reports the variability of glucans in Ganoderma lucidum fruiting bodies and applicable methodologies to obtain such molecules. These polysaccharides can be further applied in biological studies aiming to investigate how their chemical differences may affect their biological properties.


Assuntos
Ascomicetos , Reishi , beta-Glucanas , Glucanos/química , Reishi/química , Polissacarídeos/química , beta-Glucanas/química , Carpóforos/química , Água/análise
10.
Int J Biol Macromol ; 267(Pt 2): 131606, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631566

RESUMO

This study aimed to investigate the effect of cinnamon essential oil (CEO)-loaded metal-organic frameworks (CEO@MOF) on the properties of gelatin/pullulan (Gel/Pull)-based composite films (Gel/Pull-based films). The incorporation of CEO@MOF into Gel/Pull-based films demonstrated significant antimicrobial activity against S. aureus, S. enterica, E. coli, and L. monocytogenes. Additionally, CEO@MOF integrated film exhibited a 98.16 % ABTS radical scavenging, with no significant change in the mechanical properties of the neat Gel/Pull film. The UV blocking efficiency of the composite films increased significantly from 81.38 to 99.56 % at 280 nm with the addition of 3 wt% CEO@MOF. Additionally, Gel/Pull/CEO@MOF films effectively extended the shelf life of meat preserved at 4 °C by reducing moisture loss by 3.35 %, maintaining the pH within the threshold limit (6.2), and inhibiting bacterial growth by 99.9 %. These results propose that CEO@MOF has significant potential as an effective additive in active packaging to improve shelf life and food safety.


Assuntos
Cinnamomum zeylanicum , Embalagem de Alimentos , Gelatina , Glucanos , Estruturas Metalorgânicas , Óleos Voláteis , Gelatina/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Cinnamomum zeylanicum/química , Embalagem de Alimentos/métodos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Glucanos/química , Glucanos/farmacologia , Conservação de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Carne/microbiologia , Animais , Testes de Sensibilidade Microbiana
11.
Int J Biol Macromol ; 266(Pt 2): 131000, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521333

RESUMO

In recent years, the development of probiotic film by incorporating probiotics into edible polymers has attracted significant research attention in the field of active packaging. However, the influence of the external environment substantially reduces the vitality of probiotics, limiting their application. Therefore, to improve the probiotic activity, this study devised a novel nanofiber film incorporating chia mucilage protection solution (CPS), gum arabic (GA), pullulan (PUL), and Lactobacillus bulgaricus (LB). SEM images indicated the successful preparation of the nanofiber film incorporating LB. CPS incorporation significantly improved the survival ability of LB, with a live cell count reaching 7.62 log CFU/g after 28 days of storage at 4 °C - an increase of 1 log CFU/g compared to the fiber film without CPS. The results showed that the fiber film containing LB inhibited Escherichia coli and Staphylococcus aureus. Finally, the novel probiotic nanofiber film was applied to beef. The results showed that the shelf life of the beef during the experiments was extended for 2 days at 4 °C. Therefore, the novel probiotic film containing LB was suitable for meat preservation.


Assuntos
Antibacterianos , Glucanos , Goma Arábica , Nanofibras , Nanofibras/química , Glucanos/química , Glucanos/farmacologia , Goma Arábica/química , Antibacterianos/farmacologia , Antibacterianos/química , Salvia/química , Lactobacillus delbrueckii , Probióticos/química , Animais , Conservação de Alimentos/métodos , Carne Vermelha/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Mucilagem Vegetal/química , Escherichia coli/efeitos dos fármacos , Bovinos , Embalagem de Alimentos/métodos
12.
Food Chem ; 448: 139156, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555688

RESUMO

Molecular structure of linear α-glucans (LAGs) and crystallization temperature have great effects on the thermostability and digestibility of recrystallized LAGs, but the recrystallization behaviors of LAGs in response to temperature remain unclear. Here LAGs with different lengths were prepared from amylopectin via chain elongation and debranching. Recrystallization of LAGs at 4 °C yielded B-type crystalline structure with relative crystallinity ranged from 23.7% to 46.1%. With a chain length of 40.2, an A-type allomorph was observed for a slow recrystallization at 50 °C. Differential scanning calorimetry suggested that A-type crystal had a higher thermostability than the B-type crystal, and increasing LAGs' chain length improved the dimension of double helices, whose assembly produced starch crystallites that enhanced the thermostability and decreased the in vitro digestibility of recrystallized LAGs. An improved thermostability of recrystallized LAGs preserved their ordered structures and kept the resistance to digestive enzymes, with a RS content up to 75.4%.


Assuntos
Cristalização , Digestão , Glucanos , Glucanos/química , Temperatura Alta , Temperatura , Varredura Diferencial de Calorimetria
13.
Int J Biol Macromol ; 265(Pt 2): 130933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508554

RESUMO

Glucans, a polysaccharide naturally present in the yeast cell wall that can be obtained from side streams generated during the fermentation process, have gained increasing attention for their potential as a skin ingredient. Therefore, this study focused on the extraction method to isolate and purify water-insoluble glucans from two different Saccharomyces cerevisiae strains: an engineered strain obtained from spent yeast in an industrial fermentation process and a wild strain produced through lab-scale fermentation. Two water-insoluble extracts with a high glucose content (> 90 %) were achieved and further subjected to a chemical modification using carboxymethylation to improve their water solubility. All the glucans' extracts, water-insoluble and carboxymethylated, were structurally and chemically characterized, showing almost no differences between both yeast-type strains. To ensure their safety for skin application, a broad safety assessment was undertaken, and no cytotoxic effect, immunomodulatory capacity (IL-6 and IL-8 regulation), genotoxicity, skin sensitization, and impact on the skin microbiota were observed. These findings highlight the potential of glucans derived from spent yeast as a sustainable and safe ingredient for cosmetic and skincare formulations, contributing to the sustainability and circular economy.


Assuntos
Glucanos , Saccharomyces cerevisiae , Glucanos/química , Saccharomyces cerevisiae/química , Polissacarídeos/química , Água
14.
Carbohydr Polym ; 332: 121921, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431398

RESUMO

Curdlan is a unique (1,3)-ß-D-glucan with bioactivity and exceptional gelling properties. By chemical functionalization such as carboxymethylation, the physicochemical properties of curdlan can be significantly tailored. However, how the carboxymethylation extent of curdlan affects its rheology and gelation characteristics has yet to be fully understood. Herein, we investigated the impact of the degree of substitution (DS, ranging from 0.04 to 0.97) on the rheological and gelation behavior of carboxymethylated curdlan (CMCD). It was found that CMCD with DS below 0.20, resembling native curdlan, still retained its gelling capability. As the DS increased beyond 0.36, there was a significant increase in its water solubility instead of gelation, resulting in transparent solutions with steady/complex viscosities adhering to the Cox-Merz rule. Moreover, CMCD with high DS demonstrated the ability to undergo in-situ gelation in the presence of metal ions, attributed to the nonspecific electrostatic binding. Additionally, in vitro cytocompatibility testing showed positive compatibility across varying DS in CMCD. This research offers a holistic understanding of the viscosifying and gelling behaviors of CMCD with varying DS, thereby fostering their practical application as thickeners and gelling agents in fields ranging from food and biomedicine to cosmetics and beyond.


Assuntos
beta-Glucanas , beta-Glucanas/química , Glucanos/química , Géis/química , Água , Reologia
15.
J Agric Food Chem ; 72(10): 5391-5402, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427803

RESUMO

α-Glucanotransferases of the CAZy family GH70 convert starch-derived donors to industrially important α-glucans. Here, we describe characteristics of a novel GtfB-type 4,6-α-glucanotransferase of high enzyme activity (60.8 U mg-1) from Limosilactobacillus reuteri N1 (LrN1 GtfB), which produces surprisingly large quantities of soluble protein in heterologous expression (173 mg pure protein per L of culture) and synthesizes the reuteran-like α-glucan with (α1 → 6) linkages in linear chains and branch points. Protein structural analysis of LrN1 GtfB revealed the potential crucial residues at subsites -2∼+2, particularly H265, Y214, and R302, in the active center as well as previously unidentified surface binding sites. Furthermore, molecular dynamic simulations have provided unprecedented insights into linkage specificity hallmarks of the enzyme. Therefore, LrN1 GtfB represents a potent enzymatic tool for starch conversion, and this study promotes our knowledge on the structure-function relationship of GH70 GtfB α-glucanotransferases, which might facilitate the production of tailored α-glucans by enzyme engineering in future.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Limosilactobacillus reuteri , Simulação de Dinâmica Molecular , Glucanos/química , Amido/metabolismo , Relação Estrutura-Atividade
16.
Int J Biol Macromol ; 264(Pt 1): 130546, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442833

RESUMO

ß-1,3-Glucans possess therapeutic potential owing to their ability to exhibit immunostimulating activity. ß-1,3-Glucans, isolated from various organisms, differ in their chemical structures, molecular weight, and branching degree, potentially forming particulate, helix, or random coil conformations in water. Therefore, this study used synthesized ß-1,3-glucan mimic polymers to investigate the difference in binding affinity for dectin-1 and induced cytokine productions based on polymer structures. The ß-1,3-glucan mimic polymers were synthesized using ß-1,3-glucan tetrasaccharyl monomer, with subsequent modifications to the polymer backbones through the introduction of hydrogen or a hydroxy group. Polymers with different structures in both ligands and polymer backbones were utilized to comprehensively investigate their binding affinity to dectin-1 and cytokine-inducing in macrophages. Hydroxylated polymers exhibited a high binding affinity for dectin-1, similar to that of schizophyllan, whereas the polymer composed of only saccharyl monomers did not bind to dectin-1. Further, when administered to macrophage RAW264 cells, polymers with branched and hydrophobic polymer backbones exhibited strong cytokine-inducing activities. Moreover, the results revealed that the essential factors for cytokine induction include the branches of ß-1,3-glucans, high (tens of thousands) molecular weights, and hydrophobicity. The results suggests that artificial polymers comprising these factors exhibit immunostimulating activity and could be developed as therapeutic agents.


Assuntos
Glucanos , beta-Glucanas , Glucanos/química , Polímeros , beta-Glucanas/química , Citocinas/metabolismo , Lectinas Tipo C
17.
Int J Biol Macromol ; 266(Pt 1): 131170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554906

RESUMO

Skin wound healing is a complex and dynamic process involving hemostasis, inflammatory response, cell proliferation and migration, and angiogenesis. Currently used wound dressings remain unsatisfactory in the clinic due to the lack of adjustable mechanical property for injection operation and bioactivity for accelerating wound healing. In this work, an "all-sugar" hydrogel dressing is developed based on dynamic borate bonding network between the hydroxyl groups of okra polysaccharide (OP) and xyloglucan (XG). Benefiting from the reversible crosslinking network, the resulting composite XG/OP hydrogels exhibited good shear-thinning and fast self-healing properties, which is suitable to be injected at wound beds and filled into irregular injured site. Besides, the proposed XG/OP hydrogels showed efficient antioxidant capacity by scavenging DPPH activity of 73.9 %. In vivo experiments demonstrated that XG/OP hydrogels performed hemostasis and accelerated wound healing with reduced inflammation, enhanced collagen deposition and angiogenesis. This plant-derived dynamic hydrogel offers a facile and effective approach for wound management and has great potential for clinical translation in feature.


Assuntos
Antioxidantes , Hidrogéis , Neovascularização Fisiológica , Polissacarídeos , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Abelmoschus/química , Glucanos/química , Glucanos/farmacologia , Xilanos/química , Xilanos/farmacologia , Camundongos , Ratos , Masculino , Humanos , Angiogênese
18.
Int J Biol Macromol ; 262(Pt 2): 130121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350588

RESUMO

This study identified a rhamnose-containing cell wall polysaccharide (RhaCWP) in an alkaline extract prepared to analyze intracellular polysaccharides (IPS) from Streptococcus mutans biofilm. IPS was an 1,4-α-D-glucan with branchpoints introduced by 1,6-α-glucan while RhaCWP presented 1,2-α-L-and 1,3-α-L rhamnose backbone and side chains connected by 1,2-α-D-glucans, as identified by nuclear magnetic resonance (NMR) spectroscopy and methylation analyses. The MW of IPS and RhaCWP was 11,298 Da, as determined by diffusion-ordered NMR spectroscopy. Therefore, this study analyzed the chemical structure of RhaCWP and IPS from biofilm in a single fraction prepared via a convenient hot-alkali extraction method. This method could be a feasible approach to obtain such molecules and improve the comprehension of the structure-function relationships in polymers from S. mutans in future studies.


Assuntos
Ramnose , Streptococcus mutans , Ramnose/análise , Polissacarídeos/análise , Glucanos/química , Parede Celular/química
19.
Int J Biol Macromol ; 263(Pt 2): 130308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401578

RESUMO

Starch-converting α-glucanotransferases are efficient enzymatic toolkits for the biosynthesis of diverse α-glucans, which hold vast application potential in the food industry. In this work, we identified a novel GtfB protein from Fructilactobacillus sanfranciscensis TMW11304 (FsTMW11304 GtfB) in NCBI. Although this enzyme was highly conserved in motifs I-IV with those isomalto-maltopolysaccharides (IMMPs)-producing GtfB α-glucanotransferases, it possessed distinct deletions and mutations in two crucial loops shaping the active site. Hence, unlike those GtfB enzymes, FsTMW11304 GtfB not only exhibited excellent 4,6-α-glucanotransferase activity on amylose to generate atypically low-molecular-weight IMMPs with consecutive linear (α1 â†’ 6) linkages up to 48 %, but also held good capability towards branched substrates. Besides, compared with the control, the treatment by FsTMW11304 GtfB reduced the storage/loss modulus of granular and gelatinized tapioca starches (TS) by 12.0 %/17.9 % and 91.4 %/82.9 %, respectively, indicating that the rigidity of the gel structure was attenuated to different degrees in the two reaction systems. Furthermore, the setback viscosity observed in the gelatinized TS modified by FsTMW11304 GtfB was only 5 % of that observed in the control group, suggesting the short-term anti-retrogradation property has been substantially improved. Thus, FsTMW11304 GtfB represents a meaningful addition to the α-glucanotransferases in GH70 family, which expands the repertoire of diverse α-glucans synthesized from starch and facilitates the understanding of the structure-function relationship of the GtfB α-glucanotransferases.


Assuntos
Lactobacillus , Manihot , Amido , Amido/metabolismo , Manihot/metabolismo , Viscosidade , Glucanos/química , Amilose
20.
Biomacromolecules ; 25(3): 2024-2032, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38393758

RESUMO

α-Glucan microparticles (GMPs) have significant potential as high-value biomaterials in various industries. This study proposes a bottom-up approach for producing GMPs using four amylosucrases from Bifidobacterium sp. (BASs). The physicochemical characteristics of these GMPs were analyzed, and the results showed that the properties of the GMPs varied depending on the type of enzymes used in their synthesis. As common properties, all GMPs exhibited typical B-type crystal patterns and poor colloidal dispersion stability. Interestingly, differences in the physicochemical properties of GMPs were generated depending on the synthesis rate of linear α-glucan by the enzymes and the degree of polymerization (DP) distribution. Consequently, we found differences in the properties of GMPs depending on the DP distribution of linear glucans prepared with four BASs. Furthermore, we suggest that precise control of the type and characteristics of the enzymes provides the possibility of producing GMPs with tailored physicochemical properties for various industrial applications.


Assuntos
Bifidobacterium , Glucanos , Guanosina Monofosfato , Tionucleotídeos , Glucanos/química , Glucosiltransferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA