Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 141: 109670, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33051020

RESUMO

6-(N-hydroxyethyl)-amino-6-deoxy-l-sorbofuranose (6NSL), a key precursor in the synthesis of miglitol, is produced from N-2-hydroxyethyl-glucamine (NHEG) by the regioselective oxidation of Gluconobacter oxydans. The limitation of PQQ biosynthesis became a bottleneck for improvement of PQQ-dependent D-sorbitol dehydrogenase (mSLDH) activity. Five expression plasmids were constructed for the co-expression of the pqqABCDE gene cluster and the tldD gene on the basis of pBBR1-gHp0169-sldAB in G. oxydans to increase the biosynthesis of PQQ. The G. oxydans/pGA004, in which pqqABCDE and tldD were expressed as a cluster under the control of gHp0169 promoter, showed the optimal performance. The intracellular PQQ concentration and specific activity of mSLDH in cells increased by 79.3 % and 53.7 %, respectively, compared to that in G. oxydans/pBBR-sldAB. Then, the repeated batch biotransformation of NHEG to 6NSL by G. oxydans/pGA004 was carried out. Up to 75.0 ±â€¯3.0 g/L of 6NSL production with 94.5 ±â€¯3.6 % of average conversion rate of NHEG to 6NSL was achieved after four cycles of run. These results indicated that G. oxydans/pGA004 with high productivity had great potential for 6NSL production in industrial bioprocess.


Assuntos
Gluconobacter oxydans/metabolismo , L-Iditol 2-Desidrogenase/metabolismo , Cofator PQQ/biossíntese , Sorbose/análogos & derivados , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Biotransformação , Expressão Gênica , Gluconobacter oxydans/genética , Gluconobacter oxydans/crescimento & desenvolvimento , L-Iditol 2-Desidrogenase/genética , Família Multigênica , Nitrosaminas/metabolismo , Cofator PQQ/genética , Cofator PQQ/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sorbose/biossíntese
2.
Biotechnol Lett ; 41(8-9): 951-961, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31278569

RESUMO

OBJECTIVES: A three-species consortium for one-step fermentation of 2-keto-L-gulonic acid (2-KGA) was constructed to better strengthen the cell-cell communication. And the programmed cell death module based on the LuxI/LuxR quorum-sensing (QS) system was established in Gluconobacter oxydans to reduce the competition that between G. oxydans and Ketogulonicigenium vulgare. RESULTS: By constructing and optimizing the core region of the promoter, which directly regulated the expression of lethal ccdB genes in QS system, IR3C achieved the best lethal effect. The consortium of IR3C- K. vulgare-Bacillus megaterium (abbreviated as 3C) achieved the highest 2-KGA titer (68.80 ± 4.18 g/l), and the molar conversion rate was 80.7% within 36 h in 5 l fermenter. Metabolomic analysis on intracellular small molecules of consortia 3C and 1C showed that most amino acids (such as glycine, leucine, methionine and proline) and TCA cycle intermediates (such as succinic acid, fumaric acid and malic acid) were significantly affected. These results further validated that the programmed cell death module based on the LuxI/LuxR QS system in G. oxydans could also faciliate better growth and higher production of consortium 3C for one-step fermentation. CONCLUSIONS: We successfully constructed a novel three-species consortia for one-step vitamin C fermentation by strengthening the cell-cell communication. This will be very useful for probing the rational design principles of more complex multi-microbial consortia.


Assuntos
Ácido Ascórbico/metabolismo , Bacillus megaterium/metabolismo , Fermentação , Gluconobacter oxydans/metabolismo , Consórcios Microbianos , Rhodobacteraceae/metabolismo , Açúcares Ácidos/metabolismo , Bacillus megaterium/crescimento & desenvolvimento , Comunicação Celular , Gluconobacter oxydans/crescimento & desenvolvimento , Interações Microbianas , Rhodobacteraceae/crescimento & desenvolvimento , Vitaminas/metabolismo
3.
Appl Microbiol Biotechnol ; 103(11): 4393-4404, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31001743

RESUMO

Many ketoses or organic acids can be produced by membrane-associated oxidation with Gluconobacter oxydans. In this study, the oxidation of meso-erythritol to L-erythrulose was investigated with the strain G. oxydans 621HΔupp BP.8, a multideletion strain lacking the genes for eight membrane-bound dehydrogenases. First batch biotransformations with growing cells showed re-consumption of L-erythrulose by G. oxydans 621HΔupp BP.8 in contrast to resting cells. The batch biotransformation with 2.8 g L-1 resting cells of G. oxydans 621HΔupp BP.8 in a DO-controlled stirred-tank bioreactor resulted in 242 g L-1 L-erythrulose with a product yield of 99% (w/w) and a space-time yield of 10 g L-1 h-1. Reaction engineering studies showed substrate excess inhibition as well as product inhibition of G. oxydans 621HΔupp BP.8 in batch biotransformations. In order to overcome substrate inhibition, a continuous membrane bioreactor with full cell retention was applied for meso-erythritol oxidation with resting cells of G. oxydans 621HΔupp BP.8. At a mean hydraulic residence time of 2 h, a space-time yield of 27 g L-1 h-1 L-erythrulose was achieved without changing the product yield of 99% (w/w) resulting in a cell-specific product yield of up to 4.4 gP gX-1 in the steady state. The product concentration (54 g L-1 L-erythrulose) was reduced in the continuous biotransformation process compared with the batch process to avoid product inhibition.


Assuntos
Eritritol/metabolismo , Deleção de Genes , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Engenharia Metabólica/métodos , Tetroses/metabolismo , Biotransformação , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/crescimento & desenvolvimento , Oxirredução , Oxirredutases/deficiência
4.
Enzyme Microb Technol ; 126: 24-31, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31000161

RESUMO

Among other synthetic polymers, poly-Ɛ-caprolacton (PCL) nanofibers are one of the most popular ones, especially in tissue engineering application due to its distinct mechanical and chemical properties. However, in some cases, lacking functional group on polymer structure obstructs the covalent modification of the PCL nanofibers for the aim. Herein, polyethyleneimine (PEI) was blended with PCL polymer to provide functional amino groups on the surface of the nanofiber mat. PCL-PEI nanofiber was successfully constructed and preparation parameters were optimized. Scanning electron microscopy (SEM) and contact angle measurements were carried out to characterize the PCL-PEI nanofiber. After characterization, Gluconobacter oxydans was immobilized on the surface by the help of glutaraldehyde chemistry. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements were carried out to prove the success of surface modification. In addition, scanning electron microscopy images were also taken after the immobilization of G. oxydans on PCL-PEI nanofiber mat. For the first time in this study, one microorganism was immobilized onto the electrospun nanofiber mat by covalent modification. In conclusion, PCL-PEI/G. oxydans whole-cell biosensor was tested for sensing of glucose as a model analyte.


Assuntos
Eletroquímica , Gluconobacter oxydans/crescimento & desenvolvimento , Nanofibras/química , Poliésteres/química , Polietilenoimina/química , Engenharia Tecidual/métodos , Técnicas Biossensoriais , Gluconobacter oxydans/metabolismo , Glucose/metabolismo , Interações Hidrofóbicas e Hidrofílicas
5.
Bioprocess Biosyst Eng ; 41(10): 1555-1559, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29948215

RESUMO

Bioconversion of ethylene glycol (EG) to glycolic acid (GA) by the whole-cell of Gluconobacter oxydans in an aired stirred tank reactor (ASTR) with continuous substrate feeding yielded over 220 g/L of GA. However, the bioreactor productivity declined to an unfavorable level of 0.63 g/L/h due to negative feed-back by GA which inhibited the reaction. To overcome this problem, based on results obtained from techno-economic comparative analysis, we set up a successive recycled-cell catalytic bioprocessing ASTR, and carried out five consecutive cycles stably during 240 h. At the end of this process, total 490.7 g GA was accumulated with over 90% yield, and an average bioreactor productivity of 2.04 g/L/h. The twin strategies of end-product titer control and cell-recycling successfully demonstrated the large scale applicability of EG bioconversion to GA.


Assuntos
Biocatálise , Reatores Biológicos , Etilenoglicol/metabolismo , Gluconobacter oxydans/crescimento & desenvolvimento , Glicolatos/metabolismo
6.
BMC Genomics ; 19(1): 24, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-29304737

RESUMO

BACKGROUND: The acetic acid bacterium Gluconobacter oxydans 621H is characterized by its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. The metabolism of this α-proteobacterium has been characterized to some extent, yet little is known about its transcriptomes and related data. In this study, we applied two different RNAseq approaches. Primary transcriptomes enriched for 5'-ends of transcripts were sequenced to detect transcription start sites, which allow subsequent analysis of promoter motifs, ribosome binding sites, and 5´-UTRs. Whole transcriptomes were sequenced to identify expressed genes and operon structures. RESULTS: Sequencing of primary transcriptomes of G. oxydans revealed 2449 TSSs, which were classified according to their genomic context followed by identification of promoter and ribosome binding site motifs, analysis of 5´-UTRs including validation of predicted cis-regulatory elements and correction of start codons. 1144 (41%) of all genes were found to be expressed monocistronically, whereas 1634 genes were organized in 571 operons. Together, TSSs and whole transcriptome data were also used to identify novel intergenic (18), intragenic (328), and antisense transcripts (313). CONCLUSIONS: This study provides deep insights into the transcriptional landscapes of G. oxydans. The comprehensive transcriptome data, which we made publicly available, facilitate further analysis of promoters and other regulatory elements. This will support future approaches for rational strain development and targeted gene expression in G. oxydans. The corrections of start codons further improve the high quality genome reference and support future proteome analysis.


Assuntos
Genoma Bacteriano , Gluconobacter oxydans/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Transcriptoma , Proteínas de Bactérias/genética , Gluconobacter oxydans/crescimento & desenvolvimento , Óperon , Regiões Promotoras Genéticas , Elementos Reguladores de Transcrição , Sítio de Iniciação de Transcrição
7.
Appl Microbiol Biotechnol ; 102(4): 1699-1710, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29279957

RESUMO

The growing consumer demand for low-calorie, sugar-free foodstuff motivated us to search for alternative non-nutritive sweeteners. A promising sweet-tasting compound is 5-keto-D-fructose (5-KF), which is formed by membrane-bound fructose dehydrogenases (Fdh) in some Gluconobacter strains. The plasmid-based expression of the fdh genes in Gluconobacter (G.) oxydans resulted in a much higher Fdh activity in comparison to the native host G. japonicus. Growth experiments with G. oxydans fdh in fructose-containing media indicated that 5-KF was rapidly formed with a conversion efficiency of 90%. 5-KF production from fructose was also observed using resting cells with a yield of about 100%. In addition, a new approach was tested for the production of the sweetener 5-KF by using sucrose as a substrate. To this end, a two-strain system composed of the fdh-expressing strain and a G. oxydans strain that produced the sucrose hydrolyzing SacC was developed. The strains were co-cultured in sucrose medium and converted 92.5% of the available fructose units into 5-KF. The glucose moiety of sucrose was converted to 2-ketogluconate and acetate. With regard to the development of a sustainable and resource-saving process for the production of 5-KF, sugar beet extract was used as substrate for the two-strain system. Fructose as product from sucrose cleavage was mainly oxidized to 5-KF which was detected in a concentration of over 200 mM at the end of the fermentation process. In summary, the two-strain system was able to convert fructose units of sugar beet extract to 5-KF with an efficiency of 82 ± 5%.


Assuntos
Frutose/análogos & derivados , Frutose/metabolismo , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Sacarose/metabolismo , Edulcorantes/metabolismo , Acetatos/metabolismo , Beta vulgaris/química , Biotransformação , Meios de Cultura/química , Expressão Gênica , Vetores Genéticos , Gluconatos/metabolismo , Gluconobacter oxydans/crescimento & desenvolvimento , Glucose/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Extratos Vegetais/metabolismo , Plasmídeos
8.
Appl Microbiol Biotechnol ; 101(13): 5453-5467, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28484812

RESUMO

The obligatory aerobic acetic acid bacterium Gluconobacter oxydans incompletely oxidizes carbon sources regio- and stereoselectively in the periplasm and therefore is used industrially for oxidative biotransformations, e. g., in vitamin C production. However, it has a very low biomass yield as the oxidized products largely remain in the medium and cannot be used for anabolism. Cytoplasmic carbon metabolism occurs via the pentose phosphate pathway and the Entner-Doudoroff pathway, whereas glycolysis and the tricarboxylic acid cycle are incomplete. Acetate is formed as an end product via pyruvate decarboxylase and acetaldehyde dehydrogenase. In order to increase the biomass yield from glucose, we sequentially replaced (i) gdhS encoding the cytoplasmic NADP-dependent glucose dehydrogenase by the Acetobacter pasteurianus sdhCDABE genes for succinate dehydrogenase and the flavinylation factor SdhE (strain IK001), (ii) pdc encoding pyruvate decarboxylase by a second ndh gene encoding a type II NADH dehydrogenase (strain IK002.1), and (iii) gdhM encoding the membrane-bound PQQ-dependent glucose dehydrogenase by sucCD from Gluconacetobacter diazotrophicus encoding succinyl-CoA synthetase (strain IK003.1). Analysis of the strains under controlled cultivation conditions in bioreactors revealed for IK003.1 that neither gluconate nor 2-ketogluconate was formed, but some 5-ketogluconate. Acetate formation was eliminated, and comparable amounts of pyruvate were formed instead. CO2 formation by IK003.1 was more than doubled compared to the reference strain. Growth of IK003.1 was retarded, but the biomass yield of this strain was raised by 60%. IK003.1 serves as suitable host for oxidative biotransformations and for further metabolic engineering.


Assuntos
Biomassa , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Glucose/metabolismo , Engenharia Metabólica/métodos , Acetobacter/genética , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Ciclo do Ácido Cítrico , Gluconobacter oxydans/crescimento & desenvolvimento , Glucose 1-Desidrogenase/metabolismo , Glicólise , Oxirredução , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Succinato Desidrogenase/metabolismo , Desidrogenase do Álcool de Açúcar/genética
9.
J Biotechnol ; 237: 18-24, 2016 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-27619641

RESUMO

Membrane-bound alcohol dehydrogenase (mADH) was overexpressed in Gluconobacter oxydans DSM 2003, and the effects on cell growth and glycolic acid production were investigated. The transcription levels of two terminal ubiquinol oxidases (bo3 and bd) in the respiratory chain of the engineered strain G. oxydans-adhABS were up-regulated by 13.4- and 3.8-fold, respectively, which effectively enhanced the oxygen uptake rate, resulting in higher resistance to acid. The cell biomass of G. oxydans-adhABS could increase by 26%-33% when cultivated in a 7L bioreactor. The activities of other major membrane-bound dehydrogenases were also increased to some extent, particularly membrane-bound aldehyde dehydrogenase (mALDH), which is involved in the catalytic oxidation of aldehydes to the corresponding acids and was 1.26-fold higher. Relying on the advantages of the above, G. oxydans-adhABS could produce 73.3gl-1 glycolic acid after 45h of bioconversion with resting cells, with a molar yield 93.5% and a space-time yield of 1.63gl-1h-1. Glycolic acid production could be further improved by fed-batch fermentation. After 45h of culture, 113.8gl-1 glycolic acid was accumulated, with a molar yield of 92.9% and a space-time yield of 2.53gl-1h-1, which is the highest reported glycolic acid yield to date.


Assuntos
Álcool Desidrogenase/biossíntese , Gluconobacter oxydans/crescimento & desenvolvimento , Gluconobacter oxydans/metabolismo , Glicolatos/metabolismo , Membranas/enzimologia , Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos , Ativação Enzimática , Fermentação , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/genética , Oxirredução , Oxirredutases/biossíntese , Oxirredutases/metabolismo
10.
Appl Microbiol Biotechnol ; 100(23): 9967-9978, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27338577

RESUMO

Gluconobacter (G.) oxydans is able to incompletely oxidize various sugars and polyols for the production of biotechnologically important compound. Recently, we have shown that the organism produces and accumulates mannitol as compatible solute under osmotic stress conditions. The present study describes the role of two cytoplasmic mannitol dehydrogenases for osmotolerance of G. oxydans. It was shown that Gox1432 is a NADP+-dependent mannitol dehydrogenase (EC 1.1.1.138), while Gox0849 uses NAD+ as cofactor (EC 1.1.1.67). The corresponding genes were deleted and the mutants were analyzed for growth under osmotic stress and non-stress conditions. A severe growth defect was detected for Δgox1432 when grown in high osmotic media, while the deletion of gox0849 had no effect when cells were exposed to 450 mM sucrose in the medium. Furthermore, the intracellular mannitol content was reduced in the mutant lacking the NADP+-dependent enzyme Gox1432 in comparison to the parental strain and the Δgox0849 mutant under stress conditions. In addition, transcriptional analysis revealed that Gox1432 is more important for mannitol production in G. oxydans than Gox0849 as the transcript abundance of gene gox1432 was 30-fold higher than of gox0849. In accordance, the activity of the NADH-dependent enzyme Gox0849 in the cell cytoplasm was 10-fold lower in comparison to the NADPH-dependent mannitol dehydrogenase Gox1432. Overexpression of gox1432 in the corresponding deletion mutant restored growth of the cells under osmotic stress, further strengthening the importance of the NADP+-dependent mannitol dehydrogenase for osmotolerance in G. oxydans. These findings provide detailed insights into the molecular mechanism of mannitol-mediated osmoprotection in G. oxydans and are helpful engineering strains with improved osmotolerance for biotechnological applications.


Assuntos
Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/metabolismo , Manitol Desidrogenases/metabolismo , Manitol/metabolismo , Osmorregulação , Meios de Cultura/química , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Gluconobacter oxydans/genética , Gluconobacter oxydans/crescimento & desenvolvimento , Manitol Desidrogenases/genética , Pressão Osmótica , Estresse Fisiológico
11.
Wei Sheng Wu Xue Bao ; 56(10): 1656-63, 2016 Oct 04.
Artigo em Chinês | MEDLINE | ID: mdl-29741828

RESUMO

Objective: To analyze the effect of high 2-keto-L-gulonic acid (2-KLG) on important dehydrogenase, cofactor and transport proteins involved in 2-KLG synthesis. Methods: First, the growth of Gluconobacter oxydans under high 2-KLG was observed. The real-time PCR was used to detect the expression of key sorbitol dehydrogenase gene sldAB, pyrroloquinoline quinone (PQQ) biosynthesis gene cluster pqqABCDE, and five genes encoding hypothetic PQQ transport proteins. Results: According to results of the growth of G. oxydans under different 2-KLG concentration, 40, 80 and 120 g/L 2-KLG were decided to stimulate strains. Real-time PCR showed that PQQ synthesis genes pqqABCDE were not affected by high 2-KLG, but sorbitol dehydrogenase genes sldAB and part of genes encoding PQQ transport proteins were down-regulated under high 2-KLG stress. Conclusion: The expression of sorbitol dehydrogenase genes was restrained by high 2-KLG, PQQ transport was probably inhibited, but PQQ synthesis was not affected.


Assuntos
Proteínas de Bactérias/metabolismo , Gluconobacter oxydans/metabolismo , Açúcares Ácidos/metabolismo , Proteínas de Bactérias/genética , Vias Biossintéticas , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/genética , Gluconobacter oxydans/crescimento & desenvolvimento , L-Iditol 2-Desidrogenase/genética , L-Iditol 2-Desidrogenase/metabolismo , Família Multigênica , Cofator PQQ/biossíntese , Reação em Cadeia da Polimerase em Tempo Real
12.
Appl Microbiol Biotechnol ; 99(21): 9147-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26399411

RESUMO

The obligatory aerobic α-proteobacterium Gluconobacter oxydans 621H possesses an unusual metabolism in which the majority of the carbohydrate substrates are incompletely oxidized in the periplasm and only a small fraction is metabolized in the cytoplasm. The cytoplasmic oxidation capabilities are limited due to an incomplete tricarboxylic acid (TCA) cycle caused by the lack of succinate dehydrogenase (Sdh) and succinyl-CoA synthetase. As a first step to test the consequences of a functional TCA cycle for growth, metabolism, and bioenergetics of G. oxydans, we attempted to establish a heterologous Sdh in this species. Expression of Acetobacter pasteurianus sdhCDAB in G. oxydans did not yield an active succinate dehydrogenase. Co-expression of a putative sdhE gene from A. pasteurianus, which was assumed to encode an assembly factor for covalent attachment of flavin adenine dinucleotide (FAD) to SdhA, stimulated Sdh activity up to 400-fold to 4.0 ± 0.4 U (mg membrane protein)(‒1). The succinate/oxygen reductase activity of membranes was 0.68 ± 0.04 U (mg membrane protein)(‒1), indicating the formation of functional Sdh complex capable of transferring electrons from succinate to ubiquinone. A. pasteurianus SdhE could be functionally replaced by SdhE from the γ-proteobacterium Serratia sp. According to these results, the accessory protein SdhE was necessary and sufficient for heterologous synthesis of an active A. pasteurianus Sdh in G. oxydans. Studies with the Sdh-positive G. oxydans strain provided evidence for a limited functionality of the TCA cycle despite the absence of succinyl-CoA synthetase.


Assuntos
Acetobacter/enzimologia , Ciclo do Ácido Cítrico , Gluconobacter oxydans/crescimento & desenvolvimento , Gluconobacter oxydans/metabolismo , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Acetobacter/genética , Metabolismo Energético , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Appl Microbiol Biotechnol ; 99(13): 5511-21, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25977208

RESUMO

Gluconobacter oxydans is an industrially important bacterium owing to its regio- and enantio-selective incomplete oxidation of various sugars, alcohols, and polyols. The complete genome sequence is available, but it is still unknown how the organism adapts to highly osmotic sugar-rich environments. Therefore, the mechanisms of osmoprotection in G. oxydans were investigated. The accumulation and transport of solutes are hallmarks of osmoadaptation. To identify potential osmoprotectants, G. oxydans was grown on a yeast glucose medium in the presence of 100 mM potassium phosphate (pH 7.0) along with various concentrations of sucrose (0-600 mM final concentration), which was not metabolized. Intracellular metabolites were analyzed by HPLC and (13)C NMR spectroscopy under stress conditions. Both of these analytical techniques highlighted the accumulation of mannitol as a potent osmoprotectant inside the stressed cells. This intracellular mannitol accumulation correlated with increased extracellular osmolarity of the medium. For further confirmation, the growth behavior of G. oxydans was analyzed in the presence of small amounts of mannitol (2.5-10 mM) and 300 mM sucrose. Growth under sucrose-induced osmotic stress conditions was almost identical to control growth when exogenous mannitol was added in low amounts. Thus, mannitol alleviates the osmotic stress of sucrose on cellular growth. Moreover, the positive effect of exogenous mannitol on the rate of glucose consumption and gluconate formation was also monitored. These results may be helpful to optimize the processes of industrial product formation in highly concentrated sugar solutions.


Assuntos
Gluconobacter oxydans/efeitos dos fármacos , Gluconobacter oxydans/fisiologia , Manitol/metabolismo , Pressão Osmótica , Estresse Fisiológico , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Citoplasma/química , Gluconobacter oxydans/química , Gluconobacter oxydans/crescimento & desenvolvimento , Espectroscopia de Ressonância Magnética
14.
Appl Environ Microbiol ; 81(12): 4098-110, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862219

RESUMO

d-Lactate was identified as one of the few available organic acids that supported the growth of Gluconobacter oxydans 621H in this study. Interestingly, the strain used d-lactate as an energy source but not as a carbon source, unlike other lactate-utilizing bacteria. The enzymatic basis for the growth of G. oxydans 621H on d-lactate was therefore investigated. Although two putative NAD-independent d-lactate dehydrogenases, GOX1253 and GOX2071, were capable of oxidizing d-lactate, GOX1253 was the only enzyme able to support the d-lactate-driven growth of the strain. GOX1253 was characterized as a membrane-bound dehydrogenase with high activity toward d-lactate, while GOX2071 was characterized as a soluble oxidase with broad substrate specificity toward d-2-hydroxy acids. The latter used molecular oxygen as a direct electron acceptor, a feature that has not been reported previously in d-lactate-oxidizing enzymes. This study not only clarifies the mechanism for the growth of G. oxydans on d-lactate, but also provides new insights for applications of the important industrial microbe and the novel d-lactate oxidase.


Assuntos
Gluconobacter oxydans/crescimento & desenvolvimento , Lactato Desidrogenases/metabolismo , Ácido Láctico/metabolismo , Oxigênio/metabolismo , Biocatálise , Metabolismo Energético , Deleção de Genes , Teste de Complementação Genética , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/genética , Cinética , Lactato Desidrogenases/classificação , Lactato Desidrogenases/genética , Lactato Desidrogenases/isolamento & purificação , Oxigenases de Função Mista/metabolismo , Oxirredutases/metabolismo , Especificidade por Substrato
15.
J Ind Microbiol Biotechnol ; 42(4): 585-600, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645092

RESUMO

In Gluconobacter oxydans cultivations on glucose, CaCO3 is typically used as pH-buffer. This buffer, however, has disadvantages: suspended CaCO3 particles make the medium turbid, thereby, obstructing analysis of microbial growth via optical density and scattered light. Upon searching for alternative soluble pH-buffers, bacterial growth and productivity was inhibited most probably due to osmotic stress. Thus, this study investigates in detail the osmotic sensitivity of G. oxydans ATCC 621H and DSM 3504 using the Respiratory Activity MOnitoring System. The tested soluble pH-buffers and other salts attained osmolalities of 0.32-1.19 osmol kg(-1). This study shows that G. oxydans ATCC 621H and DSM 3504 respond quite sensitively to increased osmolality in comparison to other microbial strains of industrial interest. Osmolality values of >0.5 osmol kg(-1) should not be exceeded to avoid inhibition of growth and product formation. This osmolality threshold needs to be considered when working with soluble pH-buffers.


Assuntos
Gluconobacter oxydans/crescimento & desenvolvimento , Gluconobacter oxydans/metabolismo , Pressão Osmótica , Soluções Tampão , Carbonato de Cálcio/farmacologia , Gluconobacter oxydans/efeitos dos fármacos , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Nefelometria e Turbidimetria , Concentração Osmolar , Solubilidade
16.
Appl Microbiol Biotechnol ; 99(1): 375-86, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25267158

RESUMO

Acetic acid bacteria such as Gluconobacter oxydans are used in several biotechnological processes due to their ability to perform rapid incomplete regio- and stereo-selective oxidations of a great variety of carbohydrates, alcohols, and related compounds by their membrane-bound dehydrogenases. In order to understand the growth physiology of industrial strains such as G. oxydans ATCC 621H that has high substrate oxidation rates but poor growth yields, we compared its genome sequence to the genome sequence of strain DSM 3504 that reaches an almost three times higher optical density. Although the genome sequences are very similar, DSM 3504 has additional copies of genes that are absent from ATCC 621H. Most importantly, strain DSM 3504 contains an additional type II NADH dehydrogenase (ndh) gene and an additional triosephosphate isomerase (tpi) gene. We deleted these additional paralogs from DSM 3504, overexpressed NADH dehydrogenase in ATCC 621H, and monitored biomass and the concentration of the representative cell components as well as O2 and CO2 transfer rates in growth experiments on mannitol. The data revealed a clear competition of membrane-bound dehydrogenases and NADH dehydrogenase for channeling electrons in the electron transport chain of Gluconobacter and an important role of the additional NADH dehydrogenase for increased growth yields. The less active the NADH dehydrogenase is, the more active is the membrane-bound polyol dehydrogenase. These results were confirmed by introducing additional ndh genes via plasmid pAJ78 in strain ATCC 621H, which leads to a marked increase of the growth rate.


Assuntos
Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/crescimento & desenvolvimento , Redes e Vias Metabólicas/genética , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Biomassa , Dióxido de Carbono/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Deleção de Genes , Dosagem de Genes , Gluconobacter oxydans/genética , Manitol/metabolismo , Dados de Sequência Molecular , Oxirredução , Oxigênio/metabolismo , Análise de Sequência de DNA , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
17.
Appl Microbiol Biotechnol ; 98(22): 9207-16, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25086614

RESUMO

Thraustochytrid production of polyunsaturated fatty acids and xanthophylls have been generally sourced from crop-derived substrates, making the exploration of alternative feedstocks attractive since they promise increased sustainability and lower production costs. In this study, a distinct two-stage fermentation system was conceptualized for the first time, using the brown seaweed sugar mannitol as substrate for the intermediary biocatalyst Gluconobacter oxydans, an acetic acid bacterium, along with the marine thraustochytrid Aurantiochytrium sp. to produce the value-added lipids and xanthophylls. Jar fermenter culture resulted in seaweed mannitol conversion to fructose with an efficiency of 83 % by G. oxydans and, after bacteriostasis with sea salts, production of astaxanthin and docosahexaenoic acid by Aurantiochytrium sp. KH105. Astaxanthin productivity was high at 3.60 mg/L/day. This new system, therefore, widens possibilities of obtaining more varieties of industrially valuable products including foods, cosmetics, pharmaceuticals, and biofuel precursor lipids from seaweed fermentation upon the use of suitable thraustochytrid strains.


Assuntos
Ácido Acético/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Gluconobacter oxydans/metabolismo , Metabolismo dos Lipídeos , Manitol/metabolismo , Estramenópilas/metabolismo , Biomassa , Reatores Biológicos/microbiologia , Ácidos Docosa-Hexaenoicos/isolamento & purificação , Fermentação , Gluconobacter oxydans/crescimento & desenvolvimento , Alga Marinha/química , Estramenópilas/crescimento & desenvolvimento , Xantofilas/isolamento & purificação , Xantofilas/metabolismo
18.
Microbiol Res ; 169(5-6): 469-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24035043

RESUMO

Gluconobacter oxydans, belonging to acetic acid bacteria, is widely used in industrial biotechnology. In our previous study, one of the main glucose metabolic pathways in G. oxydans 621H was blocked by the disruption of the mgdh gene, which is responsible for glucose oxidation to gluconate on cell membrane. The resulting 621H Δmgdh mutant strain showed an enhanced growth and biomass yield on glucose. In order to further understand the intracellular utilization of glucose by 621H Δmgdh, the functions of four fundamental genes, namely glucokinase-encoding glk1 gene, soluble glucose dehydrogenase-encoding sgdh gene, galactose-proton symporter-encoding galp1 and galp2 genes, were investigated. The obtained metabolic characteristics of 621H Δmgdh Δglk1 and 621H Δmgdh Δsgdh double-gene knockout mutants showed that, in vivo, glucose is preferentially phosphorylated to glucose-6-phosphate by glucokinase rather than being oxidized to gluconate by soluble glucose dehydrogenase. In addition, although the galactose-proton symporter-encoding genes were proved to be glucose transporter genes in other organisms, both galp genes (galp 1 and galp2) in G. oxydans were not found to be involved in glucose uptake system, implying that other unknown transporters might be responsible for transporting glucose into the cells.


Assuntos
Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Glucose 1-Desidrogenase/deficiência , Glucose/metabolismo , Mutagênese , Análise Mutacional de DNA , Deleção de Genes , Gluconobacter oxydans/crescimento & desenvolvimento , Redes e Vias Metabólicas/genética
19.
J Bacteriol ; 195(18): 4210-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852873

RESUMO

The obligatory aerobic acetic acid bacterium Gluconobacter oxydans oxidizes a variety of substrates in the periplasm by membrane-bound dehydrogenases, which transfer the reducing equivalents to ubiquinone. Two quinol oxidases, cytochrome bo3 and cytochrome bd, then catalyze transfer of the electrons from ubiquinol to molecular oxygen. In this study, mutants lacking either of these terminal oxidases were characterized. Deletion of the cydAB genes for cytochrome bd had no obvious influence on growth, whereas the lack of the cyoBACD genes for cytochrome bo3 severely reduced the growth rate and the cell yield. Using a respiration activity monitoring system and adjusting different levels of oxygen availability, hints of a low-oxygen affinity of cytochrome bd oxidase were obtained, which were supported by measurements of oxygen consumption in a respirometer. The H(+)/O ratio of the ΔcyoBACD mutant with mannitol as the substrate was 0.56 ± 0.11 and more than 50% lower than that of the reference strain (1.26 ± 0.06) and the ΔcydAB mutant (1.31 ± 0.16), indicating that cytochrome bo3 oxidase is the main component for proton extrusion via the respiratory chain. Plasmid-based overexpression of cyoBACD led to increased growth rates and growth yields, both in the wild type and the ΔcyoBACD mutant, suggesting that cytochrome bo3 might be a rate-limiting factor of the respiratory chain.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Gluconobacter oxydans/enzimologia , Oxirredutases/metabolismo , Consumo de Oxigênio , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/genética , Metabolismo Energético/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Gluconobacter oxydans/genética , Gluconobacter oxydans/crescimento & desenvolvimento , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oxirredução , Oxirredutases/genética , Oxigênio/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
20.
Appl Microbiol Biotechnol ; 97(14): 6397-412, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23519735

RESUMO

Gluconobacter oxydans, like all acetic acid bacteria, has several membrane-bound dehydrogenases, which oxidize a multitude of alcohols and polyols in a stereo- and regio-selective manner. Many membrane-bound dehydrogenases have been purified from various acetic acid bacteria, but in most cases without reporting associated sequence information. We constructed clean deletions of all membrane-bound dehydrogenases in G. oxydans 621H and investigated the resulting changes in carbon utilization and physiology of the organism during growth on fructose, mannitol, and glucose. Furthermore, we studied the substrate oxidation spectra of a set of strains where the membrane-bound dehydrogenases were consecutively deleted using a newly developed whole-cell 2,6-dichlorophenolindophenol (DCPIP) activity assay in microtiter plates. This allowed a detailed and comprehensive in vivo characterization of each membrane-bound dehydrogenase in terms of substrate specificity. The assays revealed that general rules can be established for some of the enzymes and extended the known substrate spectra of some enzymes. It was also possible to assign proteins whose purification and characterization had been reported previously, to their corresponding genes. Our data demonstrate that there are less membrane-bound dehydrogenases in G. oxydans 621H than expected and that the deletion of all of them is not lethal for the organism.


Assuntos
Proteínas de Bactérias/genética , Membrana Celular/enzimologia , Deleção de Genes , Gluconobacter oxydans/enzimologia , Oxirredutases/genética , 2,6-Dicloroindofenol/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Membrana Celular/química , Membrana Celular/genética , Gluconobacter oxydans/genética , Gluconobacter oxydans/crescimento & desenvolvimento , Oxirredutases/química , Oxirredutases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA