Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Curr Top Med Chem ; 20(29): 2651-2661, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32819245

RESUMO

BACKGROUND: Glucose-6-phosphate isomerase (G6PI) catalyses the second step in glycolysis in the reversible interconversion of an aldohexose glucose 6-phosphate, a six membered ring moiety to a ketohexose, fructose 6-phosphate five membered ring moiety. This enzyme is of utmost importance due to its multifunctional role like neuroleukin, autocrine motility factor, etc. in various species. G6PI from Pseudomonas aeruginosa is less explored for its moonlighting properties. These properties can be predicted by studying the active site conservation of residues and their interaction with the specific ligand. METHODS: Here, we study the G6PI in a self-inducible construct in bacterial expression system with its purification using Ni-NTA chromatography. The secondary structure of pure G6PI is estimated using circular dichroism to further predict the proper folding form of the protein. The bioactivity of the purified enzyme is quantified using phosphoglucose isomerase colorimetric kit with a value of 12.5 mU/mL. Differential scanning fluorimetry and isothermal titration calorimetry were employed to monitor the interaction of G6PI with its competitive inhibitor, erythrose 4-phosphate and calculated the Tm, Kd and IC50 values. Further, the homology model for the protein was prepared to study the interaction with the erythrose 4-phosphate. MD simulation of the complex was performed at 100 ns to identify the binding interactions. RESULTS: We identified hydrogen bonds and water bridges dominating the interactions in the active site holding the protein and ligand with strong affinity. CONCLUSION: G6PI was successfully crystallized and data has been collected at 6Å. We are focused on improving the crystal quality for obtaining higher resolution data.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Pseudomonas aeruginosa/enzimologia , Fosfatos Açúcares/farmacologia , Inibidores Enzimáticos/química , Glucose-6-Fosfato Isomerase/química , Glucose-6-Fosfato Isomerase/metabolismo , Ligantes , Modelos Moleculares , Conformação Proteica , Fosfatos Açúcares/química
2.
Bioorg Chem ; 102: 104048, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32682158

RESUMO

Phosphoglucose isomerase (PGI) is a cytosolic enzyme that catalyzes the reversible interconversion of d-glucose 6-phosphate and d-fructose 6-phosphate in glycolysis. Outside the cell, PGI is also known as autocrine motility factor (AMF), a cytokine secreted by a large variety of tumor cells that stimulates motility of cancer cells in vitro and metastases development in vivo. Human PGI and AMF are strictly identical proteins both in terms of sequence and 3D structure, and AMF activity is known to involve, at least in part, the enzymatic active site. Hence, with the purpose of finding new strong AMF-PGI inhibitors that could be potentially used as anticancer agents and/or as bioreceptors for carbohydrate-based electrochemical biosensors, we report in this study the synthesis and kinetic evaluation of several new human PGI inhibitors derived from the synthon 5-phospho-d-arabinono-1,4-lactone. Although not designed as high-energy intermediate analogue inhibitors of the enzyme catalyzed isomerization reaction, several of these N-substituted 5-phosphate-d-arabinonamide derivatives appears as new strong PGI inhibitors. For one of them, we report its crystal structure in complex with human PGI at 2.38 Å. Detailed analysis of its interactions at the active site reveals a new binding mode and shows that human PGI is relatively tolerant for modified inhibitors at the "head" C-1 part, offering promising perspectives for the future design of carbohydrate-based biosensors.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Fosfatos/síntese química , Fosfatos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Humanos , Fosfatos/farmacologia , Relação Estrutura-Atividade
3.
Life Sci ; 248: 117474, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32112869

RESUMO

BACKGROUND/OBJECTIVES: Nicotinamide N-methyltransferase (NNMT) is a novel regulator of energy homeostasis in adipocytes. NNMT expression in adipose tissue is increased in obesity and diabetes. Knockdown of NNMT prevents mice from developing diet-induced obesity, which is closely linked to insulin resistance. An early sign of systemic insulin resistance is reduced expression of glucose transporter 4 (GLUT4) selectively in adipose tissue. Adipose tissue-specific knockout and overexpression of GLUT4 cause reciprocal changes in NNMT expression. The aim of the current study was to elucidate the mechanism that regulates NNMT expression in adipocytes. METHODS: 3T3-L1 adipocytes were cultured in media with varying glucose concentrations or activators and inhibitors of intracellular pathways. NNMT mRNA and protein levels were measured with quantitative polymerase chain reaction and Western blotting. RESULTS: Glucose deprivation of 3T3-L1 adipocytes induced a 2-fold increase in NNMT mRNA and protein expression. This effect was mimicked by inhibition of glucose transport with phloretin, and by inhibition of glycolysis with the phosphoglucose isomerase inhibitor 2-deoxyglucose. Conversely, inhibition of the pentose phosphate pathway did not affect NNMT expression. Pharmacological activation of the cellular energy sensor AMP-activated protein kinase (AMPK) and inhibition of the mammalian target of rapamycin (mTOR) pathway caused an increase in NNMT levels that was similar to the effect of glucose deprivation. Activation of mTOR with MHY1485 prevented the effect of glucose deprivation on NNMT expression. Furthermore, upregulation of NNMT levels depended on functional autophagy and protein translation. CONCLUSION: Glucose availability regulates NNMT expression via an mTOR-dependent mechanism.


Assuntos
Adipócitos/efeitos dos fármacos , Transportador de Glucose Tipo 4/genética , Glucose/farmacologia , Nicotinamida N-Metiltransferase/genética , Serina-Treonina Quinases TOR/genética , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular , Desoxiglucose/farmacologia , Metabolismo Energético/genética , Regulação da Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 4/antagonistas & inibidores , Transportador de Glucose Tipo 4/metabolismo , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Homeostase/genética , Camundongos , Morfolinas/farmacologia , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Nicotinamida N-Metiltransferase/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Via de Pentose Fosfato/genética , Floretina/farmacologia , Biossíntese de Proteínas , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Triazinas/farmacologia
4.
Circ Res ; 126(1): 60-74, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31698999

RESUMO

RATIONALE: Metabolic and structural remodeling is a hallmark of heart failure. This remodeling involves activation of the mTOR (mammalian target of rapamycin) signaling pathway, but little is known on how intermediary metabolites are integrated as metabolic signals. OBJECTIVE: We investigated the metabolic control of cardiac glycolysis and explored the potential of glucose 6-phosphate (G6P) to regulate glycolytic flux and mTOR activation. METHODS AND RESULTS: We developed a kinetic model of cardiomyocyte carbohydrate metabolism, CardioGlyco, to study the metabolic control of myocardial glycolysis and G6P levels. Metabolic control analysis revealed that G6P concentration is dependent on phosphoglucose isomerase (PGI) activity. Next, we integrated ex vivo tracer studies with mathematical simulations to test how changes in glucose supply and glycolytic flux affect mTOR activation. Nutrient deprivation promoted a tight coupling between glucose uptake and oxidation, G6P reduction, and increased protein-protein interaction between hexokinase II and mTOR. We validated the in silico modeling in cultured adult mouse ventricular cardiomyocytes by modulating PGI activity using erythrose 4-phosphate. Inhibition of glycolytic flux at the level of PGI caused G6P accumulation, which correlated with increased mTOR activation. Using click chemistry, we labeled newly synthesized proteins and confirmed that inhibition of PGI increases protein synthesis. CONCLUSIONS: The reduction of PGI activity directly affects myocyte growth by regulating mTOR activation.


Assuntos
Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato/metabolismo , Miocárdio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Cultivadas , Química Click , Simulação por Computador , Glucose/farmacologia , Glicólise , Hexoquinase/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Oxirredução , Consumo de Oxigênio , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fosfatos Açúcares/farmacologia
5.
Biomolecules ; 9(6)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159273

RESUMO

The cupin-type phosphoglucose isomerase (PfPGI) from the hyperthermophilic archaeon Pyrococcus furiosus catalyzes the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate. We investigated PfPGI using protein-engineering bioinformatics tools to select functionally-important residues based on correlated mutation analyses. A pair of amino acids in the periphery of PfPGI was found to be the dominant co-evolving mutation. The position of these selected residues was found to be non-obvious to conventional protein engineering methods. We designed a small smart library of variants by substituting the co-evolved pair and screened their biochemical activity, which revealed their functional relevance. Four mutants were further selected from the library for purification, measurement of their specific activity, crystal structure determination, and metal cofactor coordination analysis. Though the mutant structures and metal cofactor coordination were strikingly similar, variations in their activity correlated with their fine-tuned dynamics and solvent access regulation. Alternative, small smart libraries for enzyme optimization are suggested by our approach, which is able to identify non-obvious yet beneficial mutations.


Assuntos
Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Pyrococcus furiosus/enzimologia , Temperatura , Inibidores Enzimáticos/farmacologia , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/química , Manganês/metabolismo , Simulação de Dinâmica Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Conformação Proteica , Engenharia de Proteínas , Água/metabolismo
6.
Int J Mol Sci ; 21(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905745

RESUMO

The ability of 2-deoxy-d-glucose (2-DG) to interfere with d-glucose metabolism demonstrates that nutrient and energy deprivation is an efficient tool to suppress cancer cell growth and survival. Acting as a d-glucose mimic, 2-DG inhibits glycolysis due to formation and intracellular accumulation of 2-deoxy-d-glucose-6-phosphate (2-DG6P), inhibiting the function of hexokinase and glucose-6-phosphate isomerase, and inducing cell death. In addition to glycolysis inhibition, other molecular processes are also affected by 2-DG. Attempts to improve 2-DG's drug-like properties, its role as a potential adjuvant for other chemotherapeutics, and novel 2-DG analogs as promising new anticancer agents are discussed in this review.


Assuntos
Desoxiglucose/análogos & derivados , Desoxiglucose/uso terapêutico , Glioblastoma/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Terapia Combinada , Desoxiglucose/química , Desoxiglucose/farmacologia , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Glucose/química , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/metabolismo , Glicólise/efeitos dos fármacos , Hexoquinase/metabolismo , Humanos
7.
ACS Chem Biol ; 13(10): 3011-3020, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30240188

RESUMO

Sugar alcohols (polyols) exist widely in nature. While some specific sugar alcohol phosphatases are known, there is no known phosphatase for some important sugar alcohols (e.g., sorbitol-6-phosphate). Using liquid chromatography-mass spectrometry-based metabolomics, we screened yeast strains with putative phosphatases of unknown function deleted. We show that the yeast gene YNL010W, which has close homologues in all fungi species and some plants, encodes a sugar alcohol phosphatase. We term this enzyme, which hydrolyzes sorbitol-6-phosphate, ribitol-5-phosphate, and (d)-glycerol-3-phosphate, polyol phosphatase 1 or PYP1. Polyol phosphates are structural analogs of the enediol intermediate of phosphoglucose isomerase (Pgi). We find that sorbitol-6-phosphate and ribitol-5-phosphate inhibit Pgi and that Pyp1 activity is important for yeast to maintain Pgi activity in the presence of environmental sugar alcohols. Pyp1 expression is strongly positively correlated with yeast growth rate, presumably because faster growth requires greater glycolytic and accordingly Pgi flux. Thus, yeast express the previously uncharacterized enzyme Pyp1 to prevent inhibition of glycolysis by sugar alcohol phosphates. Pyp1 may be useful for engineering sugar alcohol production.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fosfatos Açúcares/metabolismo , Deleção de Genes , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Hidrólise , Monoéster Fosfórico Hidrolases/genética , Proteínas de Saccharomyces cerevisiae/genética , Fosfatos Açúcares/química
8.
SLAS Discov ; 23(10): 1051-1059, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29995453

RESUMO

Human African trypanosomiasis, Chagas disease, and leishmaniasis are human infections caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania. Besides their severity and global impact, treatments are still challenging. Currently available drugs have important limitations, highlighting the urgent need to develop new drugs. Phosphoglucose isomerase (PGI) is considered a promising target for the development of antiparasitic drugs, as it acts on two essential metabolic pathways, glycolysis and gluconeogenesis. Herein, we describe the identification of new nonphosphorylated inhibitors of Leishmania mexicana PGI ( LmPGI), with the potential for the development of antiparasitic drugs. A fluorescence-based high-throughput screening (HTS) assay was developed by coupling the activities of recombinant LmPGI with glucose-6-phosphate dehydrogenase and diaphorase. This coupled assay was used to screen 42,720 compounds from ChemBridge and TimTec commercial libraries. After confirmatory assays, selected LmPGI inhibitors were tested against homologous Trypanosoma cruzi and humans. The PGI hits are effective against trypanosomatid PGIs, with IC50 values in the micromolar range, and also against the human homologous enzyme. A computational analysis of cavities present on PGI's crystallographic structure suggests a potential binding site for the proposed mixed-type inhibition mechanism.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Glucose-6-Fosfato Isomerase/química , Glucose-6-Fosfato Isomerase/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
9.
Int J Parasitol Drugs Drug Resist ; 8(1): 43-49, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29414105

RESUMO

Cryptosporidium parvum is a water-borne and food-borne apicomplexan pathogen. It is one of the top four diarrheal-causing pathogens in children under the age of five in developing countries, and an opportunistic pathogen in immunocompromised individuals. Unlike other apicomplexans, C. parvum lacks Kreb's cycle and cytochrome-based respiration, thus relying mainly on glycolysis to produce ATP. In this study, we characterized the primary biochemical features of the C. parvum glucose-6-phosphate isomerase (CpGPI) and determined its Michaelis constant towards fructose-6-phosphate (Km = 0.309 mM, Vmax = 31.72 nmol/µg/min). We also discovered that ebselen, an organoselenium drug, was a selective inhibitor of CpGPI by high-throughput screening of 1200 known drugs. Ebselen acted on CpGPI as an allosteric noncompetitive inhibitor (IC50 = 8.33 µM; Ki = 36.33 µM), while complete inhibition of CpGPI activity was not achieved. Ebselen could also inhibit the growth of C. parvum in vitro (EC50 = 165 µM) at concentrations nontoxic to host cells, albeit with a relatively small in vitro safety window of 4.2 (cytotoxicity TC50 on HCT-8 cells = 700 µM). Additionally, ebselen might also target other enzymes in the parasite, leading to the parasite growth reduction. Therefore, although ebselen is useful in studying the inhibition of CpGPI enzyme activity, further proof is needed to chemically and/or genetically validate CpGPI as a drug target.


Assuntos
Azóis/farmacologia , Cryptosporidium parvum/efeitos dos fármacos , Cryptosporidium parvum/enzimologia , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/metabolismo , Compostos Organosselênicos/farmacologia , Criptosporidiose/parasitologia , Cryptosporidium parvum/crescimento & desenvolvimento , Citocinas/farmacologia , Sistemas de Liberação de Medicamentos , Frutosefosfatos/metabolismo , Glucose-6-Fosfato Isomerase/efeitos dos fármacos , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Isoindóis , Cinética , Bibliotecas de Moléculas Pequenas
10.
Med Sci Monit Basic Res ; 23: 295-303, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28855496

RESUMO

BACKGROUND There have been few studies on the value of various antibody combinations in rheumatoid arthritis (RA) diagnosis, and a lack of studies with large sample sizes, especially in the Chinese population. This study retrospectively evaluated the diagnostic value of a combined assay of five auto-antibodies [anti-cyclic citrullinated peptide (anti-CCP), anti-keratin (AKA), anti-RA 33, glucose-6-phosphate isomerase (GPI), and rheumatoid factor (RF)] for RA. MATERIAL AND METHODS Data were obtained from 5,725 patients with rheumatic diseases in Southwest Hospital of Chongqing from 2011 to 2014. Detection of the five serological markers was performed for all study patients using the appropriate method for each antibody. RESULTS It was found that of the 5,725 patients, the positive rates for RF, anti-CCP, anti-RA 33, AKA, and GPI were 52.5%, 40.1%, 12.8%, 12.0%, and 50.0% respectively. In RA patients, the positive rates were 83.3%, 68.5%, 16.6%, 20.8%, and 77.9% respectively, which were all significantly higher than those detected in patients with the other diseases (p<0.01). The areas under the receiver operator characteristic (ROC) curve for RF, anti-CCP, anti-RA 33, AKA, and GPI were 0.857, 0.831, 0.528, 0.602, and 0.822 respectively, indicating that these five serological markers display favorable diagnostic value for RA. There were positive correlations between anti-CCP antibody and RF and GPI (p<0.01) and between RF and GPI (p<0.01), but no correlation between anti-RA 33 and AKA (p<0.01). The specificity of the combination of anti-CCP, AKA, and GPI was 100% for RA diagnosis. CONCLUSIONS The combined assay of serological markers significantly improved the diagnostic specificity for RA. The diagnostic value of RF for RA was the highest and the combined assay for anti-CCP, AKA, and GPI had the highest specificity for RA diagnosis.


Assuntos
Artrite Reumatoide/diagnóstico , Autoanticorpos/análise , Adolescente , Adulto , Idoso , Artrite Reumatoide/sangue , Autoanticorpos/sangue , Biomarcadores/sangue , Criança , China/epidemiologia , Feminino , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/sangue , Humanos , Queratinas/antagonistas & inibidores , Queratinas/sangue , Masculino , Pessoa de Meia-Idade , Peptídeos Cíclicos/análise , Peptídeos Cíclicos/sangue , Curva ROC , Estudos Retrospectivos , Fator Reumatoide/análise , Fator Reumatoide/sangue , Sensibilidade e Especificidade
11.
Cancer Cell ; 29(4): 548-562, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27052953

RESUMO

Although glycolysis is substantially elevated in many tumors, therapeutic targeting of glycolysis in cancer patients has not yet been successful, potentially reflecting the metabolic plasticity of tumor cells. In various cancer cells exposed to a continuous glycolytic block, we identified a recurrent reprogramming mechanism involving sustained mTORC1 signaling that underlies escape from glycolytic addiction. Active mTORC1 directs increased glucose flux via the pentose phosphate pathway back into glycolysis, thereby circumventing a glycolysis block and ensuring adequate ATP and biomass production. Combined inhibition of glycolysis and mTORC1 signaling disrupted metabolic reprogramming in tumor cells and inhibited their growth in vitro and in vivo. These findings reveal novel combinatorial therapeutic strategies to realize the potential benefit from targeting the Warburg effect.


Assuntos
Glicólise , Terapia de Alvo Molecular , Complexos Multiproteicos/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias/metabolismo , Serina-Treonina Quinases TOR/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Carcinoma/patologia , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Terapia Combinada , Citocinas/antagonistas & inibidores , Citocinas/genética , Desoxiglucose/farmacologia , Desoxiglucose/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Metabolismo Energético/efeitos dos fármacos , Everolimo/farmacologia , Everolimo/uso terapêutico , Feminino , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/genética , Glutaminase/antagonistas & inibidores , Glutaminase/fisiologia , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Células Hep G2 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Metabolômica , Camundongos , Camundongos Nus , Complexos Multiproteicos/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias Ovarianas/patologia , Via de Pentose Fosfato/efeitos dos fármacos , Via de Pentose Fosfato/fisiologia , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 70-kDa/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Enzyme Inhib Med Chem ; 31(6): 1712-7, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26986942

RESUMO

A bioautographic assay based on thin layer chromatography was developed for phosphoenolpyruvate (PEP) detecting as a known but rarely studied inhibitor of phosphoglucose isomerase (PGI). The protocol with NADP(+)/NBT/PMS (ß-nicotinamide adenine dinucleotide phosphate/nitrotetrazolium blue chloride/phenazine methosulfate) staining was capable of detecting Mycobacterium tuberculosis H37Ra PGI inhibition using PEP. According to this method, visibly brighter spots (zones) against purple background are observed in the area of inhibition of the above-mentioned enzyme activity. The detection limit for PEP as an inhibitor of Mycobacterium tuberculosis H37Ra PGI was 226 µg per spot/zone. Noteworthy is that we are the first authors to have successfully used a bioautographic assay to detect Mycobacterium tuberculosis H37Ra PGI inhibition by PEP.


Assuntos
Cromatografia em Camada Fina/métodos , Inibidores Enzimáticos/farmacologia , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Fosfoenolpiruvato/farmacologia
13.
J Cell Biochem ; 117(4): 970-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26378628

RESUMO

CIZ/NMP4 (Cas interacting zinc finger protein, Nmp4, Zfp384) is a transcription factor that is known to regulate matrix related-proteins. To explore the possible pathophysiological role of CIZ/NMP4 in arthritis, we examined CIZ/NMP4 expression in articular cartilage in arthritis model. CIZ/NMP4 was expressed in the articular chondrocytes of mice at low levels while its expression was enhanced when arthritis was induced. Arthritis induction increased clinical score in wild type mice. In contrast, CIZ/NMP4 deficiency suppressed such rise in the levels of arthritis score and swelling of soft tissue. CIZ/NMP4 deficiency also reduced invasion of inflammatory cells in joint tissue. Quantitative PCR analyses of mRNA from joints revealed that arthritis-induced increase in expressions of IL-1ß was suppressed by CIZ/NMP4 deficiency. CIZ/NMP4 bound to IL-1ß promoter and activated its transcription. The increase in CIZ/NMP4 in arthritis was also associated with enhancement in bone resorption and cartilage matrix degradation. In fact, RANKL, a signaling molecule prerequisite for osteoclastogenesis and, MMP-3, a clinical marker for arthritis were increased in joints upon arthritis induction. In contrast, CIZ/NMP4 deficiency suppressed the arthritis-induced increase in bone resorption, expression of RANKL and MMP-3 mRNA. Thus, CIZ/NMP4 plays a role in the development of arthritis at least in part through regulation of key molecules related to the arthritis.


Assuntos
Artrite Experimental/genética , Cartilagem Articular/imunologia , Metaloproteinase 3 da Matriz/imunologia , Proteínas Associadas à Matriz Nuclear/imunologia , Ligante RANK/imunologia , Fatores de Transcrição/imunologia , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Artrite Experimental/patologia , Autoanticorpos/biossíntese , Reabsorção Óssea , Cartilagem Articular/patologia , Condrócitos/imunologia , Condrócitos/patologia , Feminino , Regulação da Expressão Gênica , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/imunologia , Soros Imunes/administração & dosagem , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Articulações/imunologia , Articulações/patologia , Masculino , Metaloproteinase 3 da Matriz/genética , Camundongos , Camundongos Knockout , Proteínas Associadas à Matriz Nuclear/deficiência , Proteínas Associadas à Matriz Nuclear/genética , Regiões Promotoras Genéticas , Ligante RANK/genética , Índice de Gravidade de Doença , Transdução de Sinais , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcrição Gênica
14.
Cell Metab ; 20(1): 145-57, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24882066

RESUMO

Neurodegenerative diseases represent an increasing burden in our aging society, yet the underlying metabolic factors influencing onset and progression remain poorly defined. The relationship between impaired IGF-1/insulin-like signaling (IIS) and lifespan extension represents an opportunity to investigate the interface of metabolism with age-associated neurodegeneration. Using data sets of established DAF-2/IIS-signaling components in Caenorhabditis elegans, we conducted systematic RNAi screens in worms to select for daf-2-associated genetic modifiers of α-synuclein misfolding and dopaminergic neurodegeneration, two clinical hallmarks of Parkinson's disease. An outcome of this strategy was the identification of GPI-1/GPI, an enzyme in glucose metabolism, as a daf-2-regulated modifier that acts independent of the downstream cytoprotective transcription factor DAF-16/FOXO to modulate neuroprotection. Subsequent mechanistic analyses using Drosophila and mouse primary neuron cultures further validated the conserved nature of GPI neuroprotection from α-synuclein proteotoxicity. Collectively, these results support glucose metabolism as a conserved functional node at the intersection of proteostasis and neurodegeneration.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Glucose-6-Fosfato Isomerase/metabolismo , Envelhecimento , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/genética , Glicólise , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
15.
Int J Antimicrob Agents ; 43(4): 335-42, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646943

RESUMO

The current chemotherapeutic treatment of alveolar echinococcosis (AE) in humans is based on albendazole and/or mebendazole. However, the costs of treatment, life-long consumption of drugs, parasitostatic rather than parasiticidal activity of chemotherapy, and high recurrence rates after treatment interruption warrant more efficient treatment options. Experimental treatment of mice infected with Echinococcus multilocularis metacestodes with fenbendazole revealed similar efficacy to albendazole. Inspection of parasite tissue from infected and benzimidazole-treated mice by transmission electron microscopy (TEM) demonstrated drug-induced alterations within the germinal layer of the parasites, and most notably an almost complete absence of microtriches. On the other hand, upon in vitro exposure of metacestodes to benzimidazoles, no phosphoglucose isomerase activity could be detected in medium supernatants during treatment with any of these drugs, indicating that in vitro treatment did not severely affect the viability of metacestode tissue. Corresponding TEM analysis also revealed a dramatic shortening/retraction of microtriches as a hallmark of benzimidazole action, and as a consequence separation of the acellular laminated layer from the cellular germinal layer. Since TEM did not reveal any microtubule-based structures within Echinococcus microtriches, this effect cannot be explained by the previously described mechanism of action of benzimidazoles targeting ß-tubulin, thus benzimidazoles must interact with additional targets that have not been yet identified. In addition, these results indicate the potential usefulness of fenbendazole for the chemotherapy of AE.


Assuntos
Albendazol/farmacologia , Anti-Helmínticos/farmacologia , Antinematódeos/farmacologia , Echinococcus multilocularis/efeitos dos fármacos , Fenbendazol/farmacologia , Animais , Modelos Animais de Doenças , Equinococose Pulmonar/tratamento farmacológico , Feminino , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Testes de Sensibilidade Parasitária , Recidiva , Tubulina (Proteína)/química , Moduladores de Tubulina/farmacologia
16.
Biochim Biophys Acta ; 1843(6): 1043-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24440856

RESUMO

Epithelial-mesenchymal transition (EMT) and cellular invasiveness are two pivotal processes for the development of metastatic tumor phenotypes. The metastatic profile of non-metastatic MCF-7 cells growing as multi-cellular tumor microspheroids (MCTSs) was analyzed by determining the contents of the EMT, invasive and migratory proteins, as well as their migration and invasiveness potential and capacity to secrete active cytokines such as the glucose phosphate isomerase/AMF (GPI/AMF). As for the control, the same analysis was also performed in MCF-7 and MDA-MB-231 (highly metastatic, MDA) monolayer cells, and in stage IIIB and IV human metastatic breast biopsies. The proliferative cell layers (PRL) of mature MCF-7 MCTSs, MDA monolayer cells and metastatic biopsies exhibited increased cellular contents (2-15 times) of EMT (ß-catenin, SNAIL), migratory (vimentin, cytokeratin, and fibronectin) and invasive (MMP-1, VEGF) proteins versus MCF-7 monolayer cells, quiescent cell layers of mature MCF-7 MCTS and non-metastatic breast biopsies. The increase in metastatic proteins correlated with substantially elevated cellular abilities for migration (18-times) and invasiveness (13-times) and with the higher level (6-times) of the cytokine GPI/AMF in the extracellular medium of PRL, as compared to MCF-7 monolayer cells. Interestingly, the addition of the GPI/AMF inhibitors erythrose-4-phosphate or 6-phosphogluconate at micromolar doses significantly decreased its extracellular activity (>80%), with a concomitant diminution in the metastatic protein content and migratory tumor cell capacity, and with no inhibitory effect on tumor lactate production or toxicity on 3T3 mouse fibroblasts. The present findings provide new insights into the discovery of metabolic inhibitors to be used as complementary therapy against metastatic and aggressive tumors.


Assuntos
Neoplasias da Mama/prevenção & controle , Carcinoma Ductal de Mama/prevenção & controle , Movimento Celular/efeitos dos fármacos , Gluconatos/farmacologia , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Esferoides Celulares/efeitos dos fármacos , Fosfatos Açúcares/farmacologia , Células 3T3 , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/secundário , Proliferação de Células/efeitos dos fármacos , Estudos Transversais , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Glucose-6-Fosfato Isomerase/metabolismo , Humanos , Ácido Láctico/metabolismo , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Fenótipo , Esferoides Celulares/patologia
17.
Biomed Res ; 34(5): 221-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24190234

RESUMO

2-deoxy-D-glucose (2DG) has been clinically evaluated for its potential use as an anticancer drug. Although 2DG is generally thought to inhibit the glycolytic pathway through accumulation of 2-deoxy-D-glucose-6-phosphate (2DG6P), it may also interfere with various other biological processes. Here, to further understand the role of 2DG as an inhibitor of tumor progression, we assessed the metabolism of 2DG in a human endometrial cancer cell line using capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS). A total of 113 target metabolite peaks were identified and 90 metabolites of them were quantified. Furthermore, we present a new methodology which uses CE-TOFMS metabolome profiling following introduction of an artificial metabolite to evaluate tumor-specific metabolite traces. Aside from 2DG6P, we detected the presence of unique 2DG-derived deoxy metabolites in 2DG-treated cells. These metabolites may be responsible for the alteration of global metabolism in cells and act as various biological effectors.


Assuntos
Desoxiglucose/farmacologia , Neoplasias do Endométrio/metabolismo , Metaboloma , Linhagem Celular Tumoral , Feminino , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica/métodos
18.
Mol Carcinog ; 52(10): 800-12, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22549898

RESUMO

Our previous studies demonstrated that autocrine motility factor/phosphoglucose isomerase (AMF/PGI) possesses tumorigenic activities through the modulation of intracellular signaling. We then investigated the effects of ursolic acid (UA), oleanolic acid (OA), tangeretin, and nobiletin against AMF/PGI-mediated oncogenesis in cultured stable Huh7 and Hep3B cells expressing wild-type or mutated AMF/PGI and in a mouse model in this study. The working concentrations of the tested compounds were lower than their IC10 , which was determined by Brdu incorporation and colony formation assay. Only UA efficiently suppressed the AMF/PGI-induced Huh7 cell migration and MMP-3 secretion. Additionally, UA inhibited the AMF/PGI-mediated protection against TGF-ß-induced apoptosis in Hep3B cells, whereas OA, tangeretin, and nobiletin had no effect. In Huh7 cells and tumor tissues, UA disrupted the Src/RhoA/PI 3-kinase signaling and complex formation induced by AMF/PGI. In the Hep3B system, UA dramatically suppressed AMF/PGI-induced anti-apoptotic signaling transmission, including Akt, p85, Bad, and Stat3 phosphorylation. AMF/PGI enhances tumor growth, angiogenesis, and pulmonary metastasis in mice, which is correlated with its enzymatic activity, and critically, UA intraperitoneal injection reduces the tumorigenesis in vivo, enhances apoptosis in tumor tissues and also prolongs mouse survival. Combination of sub-optimal dose of UA and cisplatin, a synergistic tumor cell-killing effects was found. Thus, UA modulates intracellular signaling and might serve as a functional natural compound for preventing or alleviating hepatocellular carcinoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Modelos Animais de Doenças , Glucose-6-Fosfato Isomerase/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cisplatino/administração & dosagem , Sinergismo Farmacológico , Ensaio de Imunoadsorção Enzimática , Flavonas/farmacologia , Imunofluorescência , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Humanos , Imunoprecipitação , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Luciferases/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Ácido Oleanólico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Triterpenos/administração & dosagem , Células Tumorais Cultivadas , Proteína rhoA de Ligação ao GTP/metabolismo , Ácido Ursólico
19.
Oncol Rep ; 28(6): 1953-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23027359

RESUMO

Autocrine motility factor (AMF) plays an important role in the development of metastasis by regulating tumor cell motility. The expression of AMF is associated with metastasis in malignant musculoskeletal tumors including osteosarcoma. Recent studies indicated that hyperthermia contributes to the improvement of the prognosis of patients with soft tissue sarcomas; however, few reports have evaluated the impact of hyperthermia on tumor cell motility, which is an important factor of metastasis. The purpose of this study was to evaluate the effect of hyperthermia with or without heat shock protein (HSP) inhibitors on the motility and AMF expression in an osteosarcoma cell line. Hyperthermia was carried out at 41˚C for 24 h. According to microarray results, HSP90, HSP70 and HSP27 expression was upregulated in osteosarcoma cells under hyperthermia. The intracellular, secreted AMF, mRNA of AMF and cell motility were evaluated by western blotting, ELISA, RT-PCR, wound healing and phagokinetic track assays, respectively. The protein secretion and mRNA levels of AMF and tumor cell motility were significantly decreased by hyperthermia. Of note, the downregulated AMF expression and motility were recovered by the addition of an HSP27 inhibitor. By contrast, the HSP90 and HSP70/72/105 inhibitors had no effect on AMF expression and motility downregulated by hyperthermia. In conclusion, hyperthermia reduced AMF expression and tumor cell motility via HSP27 and may therefore be applied as osteosarcoma treatment.


Assuntos
Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Hipertermia Induzida , Osteossarcoma/metabolismo , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP27/antagonistas & inibidores , Proteínas de Choque Térmico HSP27/biossíntese , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/biossíntese , Calefação , Humanos , Metástase Neoplásica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
20.
Biol Reprod ; 87(3): 57, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22699485

RESUMO

Glucose is an important monosaccharide required to generate energy in all cells. After entry into cells, glucose is phosphorylated to glucose-6-phosphate and then transformed into glycogen or metabolized to produce energy. Glucose phosphate isomerase (GPI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. Without GPI activity or fructose-6-phosphate, many steps of glucose metabolism would not occur. The requirement for GPI activity for normal functioning of primordial germ cells (PGCs) needs to be identified. In this study, we first examined the expression of chicken GPI during early embryonic development and germ cell development. GPI expression was strongly and ubiquitously detected in chicken early embryos and embryonic tissues at Embryonic Day 6.5 (E6.5). Continuous GPI expression was detected in PGCs and germ cells of both sexes during gonadal development. Specifically, GPI expression was stronger in male germ cells than in female germ cells during embryonic development and the majority of post-hatching development. Then, we used siRNA-1499 to knock down GPI expression in PGCs. siRNA-1499 caused an 85% knockdown in GPI, and PGC proliferation was also affected 48 h after transfection. We further examined the knockdown effects on 28 genes related to the glycolysis/gluconeogenesis pathway and the endogenous glucose level in chicken PGCs. Among genes related to glycolysis/gluconeogenesis, 20 genes showed approximately 3-fold lower expression, 4 showed approximately 10-fold lower, and 2 showed approximately 100-fold lower expression in knockdown PGCs. The endogenous glucose level was significantly reduced in knockdown PGCs. We conclude that the GPI gene is crucial for maintaining glycolysis and supplying energy to developing PGCs.


Assuntos
Galinhas , Células Germinativas/metabolismo , Glucose-6-Fosfato Isomerase/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Embrião de Galinha , Galinhas/genética , Galinhas/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células Germinativas/efeitos dos fármacos , Células Germinativas/enzimologia , Glucose-6-Fosfato Isomerase/análise , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Masculino , Modelos Biológicos , Filogenia , RNA Interferente Pequeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA