Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 510
Filtrar
1.
Int J Biol Macromol ; 268(Pt 2): 131725, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677697

RESUMO

The distinctive flavor and numerous health benefits of tea are attributed to the presence of theanine, a special amino acid found in tea plants. Nitrogen metabolite is greatly impacted by drought; however, the molecular mechanism underlying the synthesis of theanine in drought-stricken tea plants is still not clear. Through the drought transcriptome data of tea plants, we have identified a gene CsMOF1 that appears to play a role in theanine biosynthesis under drought stress, presenting a significantly negative correlation with both theanine content and the expression of CsGS1. Further found that CsMOF1 is a transcription factor containing a MYB binding domain, localized in the nucleus. Upon silencing CsMOF1, there was a prominent increase in the level of the theanine and glutamine, as well as the expression of CsGS1, while glutamic acid content decreased significantly. Conversely, overexpression of CsMOF1 yielded opposite effects. Dual luciferase reporter assay and electromobility shift assays demonstrated that CsMOF1 binds to the promoter of CsGS1, thereby inhibiting its activity. These results indicate that CsMOF1 plays a crucial role in theanine biosynthesis in tea plants under drought stress, acting as a transcriptional repressor related to theanine biosynthesis. This study provides new insights into the tissue-specific regulation of theanine biosynthesis and aids with the cultivation of new varieties of tea plants.


Assuntos
Camellia sinensis , Secas , Regulação da Expressão Gênica de Plantas , Glutamatos , Proteínas de Plantas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Glutamatos/metabolismo , Glutamatos/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
ACS Synth Biol ; 10(3): 620-631, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33719397

RESUMO

l-Theanine, as an active component of the leaves of the tea plant, possesses many health benefits and broad applications. Chemical synthesis of l-theanine is possible; however, this method generates chiral compounds and needs further isolation of the pure l-isoform. Heterologous biosynthesis is an alternative strategy, but one main limitation is the toxicity of the substrate ethylamine on microbial host cells. In this study, we introduced a cell-free protein synthesis (CFPS) system for l-theanine production. The CFPS expressed l-theanine synthetase 2 from Camellia sinensis (CsTS2) could produce l-theanine at a concentration of 11.31 µM after 32 h of the synthesis reaction. In addition, three isozymes from microorganisms were expressed in CFPS for l-theanine biosynthesis. The γ-glutamylcysteine synthetase from Escherichia coli could produce l-theanine at the highest concentration of 302.96 µM after 24 h of reaction. Furthermore, CFPS was used to validate a hypothetical two-step l-theanine biosynthetic pathway consisting of the l-alanine decarboxylase from C. sinensis (CsAD) and multiple l-theanine synthases. Among them, the combination of CsAD and the l-glutamine synthetase from Pseudomonas taetrolens (PtGS) could synthesize l-theanine at the highest concentration of 13.42 µM. Then, we constructed an engineered E. coli strain overexpressed CsAD and PtGS to further confirm the l-theanine biosynthesis ability in living cells. This engineered E. coli strain could convert l-alanine and l-glutamate in the medium to l-theanine at a concentration of 3.82 mM after 72 h of fermentation. Taken together, these results demonstrated that the CFPS system can be used to produce the l-theanine through the two-step l-theanine biosynthesis pathway, indicating the potential application of CFPS for the biosynthesis of other active compounds.


Assuntos
Sistema Livre de Células , Glutamatos/biossíntese , Amida Sintases/classificação , Amida Sintases/genética , Proteínas de Bactérias/genética , Camellia sinensis/enzimologia , Camellia sinensis/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutamato-Amônia Ligase/genética , Glutamato-Cisteína Ligase/genética , Isoenzimas/classificação , Isoenzimas/economia , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Pseudomonas/enzimologia , Pseudomonas/genética
3.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741612

RESUMO

l-Theanine is a nonproteinogenic amino acid present almost exclusively in tea plants and is beneficial for human health. For industrial production, l-theanine is enzymatically or chemically synthesized from glutamine/glutamate (or a glutamine/glutamate derivative) and ethylamine. Ethylamine is extremely flammable and toxic, which complicates and increases the cost of operational procedures. To solve these problems, we developed an artificial biosynthetic pathway to produce l-theanine in the absence of supplemental ethylamine. For this purpose, we identified and selected a novel transaminase (NCBI:protein accession number AAN70747) from Pseudomonas putida KT2440, which catalyzes the transamination of acetaldehyde to produce ethylamine, as well as γ-glutamylmethylamide synthetase (NCBI:protein accession number AAY37316) from Pseudomonas syringae pv. syringae B728a, which catalyzes the condensation of l-glutamate and ethylamine to produce l-theanine. Expressing these genes in Escherichia coli W3110S3GK and enhancing the production capacity of acetaldehyde and l-alanine achieved successful production of l-theanine without ethylamine supplementation. Furthermore, the deletion of ggt, which encodes γ-glutamyltranspeptidase (EC 2.3.2.2), achieved large-scale production of l-theanine by attenuating its decomposition. We show that an alanine decarboxylase-utilizing pathway represents a promising route for the fermentative production of l-theanine. Our study reports efficient methods to produce l-theanine in the absence of supplemental ethylamine.IMPORTANCE l-Theanine is widely used in food additives and dietary supplements. Industrial production of l-theanine uses the toxic and highly flammable precursor ethylamine, raising production costs. In this study, we used Escherichia coli to engineer two biosynthetic pathways that produce l-theanine from glucose and ammonia in the absence of supplemental ethylamine. This study establishes a foundation for safely and economically producing l-theanine.


Assuntos
Escherichia coli/metabolismo , Etilaminas/metabolismo , Glutamatos/biossíntese , Vias Biossintéticas , Fermentação
4.
J Agric Food Chem ; 69(4): 1187-1196, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33475342

RESUMO

l-Theanine is the most popular nonprotein amino acid contained in tea leaves. It is one of the umami components of green tea, contributing to the unique flavor of tea. Because of its various health functions, l-theanine has been commercially developed as a valuable ingredient easily used for various applications in food and pharmaceutical industries. Nowadays, l-theanine is mass-produced by plant extraction, chemical synthesis, or enzymatic transformation in factories. This review embodies the available up to date information on the l-theanine synthesis metabolism in the tea plant as well as approaches to produce it, placing emphasis on the biotransformation of l-theanine. It also gives insight into the challenges of l-theanine production on a large scale, as well as directions for future research. This review comprehensively summarizes information on l-theanine to provide an approach for an in-depth study of l-theanine production.


Assuntos
Camellia sinensis/metabolismo , Glutamatos/análise , Glutamatos/biossíntese , Camellia sinensis/química , Manipulação de Alimentos , Humanos , Folhas de Planta/química , Paladar
5.
PLoS One ; 15(9): e0238175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32911493

RESUMO

Theanine (thea) is a unique non-protein amino acid in tea plant (Camellia sinensis) and one of the most important small molecular compounds for tea quality and health effects. The molecular mechanism that maintains thea biosynthesis is not clear but may be reflected in complicated biological networks as other secondary metabolites in plants. We performed an integrative transcriptomic analysis of tea seedlings bud and leave over the time-course of ethylamine (EA) treatment that activated thea pathway. We identified 54 consistent differentially expressed genes (cDEGs, 25 upregulated and 29 downregulated) during thea activation. Gene Ontology (GO) functional enrichment analysis of upregulated genes and downregulated genes showed that they may function as a cascade of biological events during their cooperative contribution to thea biosynthesis. Among the total cDEGs, a diversity of functional genes (e.g., enzymes, transcription factors, transport and binding proteins) were identified, indicating a hierarchy of gene control network underlying thea biosynthesis. A gene network associated with thea biosynthesis was modeled and three interconnected gene functional modules were identified. Among the gene modules, several topologically important genes (e.g., CsBCS-1, CsRP, CsABC2) were experimentally validated using a combined thea content and gene expression analysis. Collectively, we presented here for the first time a comprehensive landscape of the biosynthetic mechanism of thea controlled by a underling gene network, which might provide a theoretical basis for the identification of key genes that contribute to thea biosynthesis.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/genética , Glutamatos/biossíntese , Ontologia Genética , Redes Reguladoras de Genes , Fatores de Tempo
6.
J Plant Physiol ; 253: 153273, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32927134

RESUMO

Global warming has multifarious effects on crop growth and productivity. Nonetheless, the effects of moderate-high temperatures and melatonin on tea yield and quality remain unclear. In this study, we found that melatonin, a universal growth stimulatory molecule, not only promotes photosynthesis and biomass accumulation in tea plants (Camellia sinensis L.) but also improves tea quality under sub high temperature (SHT). SHT increased the dry biomass and photosynthesis by 40.8% and 28.1%, respectively, and exogenous melatonin caused a further improvement. Moreover, SHT increased the total polyphenol concentrations and decreased the free amino acid concentrations, leading to a significant increase (68.2%) in polyphenol to free amino acid ratio. However, melatonin decreased the polyphenol to free amino acid ratio by delicately improving the concentrations of polyphenols and amino acids. Consistent with the total polyphenol, melatonin increased the concentrations of (-)-catechin, (-)-gallocatechin (GC), and (-)-epigallocatechin-3-gallate (EGCG) in tea leaves. The qRT-PCR analysis revealed that melatonin increased the transcript levels of catechins biosynthesis genes, such as CsCHS, CsCH1, CsF3H, CsDFR, CsANS, CsLAR, and CsANR under SHT. Meanwhile, the theanine concentration was decreased by SHT, which was attributed to the attenuated expression of CsGS, CsGOGAT, CsGDH, and CsTS1. Nonetheless, melatonin significantly increased those transcripts and the content of theanine under SHT. Melatonin also increased the caffeine content by inducing the expression of CsTIDH, CssAMS, and CsTCS1. These results suggest that melatonin could positively alter tea growth and quality by modulating the photosynthesis and biosynthesis of polyphenols, amino acids, and caffeine in tea leaves under SHT.


Assuntos
Camellia sinensis/efeitos dos fármacos , Catequina/análogos & derivados , Glutamatos/biossíntese , Melatonina/farmacologia , Fotossíntese/efeitos dos fármacos , Cafeína/metabolismo , Camellia sinensis/genética , Camellia sinensis/fisiologia , Catequina/biossíntese , Clima , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Chá/efeitos dos fármacos , Chá/normas , Temperatura
7.
Enzyme Microb Technol ; 140: 109644, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32912696

RESUMO

L-theanine, a unique amino acid in green tea with health benefits, can be enzymatically synthesized by γ-glutamyltranspeptidase (γ-GT; EC 2.3.2.2). Here, a salt-tolerant γ-glutamyltranspeptidase from a marine bacterium Bacillus amyloliquefaciens was expressed in Escherichia. coli BL21 (DE3) and was shown to be optimally active at 55 °C, pH 8.5 and alkali stable. A mutant, with higher transpeptidation activity, was obtained following two rounds of directed evolution using error-prone PCR and site-saturation mutagenesis. The mutation increased the ratio of transpeptidation to hydrolysis from 1.6 to 35.6. Additionally, Kinetic analysis exhibited 17.5% decrease of Km, 13.0-fold increase of Kcat, and 16.3-fold increase of Kcat/Km in mutant V319A/S437 G versus the wild-type. The 3-D modelling analysis revealed a tighter binding pocket in mutant V319A/S437 G. The frequency of hydrogen bond between donor substrate and two residues in the catalytic pocket (Gly437 and Thr375) was enhanced, which stabilized the ligand binding and thus improved the catalytic efficiency. The optimal conditions for the biocatalytic synthesis were determined as pH 10.0, 20 µg mL-1BaGT, 200 mM L-glutamine, 2 M ethylamine, and a reaction time of 5 h. The V319A/S437 G mutant was shown to increase the percentage yield of L-theanine from 58% to 83%. These results indicate the great potential of V319A/S437 G in L-theanine production after further study.


Assuntos
Bacillus amyloliquefaciens/enzimologia , Glutamatos/biossíntese , gama-Glutamiltransferase/metabolismo , Bacillus amyloliquefaciens/genética , Biocatálise , Evolução Molecular Direcionada , Escherichia coli/genética , Escherichia coli/metabolismo , Etilaminas/metabolismo , Glutamina/metabolismo , Cinética , Modelos Moleculares , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , gama-Glutamiltransferase/química , gama-Glutamiltransferase/genética
8.
J Ind Microbiol Biotechnol ; 47(8): 573-583, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32885332

RESUMO

γ-Glutamyl compounds have unveiled their importance as active substances or precursors of pharmaceuticals. In this research, an approach for enzymatic synthesis of γ-glutamyl compounds was developed using γ-glutamylmethylamide synthetase (GMAS) from Methylovorus mays and polyphosphate kinase (PPK) from Corynebacterium glutamicum. GMAS and PPK were co-recombined in pETDuet-1 plasmid and co-expressed in E. coli BL21 (DE3), and the enzymatic properties of GMAS and PPK were investigated, respectively. Under the catalysis of the co-expression system, L-theanine was synthesized with 89.8% conversion when the substrate molar ratio of sodium glutamate and ethylamine (1:1.4) and only 2 mM ATP were used. A total of 14 γ-glutamyl compounds were synthesized by this one-pot method and purified by cation exchange resin and isoelectric point crystallization with a yield range from 22.3 to 72.7%. This study provided an efficient approach for the synthesis of γ-glutamyl compounds by GMAS and PPK co-expression system.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Corynebacterium glutamicum/enzimologia , Escherichia coli/genética , Glutamatos/biossíntese , Methylophilaceae/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Carbono-Nitrogênio Ligases/genética , Escherichia coli/enzimologia , Fermentação , Microrganismos Geneticamente Modificados , Ressonância Magnética Nuclear Biomolecular , Fosfotransferases (Aceptor do Grupo Fosfato)/genética
9.
Plant Sci ; 298: 110546, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32771159

RESUMO

l-Theanine, a non-proteinaceous amino acid abundantly present in tea (Camellia sinensis), contributes to the umami flavor of tea and has beneficial effects on human health. While key l-theanine biosynthetic genes have been well documented, their transcriptional regulation remains poorly understood. In this study, we determined the l-theanine contents in tea leaves of two cultivars at three developmental stages and investigated the expression patterns of the l-theanine biosynthetic genes CsGS1 and CsGS2. Additionally, we identified an R2R3-MYB transcription factor, CsMYB73, belonging to subgroup 22 of the R2R3-MYB family. CsMYB73 expression negatively correlated with l-theanine accumulation during leaf maturation. We found that CsMYB73, as a nuclear protein, binds to the promoter regions of CsGS1 and CsGS2 via MYB recognition sequences and represses the transcription of CsGS1 and CsGS2 in tobacco leaves. Collectively, our results demonstrate that CsMYB73 is a transcriptional repressor involved in l-theanine biosynthesis in tea plants. Our findings might contribute to future tea plant breeding strategies.


Assuntos
Amida Sintases/genética , Camellia sinensis/genética , Glutamatos/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Amida Sintases/metabolismo , Sequência de Aminoácidos , Camellia sinensis/enzimologia , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
10.
Int J Biol Macromol ; 164: 4306-4317, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32861783

RESUMO

The MYB proteins belong to a large family of transcription factors in plant genomes and play significant roles in primary and secondary metabolism. Although several CsMYB genes have been identified in Camellia sinensis, few CsMYBs involved in l-theanine biosynthesis have been analyzed. In this study, we screened and identified 20 CsMYBs related to l-theanine biosynthesis. Transcriptomic analysis revealed that the expression profiles of the CsMYBs were positively or negatively related to dynamic changes in the l-theanine content. Validation of selected l-theanine biosynthetic and CsMYB genes was conducted by qRT-PCR. The results illustrated that most of the structural and CsMYB genes were downregulated with a decrease in the l-theanine levels. Protein-protein interaction networks of CsMYB5, CsMYB12 and CsMYB94 proteins demonstrated that they might form complexes with bHLH and WD 40 proteins. Multiple DNA-binding sites of the R2R3-MYB protein were observed in promoter regions of structural genes, indicating CsMYB family proteins might be involved in l-theanine metabolism via the attachment of AC elements. Moreover, CsMYB73 demonstrated binding specificity to the promoter region of CsGDH2 (CsGDH2-pro). These findings provide fundamental understanding of specific members of the CsMYBs related to the l-theanine biosynthesis pathway.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamatos/biossíntese , Fatores de Transcrição/genética , Vias Biossintéticas , Perfilação da Expressão Gênica , Filogenia , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Transcriptoma
11.
BMC Plant Biol ; 20(1): 294, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600265

RESUMO

BACKGROUND: Catechins, caffeine, and theanine as three important metabolites in the tea leaves play essential roles in the formation of specific taste and shows potential health benefits to humans. However, the knowledge on the dynamic changes of these metabolites content over seasons, as well as the candidate regulatory factors, remains largely undetermined. RESULTS: An integrated transcriptomic and metabolomic approach was used to analyze the dynamic changes of three mainly metabolites including catechins, caffeine, and theanine, and to explore the potential influencing factors associated with these dynamic changes over the course of seasons. We found that the catechins abundance was higher in Summer than that in Spring and Autumn, and the theanine abundance was significantly higher in Spring than that in Summer and Autumn, whereas caffeine exhibited no significant changes over three seasons. Transcriptomics analysis suggested that genes in photosynthesis pathway were significantly down-regulated which might in linkage to the formation of different phenotypes and metabolites content in the tea leaves of varied seasons. Fifty-six copies of nine genes in catechins biosynthesis, 30 copies of 10 genes in caffeine biosynthesis, and 12 copies of six genes in theanine biosynthesis were detected. The correlative analysis further presented that eight genes can be regulated by transcription factors, and highly correlated with the changes of metabolites abundance in tea-leaves. CONCLUSION: Sunshine intensity as a key factor can affect photosynthesis of tea plants, further affect the expression of major Transcription factors (TFs) and structural genes in, and finally resulted in the various amounts of catechins, caffeine and theaine in tea-leaves over three seasons. These findings provide new insights into abundance and influencing factors of metabolites of tea in different seasons, and further our understanding in the formation of flavor, nutrition and medicinal function.


Assuntos
Cafeína/biossíntese , Camellia sinensis/metabolismo , Catequina/biossíntese , Glutamatos/biossíntese , Expressão Gênica , Metabolômica , Fenótipo , Folhas de Planta/metabolismo , Estações do Ano , Fatores de Transcrição/metabolismo , Transcriptoma
12.
BMC Genomics ; 21(1): 461, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620074

RESUMO

BACKGROUND: Tea plant (Camellia sinensis) is one of the world's most important beverage crops due to its numerous secondary metabolites conferring tea quality and health effects. However, only a small fraction of tea genes (especially for those metabolite-related genes) have been functionally characterized to date. A cohesive bioinformatics platform is thus urgently needed to aid in the functional determination of the remaining genes. DESCRIPTION: TeaCoN, a database of gene co-expression network for tea plant, was established to provide genome-wide associations in gene co-expression to survey gene modules (i.e., co-expressed gene sets) for a function of interest. TeaCoN featured a comprehensive collection of 261 high-quality RNA-Seq experiments that covered a wide range of tea tissues as well as various treatments for tea plant. In the current version of TeaCoN, 31,968 (94% coverage of the genome) tea gene models were documented. Users can retrieve detailed co-expression information for gene(s) of interest in four aspects: 1) co-expressed genes with the corresponding Pearson correlation coefficients (PCC-values) and statistical P-values, 2) gene information (gene ID, description, symbol, alias, chromosomal location, GO and KEGG annotation), 3) expression profile heatmap of co-expressed genes across seven main tea tissues (e.g., leaf, bud, stem, root), and 4) network visualization of co-expressed genes. We also implemented a gene co-expression analysis, BLAST search function, GO and KEGG enrichment analysis, and genome browser to facilitate use of the database. CONCLUSION: The TeaCoN project can serve as a beneficial platform for candidate gene screening and functional exploration of important agronomical traits in tea plant. TeaCoN is freely available at http://teacon.wchoda.com .


Assuntos
Camellia sinensis/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Camellia sinensis/metabolismo , Perfilação da Expressão Gênica , Glutamatos/biossíntese , RNA-Seq
13.
Crit Rev Biotechnol ; 40(5): 667-688, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32321331

RESUMO

The diversity and complexity of secondary metabolites in tea plants contribute substantially to the popularity of tea, by determining tea flavors and their numerous health benefits. The most significant characteristics of tea plants are that they concentrate the complex plant secondary metabolites into one leaf: flavonoids, alkaloids, theanine, volatiles, and saponins. Many fundamental questions regarding tea plant secondary metabolism remain unanswered. This includes how tea plants accumulate high levels of monomeric galloylated catechins, unlike the polymerized flavan-3-ols in most other plants, as well as how they are evolved to selectively synthesize theanine and caffeine, and how tea plants properly transport and store these cytotoxic products and then reuse them in defense. Tea plants coordinate many metabolic pathways that simultaneously take place in young tea leaves in response to both developmental and environmental cues. With the available genome sequences of tea plants and high-throughput metabolomic tools as great platforms, it is of particular interest to launch metabolic genomics studies using tea plants as a model system. Plant metabolic genomics are to investigate all aspects of plant secondary metabolism at the genetic, genome, and molecular levels. This includes plant domestication and adaptation, divergence and convergence of secondary metaboloic pathways. The biosynthesis, transport, storage, and transcriptional regulation mechanisms of all metabolites are of core interest in the plant as a whole. This review highlights relevant contexts of metabolic genomics, outstanding questions, and strategies for answering them, with aim to guide future research for genetic improvement of nutrition quality for healthier plant foods.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Genômica , Plantas/genética , Plantas/metabolismo , Cafeína/biossíntese , Camellia sinensis/química , Catequina , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Glutamatos/biossíntese , Redes e Vias Metabólicas , Metabolômica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas/química , Polimerização , Saponinas/biossíntese , Metabolismo Secundário/genética , Transcriptoma , Compostos Orgânicos Voláteis
14.
Appl Microbiol Biotechnol ; 104(8): 3417-3431, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32103318

RESUMO

γ-Glutamylcysteine synthetase (γ-GCS) from Escherichia coli, which catalyzes the formation of L-glutamylcysteine from L-glutamic acid and L-cysteine, was engineered into an L-theanine synthase using L-glutamic acid and ethylamine as substrates. A high-throughput screening method using a 96-well plate was developed to evaluate the L-theanine synthesis reaction. Both site-saturation mutagenesis and random mutagenesis were applied. After three rounds of directed evolution, 13B6, the best-performing mutant enzyme, exhibited 14.6- and 17.0-fold improvements in L-theanine production and catalytic efficiency for ethylamine, respectively, compared with the wild-type enzyme. In addition, the specific activity of 13B6 for the original substrate, L-cysteine, decreased to approximately 14.6% of that of the wild-type enzyme. Thus, the γ-GCS enzyme was successfully switched to a specific L-theanine synthase by directed evolution. Furthermore, an ATP-regeneration system was introduced based on polyphosphate kinases catalyzing the transfer of phosphates from polyphosphate to ADP, thus lowering the level of ATP consumption and the cost of L-theanine synthesis. The final L-theanine production by mutant 13B6 reached 30.4 ± 0.3 g/L in 2 h, with a conversion rate of 87.1%, which has great potential for industrial applications.


Assuntos
Amida Sintases/metabolismo , Escherichia coli/enzimologia , Glutamato-Cisteína Ligase/metabolismo , Glutamatos/biossíntese , Trifosfato de Adenosina/metabolismo , Amida Sintases/genética , Catálise , Evolução Molecular Direcionada , Escherichia coli/genética , Etilaminas/metabolismo , Glutamato-Cisteína Ligase/genética , Ácido Glutâmico/metabolismo , Ensaios de Triagem em Larga Escala , Microbiologia Industrial , Engenharia de Proteínas
15.
J Agric Food Chem ; 68(3): 918-926, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31899636

RESUMO

Theanine (thea) is the most abundant free amino acid in tea plant (Camellia sinensis) and one of the most important secondary metabolites conferring tea quality and health benefits. Great effort has recently been made to functionally dissect enzyme genes (e.g., GS, GDH, GOGAT) responsible for in vivo thea accumulation. However, the transcriptional regulation of its biosynthesis remains to be explored. Starting from publicly available (condition-independent) tea transcriptome data, we performed an exhaustive coexpression analysis between transcription factor (TF) genes and thea enzyme genes in tea plant. Our results showed that two typical plant-specialized (secondary) metabolites related TF families, such as MYB, bHLH, together with WD40 domain proteins, were prominently involved, suggesting a potential MYB-bHLH-WD40 (MBW) complex-mediated regulatory pattern in thea pathway. Aiming at the most involved MYB family, we screened seven MYB genes as thea candidate regulators through a stringent multistep selection (e.g., filtering with condition-specific nitrogen-treated transcriptome data). The control of MYB regulators in thea biosynthesis was further demonstrated using an integrated analysis of thea accumulation and MYB expression in several major tea tissues, including leave, bud, root, and stem. Our investigation aided tea researchers in having a comprehensive view of transcriptional regulatory landscape in thea biosynthesis, serving as the first platform for studying molecular regulation in thea pathway and a paradigm for understanding the characteristic components biosynthesis in nonmodel plants.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Glutamatos/biossíntese , Fatores de Transcrição/metabolismo , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Transcriptoma
16.
Appl Microbiol Biotechnol ; 104(1): 119-130, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31776607

RESUMO

L-Theanine is a unique non-protein amino acid found in tea plants that has been shown to possess numerous functional properties relevant to food science and human nutrition. L-Theanine has been commercially developed as a valuable additive for use in food and beverages, and its market is expected to expand substantially if the production cost can be lowered. Although the enzymatic approach holds considerable potential for use in L-theanine production, demand exists for developing more tractable methods (than those currently available) that can be implemented under mild conditions and will reduce operational procedures and cost. Here, we sought to engineer fermentative production of L-theanine in Corynebacterium glutamicum, an industrially safe host. For L-theanine synthesis, we used γ-glutamylmethylamide synthetase (GMAS), which catalyzes the ATP-dependent ligation of L-glutamate and ethylamine. First, distinct GMASs were expressed in C. glutamicum wild-type ATCC 13032 strain and GDK-9, an L-glutamate overproducing strain, to produce L-theanine upon ethylamine addition to the hosts. Second, the L-glutamate exporter in host cells was disrupted, which markedly increased the L-theanine titer in GDK-9 cells and almost eliminated the accumulation of L-glutamate in the culture medium. Third, a chromosomally gmasMm-integrated L-alanine producer was constructed and used, attempting to synthesize ethylamine endogenously by expressing plant-derived L-serine/L-alanine decarboxylases; however, these enzymes showed no L-alanine decarboxylase activity under our experimental conditions. The optimal engineered strain that we ultimately created produced ~ 42 g/L L-theanine, with a yield of 19.6%, in a 5-L fermentor. This is the first report of fermentative production of L-theanine achieved using ethylamine supplementation.


Assuntos
Corynebacterium glutamicum/metabolismo , Fermentação , Glutamatos/biossíntese , Engenharia Metabólica/métodos , Trifosfato de Adenosina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Etilaminas/metabolismo , Ácido Glutâmico/metabolismo , Microbiologia Industrial
17.
J Agric Food Chem ; 67(36): 10235-10244, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31436988

RESUMO

Tea provides a rich taste and has healthy properties due to its variety of bioactive compounds, such as theanine, catechins, and caffeine. Theanine is the most abundant free amino acid (40%-70%) in tea leaves. Key genes related to theanine biosynthesis have been studied, but relatively little is known about the regulatory mechanisms of theanine accumulation in tea leaves. Herein, we analyzed theanine content in tea (Camellia sinensis) and oil tea (Camellia oleifera) and found it to be higher in the roots than in other tissues in both species. The theanine content was significantly higher in tea than oil tea. To explore the regulatory mechanisms of theanine accumulation, we identified genes involved in theanine biosynthesis by RNA-Seq analysis and compared theanine-related modules. Moreover, we cloned theanine synthase (TS) promoters from tea and oil tea plants and found that a difference in TS expression and cis-acting elements may explain the difference in theanine accumulation between the two species. These data provide an important resource for regulatory mechanisms of theanine accumulation in tea plants.


Assuntos
Camellia sinensis/genética , Camellia/genética , Glutamatos/biossíntese , Proteínas de Plantas/genética , Transcriptoma , Camellia/química , Camellia/metabolismo , Camellia sinensis/química , Camellia sinensis/metabolismo , Glutamatos/análise , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
18.
J Neuroimmune Pharmacol ; 14(3): 391-400, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31209775

RESUMO

HIV-associated neurocognitive disorders (HAND) have been linked to dysregulation of glutamate metabolism in the central nervous system (CNS) culminating in elevated extracellular glutamate and disrupted glutamatergic neurotransmission. Increased glutamate synthesis via upregulation of glutaminase (GLS) activity in brain immune cells has been identified as one potential source of excess glutamate in HAND. However, direct evidence for this hypothesis in an animal model is lacking, and the viability of GLS as a drug target has not been explored. In this brief report, we demonstrate that GLS inhibition with the glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) can reverse cognitive impairment in the EcoHIV-infected mouse model of HAND. However, due to peripheral toxicity DON is not amenable to clinical use in a chronic disease such as HAND. We thus tested JHU083, a novel, brain penetrant DON prodrug predicted to exhibit improved tolerability. Systemic administration of JHU083 reversed cognitive impairment in EcoHIV-infected mice similarly to DON, and simultaneously normalized EcoHIV-induced increases in cerebrospinal fluid (CSF) glutamate and GLS activity in microglia-enriched brain CD11b + cells without observed toxicity. These studies support the mechanistic involvement of elevated microglial GLS activity in HAND pathogenesis, and identify JHU083 as a potential treatment option. Graphical Abstract Please provide Graphical Abstract caption.Glutamine Antagonist JHU083 Normalizes Aberrant Glutamate Production and Cognitive Deficits in the EcoHIV Murine Model of HIV-Associated Neurocognitive Disorders .


Assuntos
Complexo AIDS Demência , Compostos Azo/uso terapêutico , Caproatos/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Glutamatos/biossíntese , Glutamina/antagonistas & inibidores , Pró-Fármacos/uso terapêutico , Animais , Compostos Azo/farmacocinética , Antígeno CD11b/análise , Caproatos/farmacocinética , Transtornos Cognitivos/líquido cefalorraquidiano , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/virologia , Condicionamento Clássico/efeitos dos fármacos , Medo , Glutamatos/líquido cefalorraquidiano , HIV-1/genética , HIV-1/patogenicidade , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/patogenicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Norleucina/análogos & derivados , Norleucina/uso terapêutico , Pró-Fármacos/farmacocinética , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Aprendizagem Espacial/efeitos dos fármacos
19.
Cell Death Dis ; 9(3): 325, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487283

RESUMO

Targeted therapies as BRAF and MEK inhibitor combination have been approved as first-line treatment for BRAF-mutant melanoma. However, disease progression occurs in most of the patients within few months of therapy. Metabolic adaptations have been described in the context of acquired resistance to BRAF inhibitors (BRAFi). BRAFi-resistant melanomas are characterized by an increase of mitochondrial oxidative phosphorylation and are more prone to cell death induced by mitochondrial-targeting drugs. BRAFi-resistant melanomas also exhibit an enhancement of oxidative stress due to mitochondrial oxygen consumption increase. To understand the mechanisms responsible for survival of BRAFi-resistant melanoma cells in the context of oxidative stress, we have established a preclinical murine model that accurately recapitulates in vivo the acquisition of resistance to MAPK inhibitors including several BRAF or MEK inhibitors alone and in combination. Using mice model and melanoma cell lines generated from mice tumors, we have confirmed that the acquisition of resistance is associated with an increase in mitochondrial oxidative phosphorylation as well as the importance of glutamine metabolism. Moreover, we have demonstrated that BRAFi-resistant melanoma can adapt mitochondrial metabolism to support glucose-derived glutamate synthesis leading to increase in glutathione content. Besides, BRAFi-resistant melanoma exhibits a strong activation of NRF-2 pathway leading to increase in the pentose phosphate pathway, which is involved in the regeneration of reduced glutathione, and to increase in xCT expression, a component of the xc-amino acid transporter essential for the uptake of cystine required for intracellular glutathione synthesis. All these metabolic modifications sustain glutathione level and contribute to the intracellular redox balance to allow survival of BRAFi-resistant melanoma cells.


Assuntos
Antioxidantes/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glucose/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/metabolismo , Melanoma/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Glutamatos/biossíntese , Glutationa/biossíntese , Humanos , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Ácido Pirúvico/metabolismo
20.
J Agric Food Chem ; 65(44): 9693-9702, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29020770

RESUMO

We analyzed the changes of theanine content in postharvest tea leaves under high temperature (38 °C), low temperature (4 °C), and shading spreadings by using ultrahigh-performance liquid chromatography. The differentially expressed proteins (DEPs), CsFd-GOGAT and CsNADH-GOGAT, which are involved in theanine biosynthesis pathway, were identified from the corresponding proteome data. The protein-protein interactions of CsFd-GOGAT and CsNADH-GOGAT, CsTS1, or CsNiR were verified by yeast two-hybrid technology. The expression profiles of 17 genes in theanine metabolism, including CsFd-GOGAT and CsNADH-GOGAT, were analyzed by quantitative real-time polymerase chain reaction. The correlations between the dynamic changes of theanine content and expression profiles of related genes and DEPs were analyzed. This study preliminarily proved the importance of CsGOGAT in dynamic changes of theanine content in postharvest tea leaves during spreading.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Glutamatos/análise , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Camellia sinensis/química , Camellia sinensis/genética , Camellia sinensis/metabolismo , Manipulação de Alimentos , Regulação da Expressão Gênica de Plantas , Glutamatos/biossíntese , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA