Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.548
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Food Res Int ; 186: 114161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729685

RESUMO

In this article, the synthesis of antioxidant peptides in the enzymatic hydrolysis of caprine casein was analyzed at three different time points (60 min, 90 min, and 120 min) using immobilized pepsin on activated and modified carbon (AC, ACF, ACG 50, ACG 100). The immobilization assays revealed a reduction in the biocatalysts' activity compared to the free enzyme. Among the modified ones, ACG 50 exhibited greater activity and better efficiency for reuse cycles, with superior values after 60 min and 90 min. Peptide synthesis was observed under all studied conditions. Analyses (DPPH, ß-carotene/linoleic acid, FRAP) confirmed the antioxidant potential of the peptides generated by the immobilized enzyme. However, the immobilized enzyme in ACG 50 and ACG 100, combined with longer hydrolysis times, allowed the formation of peptides with an antioxidant capacity greater than or equivalent to those generated by the free enzyme, despite reduced enzymatic activity.


Assuntos
Antioxidantes , Caseínas , Enzimas Imobilizadas , Glutaral , Cabras , Iridoides , Pepsina A , Peptídeos , Antioxidantes/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Caseínas/química , Animais , Pepsina A/metabolismo , Pepsina A/química , Glutaral/química , Peptídeos/química , Iridoides/química , Hidrólise , Carvão Vegetal/química
2.
BMC Oral Health ; 24(1): 579, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762747

RESUMO

BACKGROUND: Vinyl polyether silicone (VPES) is a novel impression biomaterial made of a combination of vinyl polysiloxane (VPS) and polyether (PE). Thus, it is significant to assess its properties and behaviour under varied disinfectant test conditions. This study aimed to assess the dimensional stability of novel VPES impression material after immersion in standard disinfectants for different time intervals. METHODS: Elastomeric impression material used -medium body regular set (Monophase) [Exa'lence GC America]. A total of 84 Specimens were fabricated using stainless steel die and ring (ADA specification 19). These samples were distributed into a control group (n=12) and a test group (n=72). The test group was divided into 3 groups, based on the type of disinfectant used - Group-A- 2% Glutaraldehyde, Group-B- 0. 5% Sodium hypochlorite and Group-C- 2% Chlorhexidine each test group was further divided into 2 subgroups (n=12/subgroup) based on time intervals for which each sample was immersed in the disinfectants - subgroup-1- 10 mins and Subgroup 2- 30 mins. After the impression material was set, it was removed from the ring and then it was washed in water for 15 seconds. Control group measurements were made immediately on a stereomicroscope and other samples were immersed in the three disinfection solutions for 10 mins and 30 mins to check the dimensional stability by measuring the distance between the lines generated by the stainless steel die on the samples using a stereomicroscope at x40 magnification. RESULTS: The distance measured in the control group was 4397.2078 µm and 4396.1571 µm; for the test group Group-A- 2% Glutaraldehyde was 4396.4075 µm and 4394.5992 µm; Group-B- 0. 5% Sodium hypochlorite was 4394.5453 µm and 4389.4711 µm Group-C- 2% Chlorhexidine was 4395.2953 µm and 4387.1703 µm respectively for 10 mins and 30 mins. Percentage dimensional change was in the range of 0.02 - 0.25 for all the groups for 10 mins and 30 mins. CONCLUSIONS: 2 % Glutaraldehyde is the most suitable disinfectant for VPES elastomeric impression material in terms of dimensional stability and shows minimum dimensional changes as compared to that of 2% Chlorhexidine and 0.5% Sodium hypochlorite.


Assuntos
Materiais para Moldagem Odontológica , Glutaral , Teste de Materiais , Polivinil , Siloxanas , Materiais para Moldagem Odontológica/química , Polivinil/química , Siloxanas/química , Fatores de Tempo , Glutaral/química , Desinfetantes de Equipamento Odontológico/química , Hipoclorito de Sódio/química , Desinfetantes/química , Clorexidina/química , Propriedades de Superfície , Humanos
3.
BMC Oral Health ; 24(1): 458, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622548

RESUMO

BACKGROUND: Various methods, chemical and physical, disinfect dental impressions. Common chemicals include 1% Sodium Hypochlorite and 2% glutaraldehyde, while UV radiation is a prevalent physical method. Few studies compare their effects on dimensional stability in polyether impressions. This study aims to assess such stability using different disinfection methods. Therefore, this study was planned to evaluate the dimensional stability of polyether impression material using different disinfection methods. METHODS: This in vitro study compared the effects of chemical disinfectants (1% Sodium Hypochlorite and 2% glutaraldehyde) and UV irradiation on the dimensional stability of polyether impression material. Groups A, B, C, and D, each with ten samples (N = 10), were studied. Group A was untreated (control). Group B was treated with 2% glutaraldehyde for 20 min, Group C with 1% Sodium Hypochlorite for 20 min, and Group D with UV rays for 20 min. A pilot milling machine drill was used to make four parallel holes labeled A, B, C, and D in the anterior and premolar regions from right to left. After sequential drilling, four implant analogs were positioned using a surveyor for accuracy. Ten open-tray polyether impressions were made and treated as described in the groups, followed by pouring the corresponding casts. Distortion values for each disinfection method were measured using a coordinate measuring machine capable of recording on the X- and Y-axes. RESULTS: A comprehensive analysis was conducted using the one-way ANOVA test for distinct groups labeled A, B, C, and D, revealing significant differences in the mean distances for X1, X2, X4, X5, and X6 among the groups, with p-values ranging from 0.001 to 0.000. However, no significant differences were observed in X3. Notably, mean distances for the Y variables exhibited substantial differences among the groups, emphasizing parameter variations, with p-values ranging from 0.000 to 0.033. The results compared the four groups using the one-way ANOVA test, revealing statistically significant distance differences for most X and Y variables, except for X3 and Y4. Similarly, post-hoc Tukey's tests provided specific pairwise comparisons, underlining the distinctions between group C and the others in the mean and deviation distances for various variables on both the X- and Y-axes. CONCLUSIONS: This study found that disinfection with 1% sodium hypochlorite or UV rays for 20 min maintained dimensional stability in polyether impressions.


Assuntos
Desinfetantes , Desinfecção , Humanos , Desinfecção/métodos , Glutaral , Hipoclorito de Sódio , Materiais para Moldagem Odontológica , Técnica de Moldagem Odontológica
4.
J Biotechnol ; 388: 35-48, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38641136

RESUMO

Whey protein isolate (WPI) was incorporated within calcium pectinate (CPT) beads in order to boost their anionic qualities and meliorate their glutaraldehyde (GA)-polyethyleneimine (PEI) grafting process. The Box-Behnken Design (BBD) verified that WPI inclusion significantly raised the GA-PEI-CPT-WPI beads immobilized ß-D-galactosidase (iß-GLD) activity. The BBD also revealed the optimal settings for WPI concentration, PEI pH, PEI concentration, and GA concentration, which were 2.91 %, 10.8, 3.5 %, and 2.24 %, respectively. The GA-PEI-CPT-WPI beads grafting process was scrutinized via FTIR, EDX, and SEM. The optimal GA-PEI-CPT-WPI immobilizers provided fine ß-GLD immobilization efficiencies, which reached up to 65.28 %. The free and GA-PEI-CPT-WPI iß-GLDs pH and temperature profiles were scrutinized. It was also unveiled that the thermal stability of the iß-GLD surpassed that of its free compeer as it provided lesser kd and ΔS values and larger t1/2, D-values, Ed, ΔH, and ΔG values. Furthermore, the iß-GLD provided 92.00±3.39 % activity after 42 storage days, which denoted its fine storage stability. The iß-GLD short duration (15 min) operational stability was also inspected, and 82.70±0.78 % activity was provided during the fifteenth degradation run. Moreover, the iß-GLD long duration (24 h) operational stability was inspected while degrading the lactose of buffered lactose solution (BLS) and cheese whey (CW). It was unveiled that 81.86±0.96 % and 73.58±2.24 % of the initial glucose were detected during the sixth degradation runs, respectively.


Assuntos
Enzimas Imobilizadas , Polietilenoimina , Termodinâmica , Proteínas do Soro do Leite , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Proteínas do Soro do Leite/química , Cinética , Polietilenoimina/química , Concentração de Íons de Hidrogênio , Pectinas/química , Pectinas/metabolismo , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Glutaral/química , Temperatura , Estabilidade Enzimática
5.
Food Chem ; 449: 139168, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574521

RESUMO

A robust biocompatible solid-phase microextraction (SPME) fiber, so-called Ti/APTS/GA/CS, was prepared by chemical bonding of cross-linked glutaraldehyde-chitosan to the surface of a titanium wire using APTS. The fiber was applied for sampling of phytohormones in plant tissues, followed by HPLC-UV analysis. The structure and morphology of the fiber coating was investigated by FT-IR, SEM, EDX, XRD, and TGA techniques. A Box-Behnken design was implemented to optimize the experimental variables. The calibration graphs were linear over a wide linear range (0.5-200 µg L-1) with LODs over the range of 0.01-0.06 µg L-1. The intra-day and inter-day precisions were found to be 1.3-6.3% and 4.3-7.3%, respectively. The matrix effect values ranged from 86.5% to 111.7%, indicating that the complex sample matrices had an insignificant effect on the determination of phytohormones. The fiber was successfully employed for the direct-immersion SPME (DI-SPME-HPLC) analysis of the phytohormones in cucumber, tomato, date palm, and calendula samples.


Assuntos
Quitosana , Glutaral , Reguladores de Crescimento de Plantas , Microextração em Fase Sólida , Titânio , Quitosana/química , Titânio/química , Glutaral/química , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/análise , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química
6.
Arch Microbiol ; 206(5): 227, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642141

RESUMO

Bacillus thuringiensis (Bt) and Lysinibacillus sphaericus (Ls) are the most widely used microbial insecticides. Both encounter unfavorable environmental factors and pesticides in the field. Here, the responses of Bt and Ls spores to glutaraldehyde were characterized using Raman spectroscopy and differential interference contrast imaging at the single-cell level. Bt spores were more sensitive to glutaraldehyde than Ls spores under prolonged exposure: <1.0% of Bt spores were viable after 10 min of 0.5% (v/v) glutaraldehyde treatment, compared to ~ 20% of Ls spores. The Raman spectra of glutaraldehyde-treated Bt and Ls spores were almost identical to those of untreated spores; however, the germination process of individual spores was significantly altered. The time to onset of germination, the period of rapid Ca2+-2,6-pyridinedicarboxylic acid (CaDPA) release, and the period of cortex hydrolysis of treated Bt spores were significantly longer than those of untreated spores, with dodecylamine germination being particularly affected. Similarly, the germination of treated Ls spores was significantly prolonged, although the prolongation was less than that of Bt spores. Although the interiors of Bt and Ls spores were undamaged and CaDPA did not leak, proteins and structures involved in spore germination could be severely damaged, resulting in slower and significantly prolonged germination. This study provides insights into the impact of glutaraldehyde on bacterial spores at the single cell level and the variability in spore response to glutaraldehyde across species and populations.


Assuntos
Bacillaceae , Bacillus thuringiensis , Inseticidas , Esporos Bacterianos/fisiologia , Inseticidas/metabolismo , Glutaral/farmacologia , Glutaral/metabolismo , Bacillus subtilis/metabolismo
7.
J Mater Sci Mater Med ; 35(1): 26, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683259

RESUMO

OBJECTIVE: Aortic valve neocuspidization (AVNeo) using autologous pericardium is a promising technique. Expected advantages are reduced immune response, appropriate biomechanics and lower treatment expenses. Nevertheless, autologous pericardium can be affected by patient's age and comorbidities. Usually, glutaraldehyde (GA) - fixed bovine pericardium is the basic material for aortic valve prostheses, easy available and carefully pre-examined in a standardized fabrication process. Aim of the study is the verification of autologous pericardial tissue homogeneity by analysing tissue thickness, biomechanics and extracellular matrix (ECM) composition. METHODS: Segments of human GA-fixed pericardium selected by the surgeon based on visual criteria for cusp pre-cut and remaining after surgical AV replacement were investigated in comparison to bovine standard tissue treated equivalently. Pericardium sampling was performed at up to three positions of each sutured cusp for histological or biomechanical analysis, according to tissue availability. RESULTS AND CONCLUSIONS: Human pericardia exhibited a higher heterogeneity in collagen content, density of vessel structures and elastic moduli. Thickness, vessel density and collagen and elastin content differed significantly between the species. In contrast, significant interindividual differences were detected in most properties investigated for human pericardial samples but only for tissue thickness in bovine tissues. Higher heterogeneity of human pericardium, differing vessel and collagen content compared to bovine state-of-the-art material might be detrimental for long term AV functionality or deterioration and have to be intensely investigated in patients follow up after autologous cusp replacement.


Assuntos
Valva Aórtica , Bioprótese , Próteses Valvulares Cardíacas , Pericárdio , Bovinos , Humanos , Valva Aórtica/cirurgia , Animais , Fenômenos Biomecânicos , Masculino , Feminino , Idoso , Matriz Extracelular/química , Pessoa de Meia-Idade , Colágeno/química , Glutaral/química , Teste de Materiais , Implante de Prótese de Valva Cardíaca/métodos
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 368-375, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38686419

RESUMO

The freeze-drying is a technology that preserves biological samples in a dry state, which is beneficial for storage, transportation, and cost saving. In this study, the bovine pericardium was treated with a freeze-drying protectant composed of polyethylene glycol (PEG) and trehalose (Tre), and then freeze-dried. The results demonstrated that the mechanical properties of the pericardium treated with PEG + 10% w/v Tre were superior to those of the pericardium fixed with glutaraldehyde (GA). The wet state water content of the rehydrated pericardium, determined using the Karl Fischer method, was (74.81 ± 1.44)%, which was comparable to that of the GA-fixed pericardium. The dry state water content was significantly reduced to (8.64 ± 1.52)%, indicating effective dehydration during the freeze-drying process. Differential scanning calorimetry (DSC) testing revealed that the thermal shrinkage temperature of the pericardium was (84.96 ± 0.49) ℃, higher than that of the GA-fixed pericardium (83.14 ± 0.11) ℃, indicating greater thermal stability. Fourier transform infrared spectroscopy (FTIR) results showed no damage to the protein structure during freeze-drying. Hematoxylin and eosin (HE) staining demonstrated that the freeze-drying process reduced pore formation, prevented ice crystal growth, and resulted in a tighter arrangement of tissue fibers. The frozen-dried bovine pericardium was subjected to tests for cell viability and hemolysis rate. The results revealed a cell proliferation rate of (77.87 ± 0.49)%, corresponding to a toxicity grade of 1. Additionally, the hemolysis rate was (0.17 ± 0.02)%, which is below the standard of 5%. These findings indicated that the frozen-dried bovine pericardium exhibited satisfactory performance in terms of cytotoxicity and hemolysis, thus meeting the relevant standards. In summary, the performance of the bovine pericardium treated with PEG + 10% w/v Tre and subjected to freeze-drying could meet the required standards.


Assuntos
Liofilização , Pericárdio , Polietilenoglicóis , Trealose , Animais , Pericárdio/química , Trealose/química , Trealose/farmacologia , Bovinos , Polietilenoglicóis/química , Glutaral/química , Varredura Diferencial de Calorimetria
9.
Biomacromolecules ; 25(4): 2645-2655, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456398

RESUMO

Conventional techniques for the closure of wounds, such as sutures and staples, have significant drawbacks that can negatively impact wound healing. Tissue adhesives have emerged as promising alternatives, but poor adhesion, low mechanical properties, and toxicity have hindered their widespread clinical adoption. In this work, a dual modified, aldehyde and methacrylate hyaluronic acid (HA) biopolymer (HA-MA-CHO) has been synthesized through a simplified route for use as a double cross-linked network (DCN) hydrogel (HA-MA-CHO-DCN) adhesive for the effective closure and sealing of wounds. HA-MA-CHO-DCN cross-links in two stages: initial cross-linking of the aldehyde functionality (CHO) of HA-MA-CHO using a disulfide-containing cross-linker, 3,3'-dithiobis (propionic hydrazide) (DTPH), leading to the formation of a self-healing injectable gel, followed by further cross-linking via ultraviolet (UV) initiated polymerization of the methacrylate (MA) functionality. This hydrogel adhesive shows a stable swelling behavior and remarkable versatility as the storage modulus (G') has shown to be highly tunable (103-105 Pa) for application to many different wound environments. The new HA-MA-CHO-DCN hydrogel showed excellent adhesive properties by surpassing the burst pressure and lap-shear strength for the widely used bovine serum albumin-glutaraldehyde (BSAG) glue while maintaining excellent cell viability.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/química , Ácido Hialurônico/química , Adesivos , Glutaral , Metacrilatos
10.
Appl Microbiol Biotechnol ; 108(1): 264, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489042

RESUMO

Cyanophycin (CGP) is a polypeptide consisting of amino acids-aspartic acid in the backbone and arginine in the side chain. Owing to its resemblance to cell adhesive motifs in the body, it can be considered suitable for use in biomedical applications as a novel component to facilitate cell attachment and tissue regeneration. Although it has vast potential applications, starting with nutrition, through drug delivery and tissue engineering to the production of value-added chemicals and biomaterials, CGP has not been brought to the industry yet. To develop scaffolds using CGP powder produced by bacteria, its properties (e.g., biocompatibility, morphology, biodegradability, and mechanical strength) should be tailored in terms of the requirements of the targeted tissue. Crosslinking commonly stands for a primary modification method for renovating biomaterial features to these extents. Herein, we aimed to crosslink CGP for the first time and present a comparative study of different methods of CGP crosslinking including chemical, physical, and enzymatic methods by utilizing glutaraldehyde (GTA), UV exposure, genipin, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS), and monoamine oxidase (MAO). Crosslinking efficacy varied among the samples crosslinked via the different crosslinking methods. All crosslinked CGP were non-cytotoxic to L929 cells, except for the groups with higher GTA concentrations. We conclude that CGP is a promising candidate for scaffolding purposes to be used as part of a composite with other biomaterials to maintain the integrity of scaffolds. The initiative study demonstrated the unknown characteristics of crosslinked CGP, even though its feasibility for biomedical applications should be confirmed by further examinations. KEY POINTS: • Cyanophycin was crosslinked by 5 different methods • Crosslinked cyanophycin is non-cytotoxic to L929 cells • Crosslinked cyanophycin is a promising new material for scaffolding purposes.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Proteínas de Bactérias , Engenharia Tecidual/métodos , Glutaral , Reagentes de Ligações Cruzadas/química
11.
J Environ Sci (China) ; 142: 115-128, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527878

RESUMO

Microscale zero-valent iron (mZVI) has shown great potential for groundwater Cr(VI) remediation. However, low Cr(VI) removal capacity caused by passivation restricted the wide use of mZVI. We prepared mZVI/GCS by encapsulating mZVI in a porous glutaraldehyde-crosslinked chitosan matrix, and the formation of the passivation layer was alleviated by reducing the contact between zero-valent iron particles. The average pore diameter of mZVI/GCS was 8.775 nm, which confirmed the mesoporous characteristic of this material. Results of batch experiments demonstrated that mZVI/GCS exhibited high Cr(VI) removal efficiency in a wide range of pH (2-10) and temperature (5-35°C). Common groundwater coexisting ions slightly affected mZVI/GCS. The material showed great reusability, and the average Cr(VI) removal efficiency was 90.41% during eight cycles. In this study, we also conducted kinetics and isotherms analysis. Pseudo-second-order model was the most matched kinetics model. The Cr(VI) adsorption process was fitted by both Langmuir and Freundlich isotherms models, and the maximum Langmuir adsorption capacity of mZVI/GCS reached 243.63 mg/g, which is higher than the adsorption capacities of materials reported in most of the previous studies. Notably, the column capacity for Cr(VI) removal of a mZVI/GCS-packed column was 6.4 times higher than that of a mZVI-packed column in a 50-day experiment. Therefore, mZVI/GCS with a porous structure effectively relieved passivation problems of mZVI and showed practical application prospects as groundwater Cr(VI) remediation material with practical application prospects.


Assuntos
Quitosana , Água Subterrânea , Poluentes Químicos da Água , Ferro/química , Glutaral , Longevidade , Poluentes Químicos da Água/química , Cromo/análise , Água Subterrânea/química , Adsorção
12.
J Contemp Dent Pract ; 25(1): 52-57, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514431

RESUMO

AIM: The aim of this study was to assess the impact of Nd:YAG laser, glutaraldehyde-based desensitizer (GD), or their combination on occluding dentinal tubules. MATERIALS AND METHODS: Fifty dentin samples were obtained from non-carious human third molars and randomly divided into five groups (n = 10): (1) Control group treated with 37% phosphoric acid, (2) GD group, (3) Nd:YAG laser group (1064 nm, 100 µs, 10 Hz, 300 µm fiber, 1 W power, 100 mJ energy, and 85 J/cm2 energy density), (4) GD followed by Nd:YAG laser group, and (5) Nd:YAG laser followed by GD group. Scanning electron microscopy (SEM) was used to capture five images from each sample for analysis of dentinal tubules using Image J software. SEM/EDX elemental analysis was performed to determine the main mineral contents. Data analyzed using one-way ANOVA and Tukey's post hoc test for statistical comparisons. RESULTS: Laser and combination groups showed a significant decrease in dentinal tubule counts compared with the control and GD groups (p < 0.0001). There were no significant differences in open dentinal tubule counts between the control and GD groups, as well as between the laser and combination groups. However, significant differences were observed in the total area, average size of the tubules, and percentage area between the control group and the treatment groups (GD, laser, GD + laser, laser + GD). No significant difference was found in the Ca/P ratio between the tested groups. CONCLUSION: The use of Nd:YAG laser alone or in combination with GD was more effective in occluding dentinal tubules compared to GD alone. CLINICAL SIGNIFICANCE: This study has shown that Nd:YAG laser alone and in combination with GD has superior dentinal tubule occlusion in vitro. Its clinical use in the treatment of dentinal hypersensitivity may overcome the drawback of conventional treatment approaches for dentin hypersensitivity needing repeated applications to achieve continuous relief from pain since acidic diet and toothbrushing result in the continuing elimination of precipitates and surface coatings. How to cite this article: Alzarooni AH, El-Damanhoury HM, Aravind SS, et al. Combined Effects of Glutaraldehyde-based Desensitizer and Nd: YAG Laser on Dentinal Tubules Occlusion. J Contemp Dent Pract 2024;25(1):52-57.


Assuntos
Sensibilidade da Dentina , Lasers de Estado Sólido , Humanos , Lasers de Estado Sólido/uso terapêutico , Dentina , Sensibilidade da Dentina/tratamento farmacológico , Glutaral/farmacologia , Glutaral/uso terapêutico , Dente Serotino , Microscopia Eletrônica de Varredura
13.
J Mater Chem B ; 12(14): 3417-3435, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525920

RESUMO

Due to the increasing aging population and the advancements in transcatheter aortic valve replacement (TAVR), the use of bioprosthetic heart valves (BHVs) in patients diagnosed with valvular disease has increased substantially. Commercially available glutaraldehyde (GA) cross-linked biological valves suffer from reduced durability due to a combination of factors, including the high cell toxicity of GA, subacute thrombus, inflammation and calcification. In this study, oxidized chondroitin sulfate (OCS), a natural polysaccharide derivative, was used to replace GA to cross-link decellularized bovine pericardium (DBP), carrying out the first crosslinking of DBP to obtain OCS-BP. Subsequently, the zwitterion radical copolymerization system was introduced in situ to perform double cross-linking to obtain double crosslinked BHVs with biomimetic modification (P(APM/MPC)-OCS-BP). P(APM/MPC)-OCS-BP presented enhanced mechanical properties, collagen stability and enzymatic degradation resistance due to double crosslinking. The ex vivo AV-shunt assay and coagulation factors test suggested that P(APM/MPC)-OCS-BP exhibited excellent anticoagulant and antithrombotic properties due to the introduction of P(APM/MPC). P(APM/MPC)-OCS-BP also showed good HUVEC-cytocompatibility due to the substantial reduction of its residual aldehyde group. The subcutaneous implantation also demonstrated that P(APM/MPC)-OCS-BP showed a weak inflammatory response due to the anti-inflammatory effect of OCS. Finally, in vivo and in vitro results revealed that P(APM/MPC)-OCS-BP exhibited an excellent anti-calcification property. In a word, this simple cooperative crosslinking strategy provides a novel solution to obtain BHVs with good mechanical properties, and HUVEC-cytocompatibility, anti-coagulation, anti-inflammatory and anti-calcification properties. It might be a promising alternative to GA-fixed BP and exhibited good prospects in clinical applications.


Assuntos
Calcinose , Próteses Valvulares Cardíacas , Humanos , Animais , Bovinos , Idoso , Sulfatos de Condroitina/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Valvas Cardíacas , Glutaral , Anti-Inflamatórios/farmacologia , Pericárdio
14.
J Biotechnol ; 387: 23-31, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38548020

RESUMO

Enzyme immobilization in membrane bioreactors has been considered as a practical approach to enhance the stability, reusability, and efficiency of enzymes. In this particular study, a new type of hybrid membrane reactor was created through the phase inversion method, utilizing hybrid of graphene oxide nanosheets (GON) and polyether sulfone (PES) in order to covalently immobilize the Candida rugosa lipase (CRL). The surface of hybrid membrane was initially modified by (3-Aminopropyl) triethoxysilane (APTES), before the use of glutaraldehyde (GLU), as a linker, through the imine bonds. The resulted enzymatic hybrid membrane reactors (EHMRs) were then thoroughly analyzed by using field-emission scanning electron microscopy (FE-SEM), contact angle goniometry, surface free energy analysis, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, attenuated total reflection (ATR), and energy-dispersive X-ray (EDX) spectroscopy. The study also looked into the impact of factors such as initial CRL concentration, storage conditions, and immobilization time on the EHMR's performance and activity, which were subsequently optimized. The results demonstrated that the CRLs covalently immobilized on the EHMRs displayed enhanced pH and thermal stability compared to those physically immobilized or free. These covalently immobilized CRLs could maintain over 60% of their activity even after 6 reaction cycles spanning 50 days. EHMRs are valuable biocatalysts in developing various industrial, environmental, and analytical processes.


Assuntos
Reatores Biológicos , Estabilidade Enzimática , Enzimas Imobilizadas , Lipase , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Lipase/química , Membranas Artificiais , Grafite/química , Saccharomycetales/enzimologia , Glutaral/química , Espectroscopia de Infravermelho com Transformada de Fourier , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Temperatura , Difração de Raios X
15.
Dent Mater J ; 43(2): 320-327, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38382939

RESUMO

We aimed to determine whether adhesive components could increase the release time of effective fluoride concentration from an experimental fluoride varnish applied to bovine teeth. An experimental fluoride varnish containing 5% sodium fluoride (EX1) was prepared and combined with 35% hydroxyethyl methacrylate (HEMA) (EX2), 5% glutaraldehyde (EX3), or 35% HEMA/5% glutaraldehyde mixture (EX4). Two commercially available fluoride varnishes were used for comparison. Each group was applied to bovine incisors, and the fluoride release and pH were monitored for 30 days. Cell viability analysis, scanning electron microscopy, and energy-dispersive spectroscopy were performed. EX4 released the highest and most effective concentration of fluoride for the longest period and reached neutral pH at the earliest; the release was maintained for up to 30 days without cytotoxicity. In conclusion, EX4 is considered to be the most effective varnish to prevent dental caries.


Assuntos
Cárie Dentária , Fluoretos , Metacrilatos , Animais , Bovinos , Fluoretos/farmacologia , Fluoretos Tópicos/farmacologia , Fluoretos Tópicos/química , Cariostáticos/farmacologia , Cariostáticos/química , Cárie Dentária/prevenção & controle , Glutaral , Fluoreto de Sódio/farmacologia , Fluoreto de Sódio/química
16.
J Biomech Eng ; 146(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323667

RESUMO

Healthy articular cartilage is a remarkable bearing material optimized for near-frictionless joint articulation. Because its limited self-repair capacity renders it susceptible to osteoarthritis (OA), approaches to reinforce or rebuild degenerative cartilage are of significant interest. While exogenous collagen crosslinking (CXL) treatments improve cartilage's mechanical properties and increase its resistance to enzymatic degradation, their effects on cartilage lubrication remain less clear. Here, we examined how the collagen crosslinking agents genipin (GP) and glutaraldehyde (GTA) impact cartilage lubrication using the convergent stationary contact area (cSCA) configuration. Unlike classical configurations, the cSCA sustains biofidelic kinetic friction coefficients (µk) via superposition of interstitial and hydrodynamic pressurization (i.e., tribological rehydration). As expected, glutaraldehyde- and genipin-mediated CXL increased cartilage's tensile and compressive moduli. Although net tribological rehydration was retained after CXL, GP or GTA treatment drastically elevated µk. Both healthy and "OA-like" cartilage (generated via enzymatic digestion) sustained remarkably low µk in saline- (≤0.02) and synovial fluid-lubricated contacts (≤0.006). After CXL, µk increased up to 30-fold, reaching values associated with marked chondrocyte death in vitro. These results demonstrate that mechanical properties (i.e., stiffness) are necessary, but not sufficient, metrics of cartilage function. Furthermore, the marked impairment in lubrication suggests that CXL-mediated stiffening is ill-suited to cartilage preservation or joint resurfacing.


Assuntos
Cartilagem Articular , Iridoides , Osteoartrite , Humanos , Lubrificação , Glutaral , Colágeno , Osteoartrite/tratamento farmacológico , Fricção , Estresse Mecânico
17.
Ecotoxicol Environ Saf ; 272: 116078, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335575

RESUMO

Since disinfectants are used all over the world to treat illnesses in people and other animals, they pose a major risk to human health. The comprehensive effects of disinfectant treatments on fish liver, especially the impacts on oxidative stress, toxicological effects, transcriptome profiles, and apoptosis, have not yet been fully analyzed. In the current investigation, healthy grass carp were exposed to 80 µg/L glutaraldehyde or 50 µg/L povidone-iodine for 30 days. First, the findings of enzyme activity tests demonstrated that the administration of glutaraldehyde could considerably increase oxidative stress by lowering T-SOD, CAT, and GPx and raising MDA. Furthermore, KEGG research revealed that exposure to glutaraldehyde and povidone-iodine stimulated the PPAR signal pathway. To further elucidate the transcriptome results, the relative expressions of related DEGs in the PPAR signal pathway were verified. Glutaraldehyde induced apoptosis in liver tissue of grass carp; however, it activated cytotoxicity and apoptosis in grass carp hepatocytes when exposed to glutaraldehyde or povidone-iodine. According to the current study, disinfectants can cause the impairment of the immune system, oxidative stress, and attenuation of the PPAR signal pathway in the liver of grass carp, making them detrimental as dietary supplements for grass carp, particularly in the aquaculture sector.


Assuntos
Carpas , Desinfetantes , Animais , Humanos , Povidona-Iodo/toxicidade , Glutaral/toxicidade , Receptores Ativados por Proliferador de Peroxissomo , Fígado , Hepatócitos , Desinfetantes/toxicidade , Apoptose
18.
Biochem Biophys Res Commun ; 702: 149567, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335701

RESUMO

Glutaraldehyde (GA) is a protein crosslinker widely used in biochemical and pharmaceutical research because it can rapidly stabilize and immobilize substrates via amine group interactions. However, controlling GA crosslinking is challenging owing to its swift reactivity and the influence of various solution conditions, such as pH and concentrations of the substrate and crosslinker. Although extensive research has focused on GA cross-linking mechanisms, studies on quenching, which is critical for preventing non-specific aggregation during prolonged storage, remain sparse. This study examines the quenching efficiency of a combined amino acid mixture of glycine, histidine, and lysine, which are commonly used as individual quenchers. Our findings, confirmed using sodium dodecyl sulphate-polyacrylamide gel electrophoresis, demonstrate that this amino acid blend offers superior quenching compared to single amino acids, enhancing quenching activity across a wide pH spectrum. These results provide a novel approach for mitigating the high reactivity of GA with implications for improving sample preservation and stabilization in a range of biochemical applications, including microscopy and cell fixation.


Assuntos
Histidina , Lisina , Glutaral/química , Glutaral/farmacologia , Reagentes de Ligações Cruzadas/química , Glicina
19.
J Biomater Appl ; 38(8): 915-931, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346020

RESUMO

Multifunctional and biodegradable dressings with high mechanical strength and good antibacterial activity are crucial in fundamental health services. This study was initiated to prepare a novel curative wound dressing film consisting of natural biodegradable gelatin (G) and polylactic acid (PLA) with silver nanoparticles (AgNPs) where glutaraldehyde (GA) was used as compatibilizer. The prepared composite films addressed the poor thermal and biological stability of G and the limited fluid retention capacity of PLA. Silver nanoparticles were prepared by basic chemical reduction and reinforced on polymer films using simple solvent casting, which obviated common clinical infections and accelerated wound closure rate (p < .05). Fourier transform infrared (FTIR) studies confirmed composite formation through H-bonding and X-ray diffraction (XRD) revealed increased crystallinity due to incorporating AgNPs. Films with G, PLA & GA (50:50:5 by volume) introduced the best elasticity & strength with excellent fluid retention properties (p < .05). Scanning electron microscopy (SEM) images unfolded surface morphology and presence of agglomerated AgNPs on film surfaces. Prepared films exhibited significant antimicrobial efficacy against Staphylococcus aureus and Pseudomonas sp. and showed excellent cell viability (>97 %) in Vero cell line. Finally, an in vivo mouse model study showed 99.7 % contraction (p < .05) within 12 days, which was most effectual and 12 % faster than conventional gauge bandages. These results demonstrated the promising and cost-effective potential of the prepared film for wound healing.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Camundongos , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química , Gelatina/química , Antibacterianos/farmacologia , Antibacterianos/química , Poliésteres , Glutaral , Bandagens
20.
Water Environ Res ; 96(2): e10982, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316397

RESUMO

Polyvinylidene fluoride (PVDF) porous membrane was prepared by a two-step method of surface gelation-immersion precipitation phase inversion. Chitosan/acetic acid solution and glutaraldehyde aqueous solution were sequentially sprayed onto the surface of the PVDF solution film, with chitosan crosslinking and gelation occurring simultaneously on the film surface. The solution film was then immersed in a coagulation bath to obtain a modified PVDF porous membrane. The effect of the crosslinking time of chitosan and glutaraldehyde on the structure and properties of the PVDF porous membrane was discussed. The results showed that with the prolongation of crosslinking time, the surface structure of the membrane changed from a dense skin layer to a porous structure; the porosity and the mean pore size of the modified PVDF membranes increased first and then decreased, and the contact angle gradually decreased. When the crosslinking time extended to 15 min, the water flux of modified membrane (M153) reached a maximum value. BSA dynamic cyclic filtration experiment showed that the retention rate (R) of the modified membrane was significantly improved, compared to 68.3% retention rate of the blank membrane (M000), but the crosslinking time had little effect on the retention rates of the four modified membranes. The antifouling data showed that the flux recovery rate of the blank membrane was 73.0%, while the flux recovery rate of the modified membrane can reach as high as 84.40%, and the irreversible pollution rate of the blank membrane was 27.7%, while the irreversible pollution rate of the modified membrane reduced to 15.6%. These results indicated that, after surface chitosan crosslinking, the hydrophilicity and antifouling properties of PVDF membranes were improved. PRACTITIONER POINTS: Modified PVDF membranes with crosslinking CS coating were prepared by a two-step method of surface gelation-immersion precipitation phase inversion. -OH groups and -NH2 groups of CS coating improve the hydrophilicity and the antifouling property of modified PVDF membranes. Modified PVDF membranes had larger mean pore size and higher porosity than unmodified membrane. Flux recovery rates of the modified membranes were higher than that of unmodified membrane. Pollution degree, reversible pollution rate, and irreversible pollution rate of modified membranes were lower than those of unmodified membrane.


Assuntos
Incrustação Biológica , Quitosana , Polímeros de Fluorcarboneto , Polivinil , Quitosana/química , Glutaral , Imersão , Membranas Artificiais , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA