Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.080
Filtrar
1.
J Environ Sci (China) ; 148: 139-150, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095153

RESUMO

Herein, a modified screen printed carbon electrode (SPCE) based on a composite material, graphene oxide-gold nanoparticles (GO-AuNPs), and poly(3-aminobenzoic acid)(P3ABA) for the detection of paraquat (PQ) is introduced. The modified electrode was fabricated by drop casting of the GO-AuNPs, followed by electropolymerization of 3-aminobenzoic acid to achieve SPCE/GO-AuNPs/P3ABA. The morphology and microstructural characteristics of the modified electrodes were revealed by scanning electron microscopy (SEM) for each step of modification. The composite GO-AuNPs can provide high surface area and enhance electroconductivity of the electrode. In addition, the presence of negatively charged P3ABA notably improved PQ adsorption and electron transfer rate, which stimulate redox reaction on the modified electrode, thus improving the sensitivity of PQ analysis. The SPCE/GO-AuNPs/P3ABA offered a wide linear range of PQ determination (10-9-10-4 mol/L) and low limit of detection (LOD) of 0.45 × 10-9 mol/L or 0.116 µg/L, which is far below international safety regulations. The modified electrode showed minimum interference effect with percent recovery ranging from 96.5% to 116.1% after addition of other herbicides, pesticides, metal ions, and additives. The stability of the SPCE/GO-AuNPs/P3ABA was evaluated, and the results indicated negligible changes in the detection signal over 9 weeks. Moreover, this modified electrode was successfully implemented for PQ analysis in both natural and tapped water with high accuracy.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Ouro , Grafite , Nanopartículas Metálicas , Paraquat , Grafite/química , Paraquat/análise , Ouro/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Carbono/química , Poluentes Químicos da Água/análise , Herbicidas/análise
2.
J Environ Sci (China) ; 148: 437-450, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095178

RESUMO

For environmental applications, it is crucial to rationally design and synthesize photocatalysts with positive exciton splitting and interfacial charge transfer. Here, a novel Ag-bridged dual Z-scheme Ag/g-C3N4/CoNi-LDH plasmonic heterojunction was successfully synthesized using a simple method, with the goal of overcoming the common drawbacks of traditional photocatalysts such as weak photoresponsivity, rapid combination of photo-generated carriers, and unstable structure. These materials were characterized by XRD, FT-IR, SEM, TEM UV-Vis/DRS, and XPS to verify the structure and stability of the heterostructure. The pristine LDH, g-C3N4, and Ag/g-C3N4/CoNi-LDH composite were investigated as photocatalysts for water remediation, an environmentally motivated process. Specifically, the photocatalytic degradation of tetracycline was studied as a model reaction. The performance of the supports and composite catalyst were determined by evaluating both the degradation and adsorption phenomenon. The influence of several experimental parameters such as catalyst loading, pH, and tetracycline concentration were evaluated. The current study provides important data for water treatment and similar environmental protection applications.


Assuntos
Nanocompostos , Fotólise , Prata , Poluentes Químicos da Água , Purificação da Água , Nanocompostos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Prata/química , Catálise , Nitrilas/química , Compostos de Nitrogênio/química , Adsorção , Grafite
3.
J Environ Sci (China) ; 148: 57-68, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095190

RESUMO

The expandable graphite (EG) modified TiO2 nanocomposites were prepared by the high shear method using the TiO2 nanoparticles (NPs) and EG as precursors, in which the amount of EG doped in TiO2 was 10 wt.%. Followed by the impregnation method, adjusting the pH of the solution to 10, and using the electrostatic adsorption to achieve spatial confinement, the Pt elements were mainly distributed on the exposed TiO2, thus generating the Pt/10EG-TiO2-10 catalyst. The best CO oxidation activity with the excellent resistance to H2O and SO2 was obtained over the Pt/10EG-TiO2-10 catalyst: CO conversion after 36 hr of the reaction was ca. 85% under the harsh condition of 10 vol.% H2O and 100 ppm SO2 at a high gaseous hourly space velocity (GHSV) of 400,000 hr-1. Physicochemical properties of the catalysts were characterized by various techniques. The results showed that the electrostatic adsorption, which riveted the Pt elements mainly on the exposed TiO2 of the support surface, reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs, hence significantly improving CO oxidation activity over the Pt/10EG-TiO2-10 catalyst. The 10 wt.% EG doped in TiO2 caused the TiO2 support to form a more hydrophobic surface, which reduced the adsorption of H2O and SO2 on the catalyst, greatly inhibited deposition of the TiOSO4 and formation of the PtSO4 species as well as suppressed the oxidation of SO2, thus resulting in an improvement in the resistance to H2O and SO2 of the Pt/10EG-TiO2-10 catalyst.


Assuntos
Grafite , Oxirredução , Platina , Dióxido de Enxofre , Titânio , Titânio/química , Grafite/química , Dióxido de Enxofre/química , Platina/química , Catálise , Monóxido de Carbono/química , Água/química , Poluentes Atmosféricos/química , Modelos Químicos
4.
J Environ Sci (China) ; 148: 614-624, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095194

RESUMO

The overuse of antibiotics and antitumor drugs has resulted in more and more extensive pollution of water bodies with organic drugs, causing detrimental ecological effects, which have attracted attention towards effective and sustainable methods for antibiotics and antitumor drug degradation. Here, the hybrid nanomaterial (g-C3N4@Fe/Pd) was synthesized and used to remove a kind of both an antibiotic and antitumor drug named mitoxantrone (MTX) with 92.0% removal efficiency, and the MTX removal capacity is 450 mg/g. After exposing to the hybrid material the MTX aqueous solution changed color from dark blue to lighter progressively, and LC-UV results of residual solutions show that a new peak at 3.0 min (MTX: 13.2 min) after removal by g-C3N4@Fe/Pd appears, with the simultaneous detection of intermediate products indicating that g-C3N4@Fe/Pd indeed degrades MTX. Detailed mass spectrometric analysis suggests that the nuclear mass ratio decreased from 445.2 (M+1H) to 126.0 (M+1H), 169.1 (M+1H), 239.2 (M+1H), 267.3 (M+1H), 285.2 (M+1H), 371.4 (M+1H) and 415.2 (M+1H), and the maximum proportion (5.63%) substance of all degradation products (126.0 (M+1H)) is 40-100 times less toxic than MTX. A mechanism for the removal and degradation of mitoxantrone was proposed. Besides, actual water experiments confirmed that the maximum removal capacity of MTX by g-C3N4@Fe/Pd is up to 492.4 mg/g (0.02 g/L, 10 ppm).


Assuntos
Grafite , Nanopartículas Metálicas , Mitoxantrona , Paládio , Poluentes Químicos da Água , Mitoxantrona/química , Poluentes Químicos da Água/química , Grafite/química , Nanopartículas Metálicas/química , Paládio/química , Ferro/química , Catálise , Compostos de Nitrogênio/química , Antineoplásicos/química
5.
Molecules ; 29(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124987

RESUMO

(1) Background: Angiotensin-converting enzyme 2 (ACE2) is a crucial functional receptor of the SARS-CoV-2 virus. Although the scale of infections is no longer at pandemic levels, there are still fatal cases. The potential of the virus to infect the skin raises questions about new preventive measures. In the context of anti-SARS-CoV-2 applications, the interactions of antimicrobial nanomaterials (silver, Ag; diamond, D; graphene oxide, GO and their complexes) were examined to assess their ability to affect whether ACE2 binds with the virus. (2) Methods: ACE2 inhibition competitive tests and in vitro treatments of primary human adult epidermal keratinocytes (HEKa) and primary human adult dermal fibroblasts (HDFa) were performed to assess the blocking capacity of nanomaterials/nanocomplexes and their toxicity to cells. (3) Results: The nanocomplexes exerted a synergistic effect compared to individual nanomaterials. HEKa cells were more sensitive than HDFa cells to Ag treatments and high concentrations of GO. Cytotoxic effects were not observed with D. In the complexes, both carbonic nanomaterials had a soothing effect against Ag. (4) Conclusions: The Ag5D10 and Ag5GO10 nanocomplexes seem to be most effective and safe for skin applications to combat SARS-CoV-2 infection by blocking ACE2-S binding. These nanocomplexes should be evaluated through prolonged in vivo exposure. The expected low specificity enables wider applications.


Assuntos
Enzima de Conversão de Angiotensina 2 , Fibroblastos , Grafite , Queratinócitos , Nanoestruturas , SARS-CoV-2 , Prata , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Prata/química , Prata/farmacologia , SARS-CoV-2/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/virologia , Queratinócitos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Nanoestruturas/química , Grafite/química , Grafite/farmacologia , COVID-19/virologia , Linhagem Celular , Pele/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores
6.
BMC Pharmacol Toxicol ; 25(1): 50, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138519

RESUMO

This study reports a novel, eco-friendly; fast and cost-effective microwave method for synthesizing carboxymethylated graphene oxide (CMGO) from sugarcane residues. Fourier-transform infrared spectroscopy (FTIR) confirmed successful CMGO synthesis through the presence of characteristic peaks at 1567.93 and 1639.29 cm-1 (COONa vibrations) and increased CH2 intensity compared to unmodified graphene oxide (GO). Furthermore, CMGO derived from sugarcane residues demonstrated potential in mitigating the side effects of toxic materials like carbon tetrachloride (CCl4). Treatment with CMGO partially reduced elevated levels of liver enzymes (ALT and AST) and nitrogenous waste products (urea and uric acid) in CCl4-induced liver damage models, suggesting an improvement in liver function despite ongoing cellular damage.This work paves the way for a sustainable and economical approach to produce functionalized graphene oxide with promising biomedical applications in alleviating toxin-induced liver injury.


Assuntos
Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas , Grafite , Fígado , Micro-Ondas , Grafite/química , Animais , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Tetracloreto de Carbono/toxicidade , Masculino , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/uso terapêutico , Ácido Úrico , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Ureia/análogos & derivados , Ureia/farmacologia , Camundongos
7.
Int J Nanomedicine ; 19: 8159-8174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139505

RESUMO

Background: Wound healing has always been a focal point in clinical work. Bacterial infections and immune microenvironment disorders can both hinder normal wound healing. Current wound dressings only serve a covering function. Developing wound dressings with antibacterial and immunomodulatory functions is crucial for aiding wound healing. To address this issue, we have developed a hydrogel with antibacterial and immunomodulatory functions for managing infected wounds. Methods: The present study describes a photo-crosslinked antibacterial hydrogel composed of curcumin, silver nanoparticles-loaded reduced graphene oxide, and silk fibroin methacryloyl for the treatment of infected wounds. The study assessed its antibacterial properties and its capacity to induce macrophage M2 polarization through in vitro and in vivo experiments. Results: The hydrogel demonstrates robust antibacterial properties and enhances macrophage M2 polarization in both in vitro and in vivo settings. Moreover, it accelerates the healing of infected wounds in vivo by stimulating collagen deposition and angiogenesis. Conclusion: Overall, this hydrogel shows great potential in managing wound infections.


Assuntos
Antibacterianos , Grafite , Hidrogéis , Nanopartículas Metálicas , Prata , Cicatrização , Infecção dos Ferimentos , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Camundongos , Grafite/química , Grafite/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Curcumina/farmacologia , Curcumina/química , Macrófagos/efeitos dos fármacos , Fibroínas/química , Fibroínas/farmacologia , Células RAW 264.7 , Humanos , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/química , Masculino
8.
Anal Chim Acta ; 1320: 342985, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142767

RESUMO

BACKGROUND: There is widespread interest in the design of portable electrochemical sensors for the selective monitoring of biomolecules. Dopamine (DA) is one of the neurotransmitter molecules that play a key role in the monitoring of some neuronal disorders such as Alzheimer's and Parkinson's diseases. Facile synthesis of the highly active surface interface to design a portable electrochemical sensor for the sensitive and selective monitoring of biomolecules (i.e., DA) in its resources such as human fluids is highly required. RESULTS: The designed sensor is based on a three-dimensional phosphorous and sulfur resembling a g-C3N4 hornet's nest (3D-PS-doped CNHN). The morphological structure of 3D-PS-doped CNHN features multi-open gates and numerous vacant voids, presenting a novel design reminiscent of a hornet's nest. The outer surface exhibits a heterogeneous structure with a wave orientation and rough surface texture. Each gate structure takes on a hexagonal shape with a wall size of approximately 100 nm. These structural characteristics, including high surface area and hierarchical design, facilitate the diffusion of electrolytes and enhance the binding and high loading of DA molecules on both inner and outer surfaces. The multifunctional nature of g-C3N4, incorporating phosphorous and sulfur atoms, contributes to a versatile surface that improves DA binding. Additionally, the phosphate and sulfate groups' functionalities enhance sensing properties, thereby outlining selectivity. The resulting portable 3D-PS-doped CNHN sensor demonstrates high sensitivity with a low limit of detection (7.8 nM) and a broad linear range spanning from 10 to 500 nM. SIGNIFICANCE: The portable DA sensor based on the 3D-PS-doped CNHN/SPCE exhibits excellent recovery of DA molecules in human fluids, such as human serum and urine samples, demonstrating high stability and good reproducibility. The designed portable DA sensor could find utility in the detection of DA in clinical samples, showcasing its potential for practical applications in medical settings.


Assuntos
Dopamina , Técnicas Eletroquímicas , Dopamina/análise , Dopamina/urina , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Compostos de Nitrogênio/química , Limite de Detecção , Enxofre/química , Eletrodos , Técnicas Biossensoriais/métodos , Grafite/química , Fósforo/química , Propriedades de Superfície
9.
Anal Chim Acta ; 1320: 343004, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142771

RESUMO

BACKGROUND: Aptamers are screened via the systematic evolution of ligands by exponential enrichment (SELEX) and are widely used in molecular diagnostics and targeted therapies. The development of efficient and convenient SELEX technology has facilitated rapid access to high-performance aptamers, thereby advancing the aptamer industry. Graphene oxide (GO) serves as an immobilization matrix for libraries in GO-SELEX, making it suitable for screening aptamers against diverse targets. RESULTS: This review summarizes the detailed steps involved in GO-SELEX, including monitoring methods, various sublibrary acquisition methods, and practical applications from its inception to the present day. In addition, the potential of GO-SELEX in the development of broad-spectrum aptamers is explored, and its current limitations for future development are emphasized. This review effectively promotes the application of the GO-SELEX technique by providing valuable insights and assisting researchers interested in conducting related studies. SIGNIFICANCE AND NOVELTY: To date, no review on the topic of GO-SELEX has been published, making it challenging for researchers to initiate studies in this area. We believe that this review will broaden the SELEX options available to researchers, ensuring that they can meet the growing demand for molecular probes in the scientific domain.


Assuntos
Aptâmeros de Nucleotídeos , Grafite , Sondas Moleculares , Técnica de Seleção de Aptâmeros , Grafite/química , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/química , Sondas Moleculares/química , Humanos
10.
Luminescence ; 39(8): e4871, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39143684

RESUMO

Graphene oxide (GO) and copper nanoparticles (Cu NPs) were incorporated to modulate and enhance the fluorescence properties of pegylated graphite phase carbon nitride (g-C3N4-PEG). Combined with the specific recognition capability of a molecular imprinted polymer (MIP), a highly sensitive and selective fluorescent molecular imprinted probe for dopamine detection was developed. The fluorescent g-C3N4-PEG was synthesized from melamine and modified with GO and Cu NPs to obtain GO/g-C3N4-PEG@Cu NPs. Subsequently, MIP was prepared on the surface of GO/g-C3N4-PEG@Cu NPs using dopamine as the template molecule. Upon elution of the template molecule, a dopamine-specific GO/g-C3N4-PEG@Cu NPs/MIP fluorescence probe was obtained. The fluorescence intensity of the probe was quenched through the adsorption of different concentrations of dopamine by the MIP, thus establishing a novel method for the detection of dopamine. The linear range of dopamine detection was from 5 × 10-11 to 6 × 10-8 mol L-1, with a detection limit of 2.32 × 10-11 mol L-1. The sensor was utilised for the detection of dopamine in bananas, achieving a spiked recovery rate between 90.3% and 101.3%. These results demonstrate that the fluorescence molecular imprinted sensor developed in this study offers a highly sensitive approach for dopamine detection in bananas.


Assuntos
Cobre , Dopamina , Corantes Fluorescentes , Grafite , Nanopartículas Metálicas , Musa , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Dopamina/análise , Grafite/química , Cobre/química , Cobre/análise , Musa/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Espectrometria de Fluorescência , Polímeros Molecularmente Impressos/química , Nitrilas/química , Limite de Detecção , Compostos de Nitrogênio
11.
Sci Rep ; 14(1): 19044, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152185

RESUMO

The nuclear pore complexes on the nuclear membrane serve as the exclusive gateway for communication between the nucleus and the cytoplasm, regulating the transport of various molecules, including nucleic acids and proteins. The present work investigates the kinetics of the transport of negatively charged graphene quantum dots through nuclear membranes, focusing on quantifying their transport characteristics. Experiments are carried out in permeabilized HeLa cells using time-lapse confocal fluorescence microscopy. Our findings indicate that negatively charged graphene quantum dots exhibit rapid transport to the nuclei, involving two distinct transport pathways in the translocation process. Complementary experiments on the nuclear import and export of graphene quantum dots validate the bi-directionality of transport, as evidenced by comparable transport rates. The study also shows that the negatively charged graphene quantum dots possess favorable retention properties, underscoring their potential as drug carriers.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular , Grafite , Pontos Quânticos , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Humanos , Grafite/química , Células HeLa , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Microscopia Confocal
12.
PLoS One ; 19(8): e0306866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39146267

RESUMO

Low-dimensional materials have demonstrated strong potential for use in diverse flexible strain sensors for wearable electronic device applications. However, the limited contact area in the sensing layer, caused by the low specific surface area of typical nanomaterials, hinders the pursuit of high-performance strain-sensor applications. Herein, we report an efficient method for synthesizing TiO2-based nanocomposite materials by directly using industrial raw materials with ultrahigh specific surface areas that can be used for strain sensors. A kinetic study of the self-seeded thermal hydrolysis sulfate process was conducted for the controllable synthesis of pure TiO2 and related TiO2/graphene composites. The hydrolysis readily modified the crystal form and morphology of the prepared TiO2 nanoparticles, and the prepared composite samples possessed a uniform nanoporous structure. Experiments demonstrated that the TiO2/graphene composite can be used in strain sensors with a maximum Gauge factor of 252. In addition, the TiO2/graphene composite-based strain sensor showed high stability by continuously operating over 1,000 loading cycles and aging tests over three months. It also shows that the fabricated strain sensors have the potential for human voice recognition by characterizing letters, words, and musical tones.


Assuntos
Grafite , Nanocompostos , Titânio , Titânio/química , Grafite/química , Humanos , Nanocompostos/química , Voz , Dispositivos Eletrônicos Vestíveis
13.
F1000Res ; 13: 281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149510

RESUMO

Introduction: Osseointegration stands as a pivotal concept within the realm of dental implants, signifying the intricate process through which a dental implant integrates with the adjoining bone tissue. Graphene oxide (GO) has been shown to promote osseointegration, the process by which the implant fuses with the surrounding bone. The objective of this study was to assess the osseointegrative and antimicrobial properties of GO nano coated dental implants. Methods: A systematic search was conducted using electronic databases (e.g., PubMed, Scopus, Web of Science) to identify relevant studies published. Inclusion criteria encompassed studies that evaluated the effects of GO nano coating on osseointegrative and antimicrobial characteristics of dental implants. Studies not written in English and published before 2012 were excluded. Results: The initial search yielded a total of 127 potential studies, of which six met the inclusion criteria and five were included in the review. These studies provided data on GO nano coated dental implants and their osseointegrative and antimicrobial properties. All the included studies showed moderate risk of bias. None of the studies provided information related to sample size calculation or sampling technique. Discussion: The findings from the included studies demonstrated that GO nano coating had a positive impact on osseointegrative properties of dental implants. Enhanced bone-implant contact and increased bone density were observed in animals and humans receiving GO nano coated implants. Furthermore, the antimicrobial properties of GO nano coating were found to inhibit bacterial colonization and biofilm formation on the implant surface, reducing the risk of implant-associated infections. Conclusion: The findings indicate that GO nano coating holds promise in enhancing the success rate and longevity of dental implants. However, more studies with larger sample sizes, are needed to further strengthen the evidence and determine the long-term effects of GO nano coated dental implants.


Assuntos
Anti-Infecciosos , Materiais Revestidos Biocompatíveis , Implantes Dentários , Grafite , Osseointegração , Grafite/química , Grafite/farmacologia , Implantes Dentários/microbiologia , Osseointegração/efeitos dos fármacos , Humanos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Anti-Infecciosos/farmacologia , Animais , Nanoestruturas
14.
Phys Chem Chem Phys ; 26(32): 21677-21687, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39091182

RESUMO

In recent years, great progress has been made on the study of nanozymes with enzyme-like properties. Here, bimetallic Fe and Ni nanoclusters were anchored on the nanosheets of nitrogen-rich layered graphitic carbon nitride by one-step pyrolysis at high temperature (Fe/Ni-CN). The loading content of Fe and Ni on Fe/Ni-CN is as high as 8.0%, and Fe/Ni-CN has a high specific surface area of 121.86 m2 g-1. The Fe/Ni-CN can effectively oxidize 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, and exhibits efficient peroxidase-like activity, leading to a 17.2-fold increase compared to pure graphitic carbon nitride (CN). Similar to the natural horseradish peroxidase (HRP), the Fe/Ni-CN nanozyme follows catalytic kinetics. The Michaelis-Menten constant (Km) value of the Fe/Ni-CN nanozyme for TMB is about 8.3-fold lower than that for HRP, which means that the Fe/Ni-CN nanozyme has better affinity for TMB. In addition, the catalytic mechanism was investigated by combination of free radical quenching experiments and density-functional theory (DFT) calculations. The results show that the high peroxidase-like activity is due to the easy adsorption of H2O2 after bimetal loading, which is conducive to the production of hydroxyl radicals. Based on the extraordinary peroxidase-like activity, the colorimetric detection of p-phenylenediamine (PPD) was constructed with a wide linear range of 0.2-30 µM and a low detection limit of 0.02 µM. The sensor system has been successfully applied to the detection of residual PPD in real dyed hair samples. The results show that the colorimetric method is sensitive, highly selective and accurate. This study provides a new idea for the efficient enhancement of nanozyme activity and effective detection of PPD by a bimetallic synergistic strategy.


Assuntos
Colorimetria , Grafite , Ferro , Níquel , Compostos de Nitrogênio , Fenilenodiaminas , Grafite/química , Fenilenodiaminas/química , Colorimetria/métodos , Compostos de Nitrogênio/química , Níquel/química , Ferro/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Nitrilas/química , Limite de Detecção , Catálise , Benzidinas/química
15.
J Environ Manage ; 367: 122014, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098066

RESUMO

Researchers are actively investigating methodologies for the detoxification and utilization of Municipal Solid Waste Incineration Bottom Ash (MSWIBA) and Fly Ash (MSWIFA), given their potential as alkali-activated materials (AAMs) with low energy consumption. Recent studies highlight that AAMs from MSWIFA and MSWIBA demonstrate significant durability in both acidic and alkaline environments. This article provides a comprehensive overview of the processes for producing MSWIFA and MSWIBA, evaluating innovative engineering stabilization techniques such as graphene nano-platelets and lightweight artificial cold-bonded aggregates, along with their respective advantages and limitations. Additionally, this review meticulously incorporates relevant reactions. Recommendations are also presented to guide future research endeavors aimed at refining these methodologies.


Assuntos
Álcalis , Cinza de Carvão , Incineração , Resíduos Sólidos , Cinza de Carvão/química , Álcalis/química , Grafite/química , Eliminação de Resíduos/métodos
16.
Anal Chim Acta ; 1319: 342984, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39122282

RESUMO

BACKGROUND: Antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), pose a significant threat to public health. Existing detection methods, like cultivation-based techniques, demand significant time and labor, while molecular diagnostic techniques, such as PCR, necessitate sophisticated instrumentation and skilled personnel. Although previous multiplex loop-mediated isothermal amplification assays based on fluorescent dyes (mfLAMP) offer simplicity and cost-effectiveness, they are prone to false-positive results. Therefore, developing a rapid and efficient multiplex assay for high-sensitivity MRSA is imperative to create a practical diagnostic tool for point-of-care testing. RESULTS: Here, we developed a mfLAMP combined with a lateral flow assay (mfLAMP-LFA) for the visual and simultaneous detection of the mecA (PBP2a-specific marker) and nuc (S. aureus-specific marker) genes in MRSA. We optimized mfLAMP-LFA using graphene oxide (GO)-based purification and specific DNA probes and evaluated its sensitivity, specificity, and stability. Utilizing GO to mitigate false-positive results by acting as a trap for free DNA probes, the mfLAMP-LFA method successfully identified mecAf and nucf-probes, exhibiting distinct red, green, and yellow fluorescence signals. The detection sensitivity of the developed mfLAMP-LFA method (1 CFU mL-1 in phosphate-buffered saline (PBS)) was comparable to other highly sensitive MRSA detection methods (1 CFU mL-1 in PBS). Furthermore, the method demonstrated specificity for MRSA, detecting it in irrigation water samples within the desired range and achieving reliable recovery rates from spiked samples. SIGNIFICANCE: This novel strategy is the first to incorporate GO into mfLAMP-LFA, enabling specific and sensitive MRSA detection and advancing rapid bacterial detection. This assay facilitates MRSA diagnostics, contributing to improved public health and food safety by delivering rapid, cost-effective point-of-care results. It enables the simultaneous detection of multiple bacteria, even in irrigation water samples artificially inoculated with MRSA, which contain aerobic bacteria at 2.7 × 102 CFU mL-1.


Assuntos
Proteínas de Bactérias , Staphylococcus aureus Resistente à Meticilina , Nuclease do Micrococo , Técnicas de Amplificação de Ácido Nucleico , Proteínas de Ligação às Penicilinas , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/genética , Proteínas de Ligação às Penicilinas/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Nuclease do Micrococo/genética , Proteínas de Bactérias/genética , Fluorescência , Técnicas de Diagnóstico Molecular/métodos , Corantes Fluorescentes/química , Grafite
17.
PLoS One ; 19(8): e0307166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39133725

RESUMO

Metformin, the primary therapy for type 2 diabetes mellitus (T2DM), showed limitations such as varying absorption, rapid system clearance, required large amount, resistance, longstanding side effects. Use of Nano formulations for pharmaceuticals is emerging as a viable technique to reduce negative consequences of drug, while simultaneously attaining precise release and targeted distribution. This study developed a Polyethylene Glycol conjugated Graphene Oxide Quantum dots (GOQD-PEG) nanocomposite for the sustained release of metformin. Herein, we evaluated the effectiveness of metformin-loaded nanoconjugate in in vitro insulin resistance model. Results demonstrated drug loaded nanoconjugate successfully restored glucose uptake and reversed insulin resistance in in vitro conditions at reduced dosage compared to free metformin.


Assuntos
Preparações de Ação Retardada , Grafite , Resistência à Insulina , Metformina , Nanoconjugados , Polietilenoglicóis , Pontos Quânticos , Grafite/química , Pontos Quânticos/química , Metformina/administração & dosagem , Metformina/farmacologia , Metformina/farmacocinética , Metformina/química , Polietilenoglicóis/química , Nanoconjugados/química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Sistemas de Liberação de Medicamentos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Glucose/química
18.
ACS Biomater Sci Eng ; 10(8): 4645-4661, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39086282

RESUMO

Graphite carbon nitride (g-C3N4) is a two-dimensional conjugated polymer with a unique energy band structure similar to graphene. Due to its outstanding analytical advantages, such as relatively small band gap (2.7 eV), low-cost synthesis, high thermal stability, excellent photocatalytic ability, and good biocompatibility, g-C3N4 has attracted the interest of researchers and industry, especially in the medical field. This paper summarizes the latest research on g-C3N4-based composites in various biomedical applications, including therapy, diagnostic imaging, biosensors, antibacterial, and wearable devices. In addition, the application prospects and possible challenges of g-C3N4 in nanomedicine are also discussed in detail. This review is expected to inspire emerging biomedical applications based on g-C3N4.


Assuntos
Técnicas Biossensoriais , Grafite , Compostos de Nitrogênio , Grafite/química , Humanos , Compostos de Nitrogênio/química , Materiais Biocompatíveis/química , Animais , Nitrilas/química , Antibacterianos/química , Antibacterianos/farmacologia , Dispositivos Eletrônicos Vestíveis , Nanomedicina/métodos
19.
Mikrochim Acta ; 191(9): 528, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120734

RESUMO

A dual-template molecularly imprinted electrochemical sensor was developed for the simultaneous detection of serotonin (5-HT) and glutamate (Glu). First, amino-functionalized reduced graphene oxide (NRGO) was used as the modification material of a GCE to increase its electrical conductivity and specific surface area, using Glu and 5-HT as dual-template molecules and o-phenylenediamine (OPD) with self-polymerization ability as functional monomers. Through self-assembly and electropolymerization, dual-template molecularly imprinted polymers were formed on the electrode. After removing the templates, the specific recognition binding sites were exposed. The amount of NRGO, polymerization parameters, and elution parameters were further optimized to construct a dual-template molecularly imprinted electrochemical sensor, which can specifically recognize double-target molecules Glu and 5-HT. The differential pulse voltammetry (DPV) technique was used to achieve simultaneous detection of Glu and 5-HT based on their distinct electrochemical activities under specific conditions. The sensor showed a good linear relationship for Glu and 5-HT in the range 1 ~ 100 µM, and the detection limits were 0.067 µM and 0.047 µM (S/N = 3), respectively. The sensor has good reproducibility, repeatability, and selectivity. It was successfully utilized to simultaneously detect Glu and 5-HT in mouse serum, offering a more dependable foundation for objectively diagnosing and early warning of depression. Additionally, the double signal sensing strategy also provides a new approach for the simultaneous detection of both electroactive and non-electroactive substances.


Assuntos
Técnicas Eletroquímicas , Ácido Glutâmico , Grafite , Limite de Detecção , Impressão Molecular , Fenilenodiaminas , Serotonina , Serotonina/sangue , Serotonina/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Animais , Ácido Glutâmico/análise , Ácido Glutâmico/sangue , Ácido Glutâmico/química , Grafite/química , Camundongos , Fenilenodiaminas/química , Depressão/diagnóstico , Depressão/sangue , Eletrodos , Biomarcadores/sangue , Biomarcadores/análise , Reprodutibilidade dos Testes
20.
Mikrochim Acta ; 191(9): 527, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120802

RESUMO

A sophisticated electrochemical sensor is presented employing a glassy carbon electrode (GCE) modified with a novel composite of synthesized graphitic carbon nitride (g-C3N4) and CoNiO2 bimetallic oxide nanoparticles (g-C3N4/CoNiO2). The sensor's electrocatalytic capabilities for Sunitinib (SUNI) oxidation were demonstrated exceptional performance with a calculated detection limit (LOD) of 52.0 nM. The successful synthesis and integrity of the composite were confirmed through meticulous characterization using various techniques. FT-IR analysis affirmed the successful synthesis of g-C3N4/CoNiO2 by providing insights into its molecular structure. XRD, FE-SEM, SEM-EDX, and BET analyses collectively validated the material's structural integrity, surface morphology, and electrocatalytic performance. Optimization of key analytical parameters, such as loading volume, concentration, electrolyte solution type, and pH, enhanced the electrocatalytic sensing capabilities of g-C3N4/CoNiO2. The synergistic interaction between g-C3N4 and CoNiO2 bimetallic oxide nanoparticles executed the sensor highly effective in the electrical oxidation of SUNI. Across a concentration range of 0.1-83.8 µM SUNI, the anodic peak current exhibited a linear increase with good precision. Application of the newly developed g-C3N4/CoNiO2 system to detect SUNI in a variety of samples, including urine, human serum, and capsule dosage forms, obtained satisfactory recoveries ranging from 97.1 to 103.0%. This methodology offers a novel approach to underscore the potential of the developed sensor for applications in biological and pharmaceutical monitoring.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Grafite , Limite de Detecção , Compostos de Nitrogênio , Sunitinibe , Grafite/química , Humanos , Sunitinibe/química , Sunitinibe/análise , Sunitinibe/sangue , Sunitinibe/urina , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Compostos de Nitrogênio/química , Nanopartículas Metálicas/química , Carbono/química , Óxidos/química , Oxirredução , Nitrilas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA