Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.081
Filtrar
1.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38787376

RESUMO

Lyme disease (LD), caused by spirochete bacteria of the genus Borrelia burgdorferi sensu lato, remains the most common vector-borne disease in the northern hemisphere. Borrelia outer surface protein A (OspA) is an integral surface protein expressed during the tick cycle, and a validated vaccine target. There are at least 20 recognized Borrelia genospecies, that vary in OspA serotype. This study presents a new in silico sequence-based method for OspA typing using next-generation sequence data. Using a compiled database of over 400 Borrelia genomes encompassing the 4 most common disease-causing genospecies, we characterized OspA diversity in a manner that can accommodate existing and new OspA types and then defined boundaries for classification and assignment of OspA types based on the sequence similarity. To accommodate potential novel OspA types, we have developed a new nomenclature: OspA in silico type (IST). Beyond the ISTs that corresponded to existing OspA serotypes 1-8, we identified nine additional ISTs that cover new OspA variants in B. bavariensis (IST9-10), B. garinii (IST11-12), and other Borrelia genospecies (IST13-17). The IST typing scheme and associated OspA variants are available as part of the PubMLST Borrelia spp. database. Compared to traditional OspA serotyping methods, this new computational pipeline provides a more comprehensive and broadly applicable approach for characterization of OspA type and Borrelia genospecies to support vaccine development.


Assuntos
Antígenos de Superfície , Proteínas da Membrana Bacteriana Externa , Lipoproteínas , Doença de Lyme , Proteínas da Membrana Bacteriana Externa/genética , Doença de Lyme/microbiologia , Lipoproteínas/genética , Antígenos de Superfície/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/classificação , Simulação por Computador , Humanos , Genoma Bacteriano , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sorogrupo , Filogenia , Vacinas Bacterianas
2.
BMC Infect Dis ; 24(1): 337, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515037

RESUMO

BACKGROUND: Genetic variation underly inter-individual variation in host immune responses to infectious diseases, and may affect susceptibility or the course of signs and symptoms. METHODS: We performed genome-wide association studies in a prospective cohort of 1138 patients with physician-confirmed Lyme borreliosis (LB), the most common tick-borne disease in the Northern hemisphere caused by the bacterium Borrelia burgdorferi sensu lato. Genome-wide variants in LB patients-divided into a discovery and validation cohort-were compared to two healthy cohorts. Additionally, ex vivo monocyte-derived cytokine responses of peripheral blood mononuclear cells to several stimuli including Borrelia burgdorferi were performed in both LB patient and healthy control samples, as were stimulation experiments using mechanistic/mammalian target of rapamycin (mTOR) inhibitors. In addition, for LB patients, anti-Borrelia antibody responses were measured. Finally, in a subset of LB patients, gene expression was analysed using RNA-sequencing data from the ex vivo stimulation experiments. RESULTS: We identified a previously unknown genetic variant, rs1061632, that was associated with enhanced LB susceptibility. This polymorphism was an eQTL for KCTD20 and ETV7 genes, and its major risk allele was associated with upregulation of the mTOR pathway and cytokine responses, and lower anti-Borrelia antibody production. In addition, we replicated the recently reported SCGB1D2 locus that was suggested to have a protective effect on B. burgdorferi infection, and associated this locus with higher Borrelia burgdorferi antibody indexes and lower IL-10 responses. CONCLUSIONS: Susceptibility for LB was associated with higher anti-inflammatory responses and reduced anti-Borrelia antibody production, which in turn may negatively impact bacterial clearance. These findings provide important insights into the immunogenetic susceptibility for LB and may guide future studies on development of preventive or therapeutic measures. TRIAL REGISTRATION: The LymeProspect study was registered with the International Clinical Trials Registry Platform (NTR4998, registration date 2015-02-13).


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Doença de Lyme , Humanos , Estudo de Associação Genômica Ampla , Estudos Prospectivos , Leucócitos Mononucleares , Suscetibilidade a Doenças , Doença de Lyme/genética , Doença de Lyme/diagnóstico , Borrelia burgdorferi/genética , Citocinas/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/uso terapêutico , Grupo Borrelia Burgdorferi/genética , Secretoglobinas/genética
3.
Biomed Res Int ; 2024: 9997082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456098

RESUMO

Lyme disease caused by the Borrelia species is a growing health concern in many parts of the world. Current treatments for the disease may have side effects, and there is also a need for new therapies that can selectively target the bacteria. Pathogens responsible for Lyme disease include B. burgdorferi, B. afzelii, and B. garinii. In this study, we employed structural docking-based screening to identify potential lead-like inhibitors against the bacterium. We first identified the core essential genome fraction of the bacterium, using 37 strains. Later, we screened a library of lead-like marine microbial metabolites (n = 4730) against the arginine deiminase (ADI) protein of Borrelia garinii. This protein plays a crucial role in the survival of the bacteria, and inhibiting it can kill the bacterium. The prioritized lead compounds demonstrating favorable binding energies and interactions with the active site of ADI were then evaluated for their drug-like and pharmacokinetic parameters to assess their suitability for development as drugs. Results from molecular dynamics simulation (100 ns) and other scoring parameters suggest that the compound CMNPD18759 (common name: aureobasidin; IUPAC name: 2-[(4R,6R)-4,6-dihydroxydecanoyl]oxypropan-2-yl (3S,5R)-3,5-dihydroxydecanoate) holds promise as a potential drug candidate for the treatment of Lyme disease, caused by B. garinii. However, further experimental studies are needed to validate the efficacy and safety of this compound in vivo.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia , Doença de Lyme , Humanos , Grupo Borrelia Burgdorferi/genética , Doença de Lyme/tratamento farmacológico , Doença de Lyme/diagnóstico , Borrelia/genética
4.
Parasit Vectors ; 17(1): 23, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238796

RESUMO

BACKGROUND: Many pathogens and parasites can infect multiple host species, and the competence of different hosts as pathogen reservoirs is key to understanding their epidemiology. Small mammals are important hosts for the instar stages of Ixodes ricinus ticks, the principal vector of Lyme disease in Europe. Small mammals also act as reservoirs of Borrelia afzelii, the most common genospecies of the Borrelia burgdorferi sensu lato (s.l.) spirochetes causing Lyme disease in Europe. However, we lack quantitative estimates on whether different small mammal species are equally suitable hosts for feeding I. ricinus and whether they show differences in pathogen transmission from host to tick. METHODS: Here, we analysed the feeding success and prevalence of B. burgdorferi s.l. infections in 12,987 instar I. ricinus found on captured small mammals with known infection status in Norway (2018-2022). RESULTS: We found that larvae were more likely to acquire a blood meal from common shrews (Sorex araneus, 46%) compared to bank voles (Myodes glareolus, 36%) and wood mice (Apodemus sylvaticus, 31%). Nymphs tended to be more likely to acquire a blood meal from wood mice (66%) compared to bank voles (54%). Common shrews harboured few nymphs (n=19). Furthermore, we found that larvae feeding on infected bank voles (11%) were more likely to be infected with B. burgdorferi s.l. than larvae on infected common shrews (7%) or wood mice (4%). CONCLUSIONS: Our study provides quantitative evidence of differences in suitability for the instar stages of I. ricinus across taxa of small mammals and highlights how even known small mammal host species can differ in their ability to feed ticks and infect larval ticks with the pathogen causing Lyme disease.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Doença de Lyme , Doenças dos Roedores , Animais , Camundongos , Borrelia burgdorferi/genética , Musaranhos , Doença de Lyme/epidemiologia , Grupo Borrelia Burgdorferi/genética , Murinae , Larva , Arvicolinae , Ninfa , Doenças dos Roedores/parasitologia
5.
Methods Mol Biol ; 2742: 1-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165611

RESUMO

Tick-borne pathogens (TBPs) are often detected through classical molecular tools (PCR, nested PCR, real-time PCR), but these are limited in terms of the number of targeted pathogens due to the volume of DNA available for analysis. To solve this problem, in 2014 we developed a new high-throughput method based on real-time microfluidic PCRs that can detect 48 or 96 pathogens in 48 or 96 samples in a single run, such as ten species from the Borrelia burgdorferi sensu lato group. We then used this technique for large-scale epidemiological studies of TBPs in tick and animal samples on an international scale through numerous collaborative projects.


Assuntos
Grupo Borrelia Burgdorferi , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Reação em Cadeia da Polimerase em Tempo Real , Doenças Transmitidas por Carrapatos/diagnóstico , Microfluídica , Rickettsia/genética , Grupo Borrelia Burgdorferi/genética
6.
Ticks Tick Borne Dis ; 15(1): 102287, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016210

RESUMO

Lyme disease, or also known as Lyme borreliosis, is caused by the spirochetes belonging to the Borrelia burgdorferi sensu lato complex, which can enter the human body following the bite of an infected tick. Many membrane lipid-bound proteins, also known as lipoproteins, are located on the surface of B. burgdorferi sensu lato and play a crucial role in the spirochete to interact with its environment, whether in ticks or mammals. Since the spirochete needs to perform various tasks, such as resisting the host's immune system or spreading throughout the organism, it is not surprising that numerous surface proteins have been found to be essential for B. burgdorferi sensu lato complex bacteria in causing Lyme disease. In this study, we have determined (at 2.4 Å resolution) and characterized the 3D structure of BB0158, one of the few chromosomally encoded outer surface proteins from B. burgdorferi sensu stricto. BB0158 belongs to the paralogous gene family 44 (PFam44), consisting of four other members (BB0159, BBA04, BBE09 and BBK52). The characterization of BB0158, which appears to form a domain-swapped dimer, in conjunction with the characterization of the corresponding PFam44 members, certainly contribute to our understanding of B. burgdorferi sensu stricto proteins.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doença de Lyme , Carrapatos , Animais , Humanos , Borrelia burgdorferi/genética , Grupo Borrelia Burgdorferi/genética , Lipoproteínas/genética , Proteínas de Membrana , Mamíferos
7.
Ticks Tick Borne Dis ; 15(1): 102285, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38035456

RESUMO

Ticks are important vectors of many pathogens in Europe, where the most impactful species is Ixodes ricinus. Recently, the geographical distribution of this tick species has been expanding, resulting in an increased risk of human exposure to tick bites. With the present study, we aimed to screen 350 I. ricinus specimens collected from humans and wild animals (mainly ungulates), to have a broader understanding of the tick-borne pathogens circulating in the Lombardy region, in northern Italy. To do so, we took advantage of a high-throughput real-time microfluidic PCR approach to screen ticks in a cost-effective and time-saving manner. Molecular analysis of the dataset revealed the presence of four genera of bacteria and two genera of protozoa: in ungulates, 77 % of collected ticks carried Anaplasma phagocytophilum, while the most common pathogen species in ticks removed from humans were those belonging to Borrelia burgdorferi sensu lato group (7.6 %). We also detected other pathogenic microorganisms, such as Rickettisa monacensis, Rickettsia helvetica, Neoehrlichia mikurensis, Babesia venatorum, and Hepatozoon martis. Besides, we also reported the presence of the pathogenic agent Borrelia miyamotoi in the area (1.4 % overall). The most common dual co-infection detected in the same tick individual involved A. phagocytophilum and Rickettsia spp. Our study provided evidence of the circulation of different tick-borne pathogens in a densely populated region in Italy.


Assuntos
Babesia , Grupo Borrelia Burgdorferi , Ixodes , Rickettsia , Doenças Transmitidas por Carrapatos , Animais , Humanos , Ixodes/microbiologia , Ensaios de Triagem em Larga Escala , Animais Selvagens , Itália/epidemiologia , Babesia/genética , Grupo Borrelia Burgdorferi/genética , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia
8.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069228

RESUMO

Lyme disease (LD) spirochetes are well known to be able to disseminate into the tissues of infected hosts, including humans. The diverse strategies used by spirochetes to avoid the host immune system and persist in the host include active immune suppression, induction of immune tolerance, phase and antigenic variation, intracellular seclusion, changing of morphological and physiological state in varying environments, formation of biofilms and persistent forms, and, importantly, incursion into immune-privileged sites such as the brain. Invasion of immune-privileged sites allows the spirochetes to not only escape from the host immune system but can also reduce the efficacy of antibiotic therapy. Here we present a case of the detection of spirochetal DNA in multiple loci in a LD patient's post-mortem brain. The presence of co-infection with Borrelia burgdorferi sensu stricto and Borrelia garinii in this LD patient's brain was confirmed by PCR. Even though both spirochete species were simultaneously present in human brain tissue, the brain regions where the two species were detected were different and non-overlapping. The presence of atypical spirochete morphology was noted by immunohistochemistry of the brain samples. Atypical morphology was also found in the tissues of experimentally infected mice, which were used as a control.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Doença de Lyme , Humanos , Borrelia/genética , Borrelia burgdorferi/genética , Grupo Borrelia Burgdorferi/genética , Encéfalo
9.
PLoS One ; 18(10): e0292741, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37815990

RESUMO

The outer surface protein C (OspC) of the agent of Lyme disease, Borrelia burgdorferi sensu stricto, is a major lipoprotein surface-expressed during early-phase human infections. Antibodies to OspC are used in serological diagnoses. This study explored the hypothesis that serological test sensitivity decreases as genetic similarity of ospC major groups (MGs) of infecting strains, and ospC A (the MG in the strain B31 used to prepare antigen for serodiagnosis assays) decreases. We used a previously published microarray dataset to compare serological reactivity to ospC A (measured as pixel intensity) versus reactivity to 22 other ospC MGs, within a population of 55 patients diagnosed by two-tier serological testing using B. burgdorferi s.s. strain B31 as antigen, in which the ospC MG is OspC A. The difference in reactivity of sera to ospC A and reactivity to each of the other 22 ospC MGs (termed 'reactivity difference') was the outcome variable in regression analysis in which genetic distance of the ospC MGs from ospC A was the explanatory variable. Genetic distance was computed for the whole ospC sequence, and 9 subsections, from Neighbour Joining phylogenetic trees of the 23 ospC MGs. Regression analysis was conducted using genetic distance for the full ospC sequence, and the subsections individually. There was a significant association between the reactivity difference and genetic distance of ospC MGs from ospC A: increased genetic distance reduced reactivity to OspC A. No single ospC subsection sequence fully explained the relationship between genetic distance and reactivity difference. An analysis of single nucleotide polymorphisms supported a biological explanation via specific amino acid modifications likely to change protein binding affinity. This adds support to the hypothesis that genetic diversity of B. burgdorferi s.s. (here specifically OspC) may impact serological diagnostic test performance. Further prospective studies are necessary to explore the clinical implications of these findings.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doença de Lyme , Humanos , Grupo Borrelia Burgdorferi/genética , Borrelia burgdorferi/genética , Filogenia , Estudos Prospectivos , Sequência de Aminoácidos , Antígenos de Bactérias/genética , Doença de Lyme/diagnóstico , Proteínas da Membrana Bacteriana Externa , Mutação
10.
Infect Genet Evol ; 115: 105502, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716446

RESUMO

Borrelia burgdorferi sensu lato is a species complex of spirochetal bacteria that occupy different ecological niches which is reflected in their reservoir host- and vector-associations. Borrelia genomes possess numerous linear and circular plasmids. Proteins encoded by plasmid genes play a major role in host- and vector-interaction and are important for Borrelia niche adaptation. However, the plasmid composition and therewith the gene repertoire may vary even in strains of a single species. Borrelia garinii, one of the six human pathogenic species, is common in Europe (vector Ixodes ricinus), Asia (vector Ixodes persulcatus) and in marine birds (vector Ixodes uriae). For the latter, only a single culture isolate (Far04) and its genome were previously available. The genome was rather small containing only one circular and six linear plasmids with a notable absence of cp32 plasmids. To further investigate B. garinii from marine transmission cycles and to explore i) whether the small number of plasmids found in isolate Far04 is a common feature in B. garinii from marine birds and presents an adaptation to this particular niche and ii) whether there may be a correlation between genome type and host species, we initiated in vitro cultures from live I. uriae collected in 2017 and 2018 from marine avian hosts and their nests. Hosts included common guillemots, Atlantic Puffin, razorbill, and kittiwake. We obtained 17 novel isolates of which 10 were sequenced using Illumina technology, one also with Pacific Bioscience technology. The 10 genomes segregated into five different genome types defined by plasmid types (based on PFam32 loci). We show that the genomes of seabird associated B. garinii contain fewer plasmids (6-9) than B. garinii from terrestrial avian species (generally ≥10), potentially suggesting niche adaptation. However, genome type did not match an association with the diverse avian seabird hosts investigated but matched the clonal complex they originated from, perhaps reflecting the isolates evolutionary history. Questions that should be addressed in future studies are (i) how is plasmid diversity related to host- and/or vector adaptation; (ii) do the different seabird species differ in reservoir host competence, and (iii) can the genome types found in seabirds use terrestrial birds as reservoir hosts.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia , Charadriiformes , Ixodes , Doença de Lyme , Animais , Humanos , Grupo Borrelia Burgdorferi/genética , Doença de Lyme/veterinária , Doença de Lyme/microbiologia , Ixodes/microbiologia , Evolução Biológica , Aves/microbiologia
11.
BMC Genomics ; 24(1): 401, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460975

RESUMO

BACKGROUND: Bacteria of the Borrelia burgdorferi sensu lato (s.l.) complex can cause Lyme borreliosis. Different B. burgdorferi s.l. genospecies vary in their host and vector associations and human pathogenicity but the genetic basis for these adaptations is unresolved and requires completed and reliable genomes for comparative analyses. The de novo assembly of a complete Borrelia genome is challenging due to the high levels of complexity, represented by a high number of circular and linear plasmids that are dynamic, showing mosaic structure and sequence homology. Previous work demonstrated that even advanced approaches, such as a combination of short-read and long-read data, might lead to incomplete plasmid reconstruction. Here, using recently developed high-fidelity (HiFi) PacBio sequencing, we explored strategies to obtain gap-free, complete and high quality Borrelia genome assemblies. Optimizing genome assembly, quality control and refinement steps, we critically appraised existing techniques to create a workflow that lead to improved genome reconstruction. RESULTS: Despite the latest available technologies, stand-alone sequencing and assembly methods are insufficient for the generation of complete and high quality Borrelia genome assemblies. We developed a workflow pipeline for the de novo genome assembly for Borrelia using several types of sequence data and incorporating multiple assemblers to recover the complete genome including both circular and linear plasmid sequences. CONCLUSION: Our study demonstrates that, with HiFi data and an ensemble reconstruction pipeline with refinement steps, chromosomal and plasmid sequences can be fully resolved, even for complex genomes such as Borrelia. The presented pipeline may be of interest for the assembly of further complex microbial genomes.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Doença de Lyme , Humanos , Borrelia/genética , Genoma Bacteriano , Filogenia , Borrelia burgdorferi/genética , Doença de Lyme/microbiologia , Grupo Borrelia Burgdorferi/genética
12.
Ticks Tick Borne Dis ; 14(4): 102188, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172512

RESUMO

Borrelia miyamotoi is an emerging human pathogen that causes a relapsing fever-like disease named B. miyamotoi disease. The bacterium belongs to the relapsing fever borreliae, and similar to spirochetes of the Borrelia burgdorferi sensu lato group, it is transmitted only by hard ticks of the Ixodes ricinus complex. To date, B. miyamotoi has not been demonstrated to cause illness in dogs or cats, and is poorly documented in veterinary medicine. The aim of this study was to determine the B. miyamotoi presence in (i) host-seeking ticks and (ii) engorged Ixodes sp. ticks collected from dogs and cats during their inspection in veterinary clinics of the city of Poznan, west-central Poland. Host-seeking ticks were sampled in dog walking areas localized in urban forested recreational sites of the city. In this study, 1,059 host-seeking and 837 engorged I. ricinus ticks collected from 680 tick-infested animals (567 dogs and 113 cats) were screened. Additionally, 31 I. hexagonus ticks (one larva, 13 nymphs, and 17 females) were collected from three cats; one larva and one nymph were collected from two dogs; and one dog was infested with a single Dermacentor reticulatus female. Borrelia DNA was identified by the amplification and sequencing of the V4 hypervariable region of the 16S rRNA gene and flaB gene fragments. DNA of B. miyamotoi was detected in 22 (2.1%) of the host-seeking ticks (in all developmental tick stages and in all study areas). In addition, the engorged I. ricinus ticks exhibited a similar B. miyamotoi presence (1.8%). Fifteen I. ricinus ticks collected from animals tested positive for the presence of B. miyamotoi DNA, and the DNA of B. miyamotoi was observed in three (9.1%; one female and two nymphs) I. hexagonus ticks. The single D. reticulatus female collected from a dog tested PCR-negative for the bacterium. The results of this study demonstrated the establishment and broad presence of the bacterium in tick populations from different urban ecosystems of the city of Poznan. The lack of difference in the mean infection presence of animal-derived and host-seeking I. ricinus ticks suggests that the systematic surveillance of pets may be useful for the evaluation of human exposure to B. miyamotoi infected ticks in urban areas. Additional studies are required to further elucidate the role of domestic and wild carnivores in the epidemiology of B. miyamotoi, which remains unknown.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia , Doenças do Gato , Doenças do Cão , Ixodes , Febre Recorrente , Humanos , Cães , Animais , Gatos , Feminino , Ixodes/microbiologia , Ecossistema , Polônia/epidemiologia , Doenças do Gato/epidemiologia , RNA Ribossômico 16S , Doenças do Cão/epidemiologia , Borrelia/genética , Grupo Borrelia Burgdorferi/genética , Ninfa/microbiologia
13.
Mol Microbiol ; 119(6): 711-727, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086029

RESUMO

PlzA is a c-di-GMP-binding protein crucial for adaptation of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi during its enzootic life cycle. Unliganded apo-PlzA is important for vertebrate infection, while liganded holo-PlzA is important for survival in the tick; however, the biological function of PlzA has remained enigmatic. Here, we report that PlzA has RNA chaperone activity that is inhibited by c-di-GMP binding. Holo- and apo-PlzA bind RNA and accelerate RNA annealing, while only apo-PlzA can strand displace and unwind double-stranded RNA. Guided by the crystal structure of PlzA, we identified several key aromatic amino acids protruding from the N- and C-terminal domains that are required for RNA-binding and unwinding activity. Our findings illuminate c-di-GMP as a switch controlling the RNA chaperone activity of PlzA, and we propose that complex RNA-mediated modulatory mechanisms allow PlzA to regulate gene expression during both the vector and host phases of the B. burgdorferi life cycle.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Doença de Lyme , Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Grupo Borrelia Burgdorferi/genética , Doença de Lyme/genética , RNA/metabolismo
14.
Ticks Tick Borne Dis ; 14(3): 102138, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36746091

RESUMO

Molecular methods for diagnosing Lyme neuroborreliosis (LNB) have shown suboptimal diagnostic sensitivities. The objective of this study was to improve the clinical sensitivity of PCR detection of Borrelia burgdorferi sensu lato spirochetes by inoculating cerebrospinal fluid (CSF) from patients suspected of LNB directly into culture medium at the time of lumbar puncture, with this pursuing enrichment of Borrelia spirochetes before PCR analysis. Adult patients with symptoms suggestive of LNB were prospectively enrolled at two hospitals in the Region of Southern Denmark. The CSF-culture samples were incubated for at least eight weeks. During this period, culture sample aliquots were analysed for the presence of Borrelia DNA by separate PCR protocols in two independent clinical laboratories. The included patients were diagnosed with definite (n=12) or possible (n=2) LNB, and non-LNB (n=171) based on clinical and paraclinical findings. Patients in the LNB and the non-LNB group had a median duration from symptom onset to lumbar puncture of 40 days (IQR [23-90] days) and 120 days (IQR [32-365] days), respectively. Pre-enrichment growth of Borrelia spirochetes was accomplished from three patients (21 %) in the LNB group. The positive culture samples were confirmed by both the digital droplet PCR and the real-time PCR methods employed. All CSF samples were PCR negative in the non-LNB group. The results of this study do not support the use of Borrelia-specific PCR as a general routine diagnostic tool in adults. Still, they suggest it may prove of additional value in selected patients with a limited time from symptom onset to sample collection.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia , Neuroborreliose de Lyme , Adulto , Humanos , Grupo Borrelia Burgdorferi/genética , Neuroborreliose de Lyme/diagnóstico , Neuroborreliose de Lyme/líquido cefalorraquidiano , Borrelia/genética , DNA , Reação em Cadeia da Polimerase em Tempo Real , Líquido Cefalorraquidiano
15.
Emerg Infect Dis ; 29(1): 64-69, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573553

RESUMO

Lyme disease is a multisystem disorder primarily caused by Borrelia burgdorferi sensu lato. However, B. garinii, which has been identified on islands off the coast of Newfoundland and Labrador, Canada, is a cause of Lyme disease in Eurasia. We report isolation and whole-genome nucleotide sequencing of a B. garinii isolate from a cotton mouse (Peromyscus gossypinus) in South Carolina, USA. We identified a second B. garinii isolate from the same repository. Phylogenetic analysis does not associate these isolates with the previously described isolates of B. garinii from Canada.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doença de Lyme , Animais , Estados Unidos/epidemiologia , Grupo Borrelia Burgdorferi/genética , Filogenia , Doença de Lyme/epidemiologia , Peromyscus , Genômica
16.
Mol Ecol ; 32(4): 786-799, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461660

RESUMO

Vector-borne pathogens exist in obligate transmission cycles between vector and reservoir host species. Host and vector shifts can lead to geographic expansion of infectious agents and the emergence of new diseases in susceptible individuals. Three bacterial genospecies (Borrelia afzelii, Borrelia bavariensis, and Borrelia garinii) predominantly utilize two distinct tick species as vectors in Asia (Ixodes persulcatus) and Europe (Ixodes ricinus). Through these vectors, the bacteria can infect various vertebrate groups (e.g., rodents, birds) including humans where they cause Lyme borreliosis, the most common vector-borne disease in the Northern hemisphere. Yet, how and in which order the three Borrelia genospecies colonized each continent remains unclear including the evolutionary consequences of this geographic expansion. Here, by reconstructing the evolutionary history of 142 Eurasian isolates, we found evidence that the ancestors of each of the three genospecies probably have an Asian origin. Even so, each genospecies studied displayed a unique substructuring and evolutionary response to the colonization of Europe. The pattern of allele sharing between continents is consistent with the dispersal rate of the respective vertebrate hosts, supporting the concept that adaptation of Borrelia genospecies to the host is important for pathogen dispersal. Our results highlight that Eurasian Lyme borreliosis agents are all capable of geographic expansion with host association influencing their dispersal; further displaying the importance of host and vector association to the geographic expansion of vector-borne pathogens and potentially conditioning their capacity as emergent pathogens.


Assuntos
Distribuição Animal , Vetores Aracnídeos , Borrelia , Ixodes , Doença de Lyme , Animais , Humanos , Ásia , Borrelia/genética , Borrelia/fisiologia , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/fisiologia , Ixodes/microbiologia , Ixodes/fisiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Europa (Continente) , Vetores Aracnídeos/microbiologia , Vetores Aracnídeos/fisiologia , Distribuição Animal/fisiologia , Adaptação Biológica/genética , Adaptação Biológica/fisiologia
17.
Transbound Emerg Dis ; 69(6): 3737-3748, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36317891

RESUMO

Cervids are important hosts for ticks and although they are refractory to some tick-borne agents such as Borrelia, they do act as reservoirs for others such as Babesia. Babesia and Borrelia are commonly transmitted by Ixodes spp. associated with deer, and most of the knowledge on their biological cycles comes from northern latitudes of the globe. In this study, we performed genetic screenings to detect tick-borne agents in blood and Ixodes stilesi ticks collected from an insular population of threatened pudu (Pudu puda), a pygmy deer species that inhabits temperate rainforests of southern South America. Inferred by phylogenetic analyses for 18S rRNA, COI and cytb genes, our results unveiled a novel genospecies of Babesia (Babesia sp. pudui) genetically related to Babesia odocoilei, a species that infects Odocoileus virginianus deer in North America. Although blood of the deer was negative for Borrelia infection, multilocus sequencing typing performed in one I. stilesi tick revealed the occurrence of a novel genetic variant of Borrelia chilensis, differing 0.93% and 0.18% in flaB and pepX genes with the type of strain for the species, respectively. Such a genetic divergence could be the result of thousands of years of isolation because of recent glaciation events that separated pudus and their tick populations at Chiloé Island approximately 437,000 years ago. The finding of a Babesia sp. has no precedents for wild and domestic ungulates in Chile and shows a novel piroplasmid that must be considered now on in rehabilitation centres and zoos that attend pudu deer. Further research is now necessary to confirm pathogenic roles.


Assuntos
Babesia , Grupo Borrelia Burgdorferi , Borrelia , Cervos , Ixodes , Animais , Babesia/genética , Chile , Filogenia , Grupo Borrelia Burgdorferi/genética , Borrelia/genética
18.
Sci Rep ; 12(1): 19991, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411296

RESUMO

Direct detection of Borrelia burgdorferi sensu lato bacteria in patient samples for diagnosis of Lyme neuroborreliosis (LNB) is hampered by low diagnostic sensitivity, due to few bacteria in cerebrospinal fluids (CSF) samples. Evaluation of novel molecular methods, including digital PCR (dPCR), as future tools in diagnostics of LNB is desirable. This study aimed to establish a dPCR assay and validate pre-PCR procedures for detection of Borrelia in CSF. Synthetic DNA fragments and cultured Borrelia reference strains were used during optimisation experiments. In addition, 59 CSF specimens from patients examined for LNB were included for clinical validation. The results showed that the pre-PCR parameters with the highest impact on Borrelia-specific dPCR method performance were incubation of the PCR-plate at 4 °C for stabilization of droplets, centrifugation for target concentration, quick-spin for dPCR rain reduction, and PCR inhibition by matrix components. Borrelia DNA in CSF was detected in one out of nine patients with LNB. Diagnostic sensitivity was determined to be 11.1% and specificity 100%. In conclusion, this study reports an optimized Borrelia-specific dPCR method for direct detection of Borrelia in CSF samples. The present study does not support the use of Borrelia-specific dPCR as a routine method for diagnosing LNB.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia , Neuroborreliose de Lyme , Humanos , Grupo Borrelia Burgdorferi/genética , DNA Bacteriano/genética , DNA Bacteriano/líquido cefalorraquidiano , Neuroborreliose de Lyme/diagnóstico , Neuroborreliose de Lyme/microbiologia , Reação em Cadeia da Polimerase/métodos , Borrelia/genética , DNA
19.
Infect Genet Evol ; 103: 105349, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35964914

RESUMO

BACKGROUND: Lyme disease is a zoonotic disease caused by infection with Borrelia burgdorferi (Bb), the involvement of the nervous system in Lyme disease is usually referred to as Lyme neuroborreliosis (LNB). LNB has diverse clinical manifestations, most commonly including meningitis, Bell's palsy, and encephalitis. However, the molecular pathogenesis of neuroborreliosis is still poorly understood. Comprehensive transcriptomic analysis following Bb infection could provide new insights into the pathogenesis of LNB and may identify novel biomarkers or therapeutic targets for LNB diagnosis and treatment. METHODS: In the present study, we pooled transcriptomic dataset of Macaca mulatta (rhesus) from our laboratory and the human astrocyte dataset GSE85143 from the Gene Expression Omnibus database to screen common differentially expressed genes (DEGs) in the Bb infection group and the control group. Functional and enrichment analyses were applied for the DEGs. Protein-Protein Interaction network, and hub genes were identified using the Search Tool for the Retrieval of Interaction Genes database and the CytoHubba plugin. Finally, mRNA expression of hub genes was validated in vitro and ex vivo from Bb infected models and normal controls by quantitative reverse transcription PCR (qRT-PCR). RESULTS: A total of 80 upregulated DEGs and 32 downregulated DEGs were identified. Among them, 11 hub genes were selected. The pathway enrichment analyses on 11 hub genes revealed that the PI3K-Akt signaling pathway was significantly enriched. The mRNA levels of ANGPT1, TLR6, SREBF1, LDLR, TNC, and ITGA2 in U251 cells and/or rhesus brain explants by exposure to Bb were validated by qRT-PCR. CONCLUSION: Our study suggested that TLR6, ANGPT1, LDLR, SREBF1, TNC, and ITGA may be candidate mammal biomarkers for LNB, and the TLR6/PI3K-Akt signaling pathway may play an important role in LNB pathogenesis.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Neuroborreliose de Lyme , Animais , Biomarcadores , Borrelia burgdorferi/genética , Grupo Borrelia Burgdorferi/genética , Sistema Nervoso Central , Humanos , Macaca mulatta/genética , Mamíferos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Mensageiro , Receptor 6 Toll-Like/genética , Transcriptoma
20.
J Vet Diagn Invest ; 34(5): 909-912, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35864735

RESUMO

Antemortem diagnosis of neuroborreliosis in horses has been hindered by both the low sensitivity of PCR testing for Borrelia burgdorferi in CSF and the low specificity of serum:CSF ELISA ratios used to determine intrathecal antibody production against the bacterium. PCR testing of the CSF of an adult horse with acute neurologic disease for the B. burgdorferi flagellin gene was negative. However, we enriched B. burgdorferi DNA through nucleic acid hybrid capture, followed by next-generation sequencing, and identified B. burgdorferi in the CSF of the horse, confirming a diagnosis of neuroborreliosis.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doenças dos Cavalos , Doença de Lyme , Doenças do Sistema Nervoso , Animais , Anticorpos Antibacterianos , Borrelia burgdorferi/genética , Grupo Borrelia Burgdorferi/genética , Ensaio de Imunoadsorção Enzimática/veterinária , Genômica , Doenças dos Cavalos/diagnóstico , Cavalos , Doença de Lyme/diagnóstico , Doença de Lyme/veterinária , Doenças do Sistema Nervoso/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA