Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
1.
Ecol Lett ; 27(3): e14404, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38519842

RESUMO

Behavioural flexibility might help animals cope with costs of genetic variants under selection, promoting genetic adaptation. However, it has proven challenging to experimentally link behavioural flexibility to the predicted compensation of population-level fitness. We tested this prediction using the field cricket Teleogryllus oceanicus. In Hawaiian populations, a mutation silences males and protects against eavesdropping parasitoids. To examine how the loss of this critical acoustic communication signal impacts offspring production and mate location, we developed a high-resolution, individual-based tracking system for low-light, naturalistic conditions. Offspring production did not differ significantly in replicate silent versus singing populations, and fitness compensation in silent conditions was associated with significantly increased locomotion in both sexes. Our results provide evidence that flexible behaviour can promote genetic adaptation via compensation in reproductive output and suggest that rapid evolution of animal communication systems may be less constrained than previously appreciated.


Assuntos
Críquete , Gryllidae , Masculino , Feminino , Animais , Comportamento Sexual Animal , Vocalização Animal , Havaí , Mutação , Gryllidae/genética , Evolução Biológica
2.
Evolution ; 78(5): 835-848, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436989

RESUMO

Understanding how the early stages of sexual signal diversification proceed is critically important because these microevolutionary dynamics directly shape species trajectories and impact macroevolutionary patterns. Unfortunately, studying this is challenging because signals involve complex interactions between behavior, morphology, and physiology, much of which can only be measured in real-time. In Hawaii, male Pacific field cricket song attracts both females and a deadly parasitoid fly. Over the past two decades, there has been a marked increase in signal variation in Hawaiian populations of these crickets, including novel male morphs with distinct mating songs. We capitalize on this rare opportunity to track changes in morph composition over time in a population with three novel morphs, investigating how mate and parasitoid attraction (components of sexual and natural selection) may shape signal evolution. We find dramatic fluctuation in morph proportions over the three years of the study, including the arrival and rapid increase of one novel morph. Natural and sexual selection pressures act differently among morphs, with some more attractive to mates and others more protected from parasitism. Collectively, our results suggest that differential protection from parasitism among morphs, rather than mate attraction, aligns with recent patterns of phenotypic change in the wild.


Assuntos
Gryllidae , Animais , Gryllidae/fisiologia , Gryllidae/genética , Masculino , Feminino , Seleção Genética , Seleção Sexual , Evolução Biológica , Preferência de Acasalamento Animal , Havaí , Vocalização Animal , Dípteros/fisiologia
3.
Evolution ; 78(5): 971-986, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38366350

RESUMO

Dietary macronutrients regulate life span and aging, yet little is known about their evolutionary effects. Here, we examine the evolutionary response of these traits in decorated crickets (Gryllodes sigillatus) maintained on diets varying in caloric content and protein-to-carbohydrate ratio. After 37 generations, each population was split: half remained on the evolution diet, and half switched to a standardized diet. Crickets lived longer and aged slower when evolving on high-calorie (both sexes) and carbohydrate-biased (females only) diets and had lower baseline mortality on high-calorie (females only) diets. However, on the standardized diet, crickets lived longer when evolving on high-calorie diets (both sexes), aged slower on high-calorie (females only) and carbohydrate-biased (both sexes) diets, and had lower baseline mortality on high-calorie (males only) and protein-biased (both sexes) diets. Life span was longer, and baseline mortality was lower when provided with the evolution vs. the standardized diet, but the aging rate was comparable. Moreover, life span was longer, aging slower (females only), and baseline mortality was lower (males only) compared to our evolved baseline, suggesting varying degrees of dietary adaptation. Collectively, we show dietary components influence the evolution of life span and aging in different ways and highlight the value of combining experimental evolution with nutritional geometry.


Assuntos
Envelhecimento , Evolução Biológica , Dieta , Gryllidae , Longevidade , Animais , Gryllidae/fisiologia , Gryllidae/genética , Feminino , Masculino , Nutrientes/metabolismo , Carboidratos da Dieta , Proteínas Alimentares , Ingestão de Energia
4.
Curr Biol ; 34(2): R58-R59, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38262359

RESUMO

Mutations that change male cricket song should be at a disadvantage because the song is used by females to choose amongst males. A new study caught evolution in action and showed that females may have flexible preferences, and new songs may even be preferred so that the mutations spread.


Assuntos
Gryllidae , Vocalização Animal , Feminino , Masculino , Mutação , Gryllidae/genética , Gryllidae/fisiologia
5.
J Evol Biol ; 36(11): 1609-1617, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37885146

RESUMO

Divergence of sexual signals between populations can lead to speciation, yet opportunities to study the immediate aftermath of novel signal evolution are rare. The recent emergence and spread of a new mating song, purring, in Hawaiian populations of the Pacific field cricket (Teleogryllus oceanicus) allows us to investigate population divergence soon after the origin of a new signal. Male crickets produce songs with specialized wing structures to attract mates from afar (calling) and entice them to mate when found (courtship). However, in Hawaii, these songs also attract an eavesdropping parasitoid fly (Ormia ochracea) that kills singing males. The novel purring song, produced with heavily modified wing morphology, attracts female crickets but not the parasitoid fly, acting as a solution to this conflict between natural and sexual selection. We've recently observed increasing numbers of purring males across Hawaii. In this integrative field study, we investigated the distribution of purring and the proportion of purring males relative to other morphs in six populations on four islands and compared a suite of phenotypic traits (wing morphology, calling song and courtship song) that make up this novel signal across populations of purring males. We show that purring is found in varying proportions across five, and is locally dominant in four, Hawaiian populations. We also show that calling songs, courtship songs and wing morphology of purring males differ geographically. Our findings demonstrate the rapid pace of evolution in island populations and provide insights into the emergence and divergence of new sexual signals over time.


Assuntos
Gryllidae , Animais , Masculino , Feminino , Gryllidae/genética , Comportamento Sexual Animal , Evolução Biológica , Vocalização Animal , Havaí
6.
J Insect Sci ; 23(4)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527468

RESUMO

The Mormon cricket, Anabrus simplex, is a flightless katydid, one of the major devastating rangeland pests in several states of the western United States. During the past few years, their sudden and periodic outbreaks into massive migratory bands caused significant economic losses to the rangeland forage and agricultural crops, particularly grain crops. Current population management methods rely heavily on broad-spectrum chemical insecticides, which could be toxic to nontargets, and even the targeted species might develop resistance in the long run. Therefore, we assessed the potential of RNA interference (RNAi)-based alternative management strategies that could supplement the current methods. In insects, RNAi efficiency varies with the method of double-stranded RNA (dsRNA) delivery. We tested 2 different methods of dsRNA delivery: injection and oral feeding of dsRNA. The results showed that Mormon crickets are sensitive to injection of dsRNA in a dose-dependent manner, but refractory to the oral feeding of dsRNA. Further, we confirmed the high nuclease activity in the insect midgut. In order to protect the dsRNA from the dsRNase activity and facilitate its uptake in the midgut, we encapsulated dsRNA inside poly lactic-co-glycolic acid (PLGA) nanoparticles and studied its release kinetics and RNAi efficiency by oral feeding. The release kinetics clearly suggested that the PLGA nanoparticle permeates from the insect digestive system to the hemolymph; however, it failed to induce an efficient RNAi response of the targeted genes. In conclusion, our findings suggest the different responses to dsRNA delivery methods in Mormon crickets, and further investigations involving dsRNA stability and its uptake mechanism are required to use RNAi as an alternative Mormon cricket population management strategy.


Assuntos
Gryllidae , Animais , Gryllidae/genética , RNA de Cadeia Dupla , Insetos/genética , Interferência de RNA
7.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629006

RESUMO

The use of nanoparticles like graphene oxide (GO) in nanocomposite industries is growing very fast. There is a strong concern that GO can enter the environment and become nanopollutatnt. Environmental pollutants' exposure usually relates to low concentrations but may last for a long time and impact following generations. Attention should be paid to the effects of nanoparticles, especially on the DNA stability passed on to the offspring. We investigated the multigenerational effects on two strains (wild and long-lived) of house cricket intoxicated with low GO concentrations over five generations, followed by one recovery generation. Our investigation focused on oxidative stress parameters, specifically AP sites (apurinic/apyrimidinic sites) and 8-OHdG (8-hydroxy-2'-deoxyguanosine), and examined the global DNA methylation pattern. Five intoxicated generations were able to overcome the oxidative stress, showing that relatively low doses of GO have a moderate effect on the house cricket (8-OHdG and AP sites). The last recovery generation that experienced a transition from contaminated to uncontaminated food presented greater DNA damage. The pattern of DNA methylation was comparable in every generation, suggesting that other epigenetic mechanisms might be involved.


Assuntos
Poluentes Ambientais , Gryllidae , Nanopartículas , Animais , Gryllidae/genética , 8-Hidroxi-2'-Desoxiguanosina , DNA
8.
J Evol Biol ; 36(9): 1266-1281, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37534753

RESUMO

Although many theoretical models of male sexual trait evolution assume that sexual selection is countered by natural selection, direct empirical tests of this assumption are relatively uncommon. Cuticular hydrocarbons (CHCs) are known to play an important role not only in restricting evaporative water loss but also in sexual signalling in most terrestrial arthropods. Insects adjusting their CHC layer for optimal desiccation resistance is often thought to come at the expense of successful sexual attraction, suggesting that natural and sexual selection are in opposition for this trait. In this study, we sampled the CHCs of male black field crickets (Teleogryllus commodus) using solid-phase microextraction and then either measured their evaporative water loss or mating success. We then used multivariate selection analysis to quantify the strength and form of natural and sexual selection targeting male CHCs. Both natural and sexual selection imposed significant linear and stabilizing selection on male CHCs, although for very different combinations. Natural selection largely favoured an increase in the total abundance of CHCs, especially those with a longer chain length. In contrast, mating success peaked at a lower total abundance of CHCs and declined as CHC abundance increased. However, mating success did improve with an increase in a number of specific CHC components that also increased evaporative water loss. Importantly, this resulted in the combination of male CHCs favoured by natural selection and sexual selection being strongly opposing. Our findings suggest that the balance between natural and sexual selection is likely to play an important role in the evolution of male CHCs in T. commodus and may help explain why CHCs are so divergent across populations and species.


Assuntos
Gryllidae , Preferência de Acasalamento Animal , Animais , Masculino , Seleção Sexual , Gryllidae/genética , Beleza , Hidrocarbonetos
9.
Nat Commun ; 14(1): 4187, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443316

RESUMO

Spermiogenesis is a radical process of differentiation whereby sperm cells acquire a compact and specialized morphology to cope with the constraints of sexual reproduction while preserving their main cargo, an intact copy of the paternal genome. In animals, this often involves the replacement of most histones by sperm-specific nuclear basic proteins (SNBPs). Yet, how the SNBP-structured genome achieves compaction and accommodates shaping remain largely unknown. Here, we exploit confocal, electron and super-resolution microscopy, coupled with polymer modeling to identify the higher-order architecture of sperm chromatin in the needle-shaped nucleus of the emerging model cricket Gryllus bimaculatus. Accompanying spermatid differentiation, the SNBP-based genome is strikingly reorganized as ~25nm-thick fibers orderly coiled along the elongated nucleus axis. This chromatin spool is further found to achieve large-scale helical twisting in the final stages of spermiogenesis, favoring its ultracompaction. We reveal that these dramatic transitions may be recapitulated by a surprisingly simple biophysical principle based on a nucleated rigidification of chromatin linked to the histone-to-SNBP transition within a confined nuclear space. Our work highlights a unique, liquid crystal-like mode of higher-order genome organization in ultracompact cricket sperm, and establishes a multidisciplinary methodological framework to explore the diversity of non-canonical modes of DNA organization.


Assuntos
Gryllidae , Animais , Masculino , Gryllidae/genética , Sêmen/metabolismo , Cromatina/genética , Cromatina/metabolismo , Espermatogênese/genética , Histonas/metabolismo , Espermatozoides/metabolismo
10.
PLoS One ; 18(5): e0285934, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200362

RESUMO

Insect body colors and patterns change markedly during development in some species as they adapt to their surroundings. The contribution of melanin and sclerotin pigments, both of which are synthesized from dopamine, to cuticle tanning has been well studied. Nevertheless, little is known about how insects alter their body color patterns. To investigate this mechanism, the cricket Gryllus bimaculatus, whose body color patterns change during postembryonic development, was used as a model in this study. We focused on the ebony and tan genes, which encode enzymes that catalyze the synthesis and degradation, respectively, of the precursor of yellow sclerotin N-ß-alanyl dopamine (NBAD). Expression of the G. bimaculatus (Gb) ebony and tan transcripts tended to be elevated just after hatching and the molting period. We found that dynamic alterations in the combined expression levels of Gb'ebony and Gb'tan correlated with the body color transition from the nymphal stages to the adult. The body color of Gb'ebony knockout mutants generated by CRISPR/Cas9 systemically darkened. Meanwhile, Gb'tan knockout mutants displayed a yellow color in certain areas and stages. The phenotypes of the Gb'ebony and Gb'tan mutants probably result from an over-production of melanin and yellow sclerotin NBAD, respectively. Overall, stage-specific body color patterns in the postembryonic stages of the cricket are governed by the combinatorial expression of Gb'ebony and Gb'tan. Our findings provide insights into the mechanism by which insects evolve adaptive body coloration at each developmental stage.


Assuntos
Gryllidae , Melaninas , Animais , Melaninas/genética , Melaninas/metabolismo , Gryllidae/genética , Gryllidae/metabolismo , Ninfa/metabolismo , Dopamina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
11.
Biomolecules ; 13(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37189337

RESUMO

Background: The house cricket, Acheta domesticus, is one of the most farmed insects worldwide and the foundation of an emerging industry using insects as a sustainable food source. Edible insects present a promising alternative for protein production amid a plethora of reports on climate change and biodiversity loss largely driven by agriculture. As with other crops, genetic resources are needed to improve crickets for food and other applications. Methods: We present the first high quality annotated genome assembly of A. domesticus from long read data and scaffolded to chromosome level, providing information needed for genetic manipulation. Results: Gene groups related to immunity were annotated and will be useful for improving value to insect farmers. Metagenome scaffolds in the A. domesticus assembly, including Invertebrate Iridescent Virus 6 (IIV6), were submitted as host-associated sequences. We demonstrate both CRISPR/Cas9-mediated knock-in and knock-out of A. domesticus and discuss implications for the food, pharmaceutical, and other industries. RNAi was demonstrated to disrupt the function of the vermilion eye-color gene producing a useful white-eye biomarker phenotype. Conclusions: We are utilizing these data to develop technologies for downstream commercial applications, including more nutritious and disease-resistant crickets, as well as lines producing valuable bioproducts, such as vaccines and antibiotics.


Assuntos
Gryllidae , Animais , Gryllidae/genética , Gryllidae/metabolismo , Agricultura , Produtos Agrícolas , Alérgenos/metabolismo , Engenharia Genética
12.
Genes (Basel) ; 14(2)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36833184

RESUMO

The mole cricket Gryllotalpa orientalis is an evolutionarily, medicinal, and agriculturally significant insect that inhabits underground environments and is distributed globally. This study measured genome size by flow cytometry and k-mer based on low-coverage sequencing, and nuclear repetitive elements were also identified. The haploid genome size estimate is 3.14 Gb by flow cytometry, 3.17 Gb, and 3.77 Gb-based two k-mer methods, respectively, which is well within the range previously reported for other species of the suborder Ensifera. 56% of repetitive elements were found in G. orientalis, similar to 56.83% in Locusta migratoria. However, the great size of repetitive sequences could not be annotated to specific repeat element families. For the repetitive elements that were annotated, Class I-LINE retrotransposon elements were the most common families and more abundant than satellite and Class I-LTR. These results based on the newly developed genome survey could be used in the taxonomic study and whole genome sequencing to improve the understanding of the biology of G. orientalis.


Assuntos
Gryllidae , Animais , Gryllidae/genética , Sequência de Bases , Mapeamento Cromossômico , Sequências Repetitivas de Ácido Nucleico , Tamanho do Genoma
13.
J Evol Biol ; 36(1): 183-194, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36357978

RESUMO

Nuptial food gift provisioning by males to females at mating is a strategy in many insects that is thought to be shaped by sexual conflict or sexual selection, as it affords males access to a female's physiology. While males often attempt to use these gifts to influence female behaviour to their own advantage, females can evolve counter mechanisms. In decorated crickets, the male's nuptial gift comprises part of the spermatophore, the spermatophylax, the feeding on which deters the female from prematurely terminating sperm transfer. However, ingested compounds in the spermatophylax and attachment of the sperm-containing ampulla could further influence female physiology and behaviour. We investigated how mating per se and these two distinct routes of potential male-mediated manipulation influence the female transcriptomic response. We conducted an RNA sequencing experiment on gut and head tissues from females for whom nuptial food gift consumption and receipt of an ejaculation were independently manipulated. In the gut tissue, we found that females not permitted to feed during mating exhibited decreased overall gene expression, possibly caused by a reduced gut function, but this was countered by feeding on the spermatophylax or a sham gift. In the head tissue, we found only low numbers of differentially expressed genes, but a gene co-expression network analysis revealed that ampulla attachment and spermatophylax consumption independently induce distinct gene expression patterns. This study provides evidence that spermatophylax feeding alters the female post-mating transcriptomic response in decorated crickets, highlighting its potential to mediate sexual conflict in this system.


Assuntos
Gryllidae , Comportamento Sexual Animal , Animais , Masculino , Feminino , Comportamento Sexual Animal/fisiologia , Gryllidae/genética , Doações , Transcriptoma , Comportamento Alimentar/fisiologia , Sêmen , Reprodução/fisiologia
14.
Zoolog Sci ; 39(5): 459-467, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36205367

RESUMO

Most insects show circadian rhythms of which the free-running period changes in a light-dependent manner and is generally longer under constant light (LL) than under constant dark conditions in nocturnal animals. However, the mechanism underlying this LL-dependent period change remains unclear. Here, using the cricket Gryllus bimaculatus, we examined the effects of long-term LL exposure on the free-running period of locomotor rhythms. Initially, the free-running period was considerably longer than 24 h but it gradually became shorter during long-term exposure to LL. The initial lengthening and ensuing gradual shortening under long-term LL exposure were observed even after unilateral removal of the optic lobe. Thus, these changes in the free-running period could be attributable to a single optic lobe clock. RNA interference (RNAi)-mediated silencing of the clock genes Par domain protein 1 (Pdp1) and timeless (tim) revealed that the treatments eliminated the initial period lengthening by LL without reducing circadian photoreceptor gene expression. However, they did not affect the period shortening during long-term LL exposure. The slopes of the regression line for the period change during long-term LL for Pdp1RNAi-treated and timRNAi-treated crickets were not different from that of the dsDsRed2-treated control. These results suggest that the initial period lengthening after transfer to LL requires tim and Pdp1, while the ensuing period shortening during long-term LL exposure is caused by a mechanism independent of tim and Pdp1.


Assuntos
Gryllidae , Animais , Ritmo Circadiano , Gryllidae/genética , Gryllidae/metabolismo , Luz , Interferência de RNA
15.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232659

RESUMO

Light is the major signal entraining the circadian clock that regulates physiological and behavioral rhythms in most organisms, including insects. Artificial light at night (ALAN) disrupts the natural light-dark cycle and negatively impacts animals at various levels. We simulated ALAN using dim light stimuli and tested their impact on gene expression in the cricket Gryllus bimaculatus, a model of insect physiology and chronobiology. At night, adult light-dark-regime-raised crickets were exposed for 30 min to a light pulse of 2-40 lx. The relative expression of five circadian-clock-associated genes was compared using qPCR. A dim ALAN pulse elicited tissue-dependent differential expression in some of these genes. The strongest effect was observed in the brain and in the optic lobe, the cricket's circadian pacemaker. The expression of opsin-Long Wave (opLW) was upregulated, as well as cryptochrome1-2 (cry) and period (per). Our findings demonstrate that even a dim ALAN exposure may affect insects at the molecular level, underscoring the impact of ALAN on the circadian clock system.


Assuntos
Relógios Circadianos , Gryllidae , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Gryllidae/genética , Luz , Opsinas/metabolismo , Fotoperíodo
16.
J Evol Biol ; 35(11): 1465-1474, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36129960

RESUMO

Although dietary macronutrients are known to regulate insect immunity, few studies have examined their evolutionary effects. Here, we evaluate this relationship in the cricket Gryllodes sigillatus by maintaining replicate populations on four diets differing in protein (P) to carbohydrate (C) ratio (P- or C-biased) and nutritional content (low- or high-nutrition) for >37 generations. We split each population into two; one maintained on their evolution diet and the other switched to their ancestral diet. We also maintained populations exclusively on the ancestral diet (baseline). After three generations, we measured three immune parameters in males and females from each population. Immunity was higher on P-biased than C-biased diets and on low- versus high-nutrition diets, although the latter was most likely driven by compensatory feeding. These patterns persisted in populations switched to their ancestral diet, indicating genetic divergence. Crickets evolving on C-biased diets had lower immunity than the baseline, whereas their P-biased counterparts had similar or higher immunity than the baseline, indicating that populations evolved with dietary manipulation. Although females exhibited superior immunity for all assays, the sexes showed similar immune changes across diets. Our work highlights the important role that macronutrient intake plays in the evolution of immunity in the sexes.


Assuntos
Gryllidae , Animais , Feminino , Masculino , Gryllidae/genética , Dieta , Nutrientes , Imunidade
17.
Zoolog Sci ; 39(4)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960036

RESUMO

The light cycle is the most powerful Zeitgeber entraining the circadian clock in most organisms. Insects use CRYPTOCHROMEs (CRYs) and/or the compound eye for the light perception necessary for photic entrainment. The molecular mechanism underlying CRY-dependent entrainment is well understood, while that of the compound eye-dependent entrainment remains to be elucidated. Using molecular and behavioral experiments, we investigated the role of timeless (tim) in the photic entrainment mechanism in the cricket Gryllus bimaculatus. RNA interference of tim (timRNAi) disrupted the entrainment or prolonged the transients for resynchronization to phase-delayed light-dark cycles. The treatment reduced the magnitude of phase delay caused by delayed light-off, but augmented advance shifts caused by light exposure at late night. TIM protein levels showed daily cycling with an increase during the night and reduction by light exposure at both early and late night. These results suggest that tim plays a critical role in the entrainment to delayed light cycles.


Assuntos
Relógios Circadianos , Gryllidae , Animais , Relógios Circadianos/genética , Ritmo Circadiano , Gryllidae/genética , Luz , Fotoperíodo , Interferência de RNA
18.
Curr Top Dev Biol ; 147: 291-306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337452

RESUMO

Many researchers are using crickets to conduct research on various topics related to development and regeneration in addition to brain function, behavior, and biological clocks, using advanced functional and perturbational technologies such as genome editing. Recently, crickets have also been attracting attention as a food source for the next generation of humans. In addition, crickets are increasingly being used as disease models and biological factories for pharmaceuticals. Cricket research has thus evolved over the last century from use primarily in highly important basic research, to use in a variety of applications and practical uses. These insects are now a state-of-the-art model animal that can be obtained and maintained in large quantities at low cost. We therefore suggest that crickets are useful as a third domesticated insect for scientific research, after honeybees and silkworms, contributing to the achievement of global sustainable development goals.


Assuntos
Gryllidae , Animais , Abelhas , Gryllidae/genética , Insetos
19.
Curr Opin Insect Sci ; 50: 100881, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35123119

RESUMO

Most tools available for manipulating gene function in insects have been developed for holometabolous species. In contrast, functional genetics tools for the Hemimetabola are highly underdeveloped. This is a barrier both to understanding ancestral insect biology, and to optimizing contemporary study and manipulation of particular large hemimetabolous orders of crucial economic and agricultural importance like the Orthoptera. For orthopteran insects, including crickets, the rapid spread of next-generation sequencing technology has made transcriptome data available for a wide variety of species over the past decade. Furthermore, whole genome sequences of orthopteran insects with relatively large genome sizes are now available. With these new genome assemblies and the development of genome editing technologies such as the CRISPR-Cas9 system, it has become possible to create gene knock-out and knock-in strains in orthopteran insects. As a result, orthopteran species should become increasingly feasible for laboratory study not only in research fields that have traditionally used insects, but also in agricultural fields that use them as food and feed. In this review, we summarize these recent advances and their relevance to such applications.


Assuntos
Edição de Genes , Gryllidae , Animais , Tecnologia de Alimentos , Edição de Genes/métodos , Genômica , Gryllidae/genética , Insetos/genética
20.
Dev Biol ; 485: 1-8, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35196518

RESUMO

Comparing the developmental mechanisms of segmentation among insects with different modes of embryogenesis provides insights on how the function of segmentation genes evolved. Functional analysis of eve by genetic mutants shows that the Drosophila pair-rule gene, even-skipped (eve), contributes to initial segmental patterning. However, eve orthologs tends to have diverse functions in other insects. To compare the evolutionary functional divergence of this gene, we evaluated eve function in a phylogenetically basal insect, the cricket Gryllus bimaculatus. To investigate the phenotypic effects of eve gene knock-out, we generated CRISPR/Cas9 system-mediated mutant strains of the cricket. CRISPR/Cas9 mutagenesis of multiple independent sites in the eve coding region revealed that eve null mutant embryos were defective in forming the gnathal, thoracic, and abdominal segments, consequently shortening the anterior-posterior axis. In contrast, the structures of the anterior and posterior ends (e.g., antenna, labrum, and cercus) formed normally. Hox gene expression in the gnathal, thoracic, and abdominal segments was detected in the mutant embryos. Overall, this study showed that Gryllus eve plays an important role in embryonic elongation and the formation of segmental boundaries in the gnathal to abdominal region of crickets. In the light of studies on other species, the eve function shown in Gryllus might be ancestral in insects.


Assuntos
Proteínas de Drosophila , Gryllidae , Sequência de Aminoácidos , Animais , Padronização Corporal/genética , Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Gryllidae/genética , Gryllidae/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Insetos/genética , Insetos/metabolismo , Interferência de RNA , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA