Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323936

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in guanosine triphosphate (GTP) synthesis and assembles into filaments in cells, which desensitizes the enzyme to feedback inhibition and boosts nucleotide production. The vertebrate retina expresses two splice variants IMPDH1(546) and IMPDH1(595). In bovine retinas, residue S477 is preferentially phosphorylated in the dark, but the effects on IMPDH1 activity and regulation are unclear. Here, we generated phosphomimetic mutants to investigate structural and functional consequences of S477 phosphorylation. The S477D mutation resensitized both variants to GTP inhibition but only blocked assembly of IMPDH1(595) filaments. Cryo-EM structures of both variants showed that S477D specifically blocks assembly of a high-activity assembly interface, still allowing assembly of low-activity IMPDH1(546) filaments. Finally, we discovered that S477D exerts a dominant-negative effect in cells, preventing endogenous IMPDH filament assembly. By modulating the structure and higher-order assembly of IMPDH, S477 phosphorylation acts as a mechanism for downregulating retinal GTP synthesis in the dark when nucleotide turnover is decreased.


Assuntos
Citoesqueleto , Guanosina Trifosfato , IMP Desidrogenase , Retina , Animais , Bovinos , Guanosina Trifosfato/biossíntese , Nucleotídeos , Fosforilação , Retina/enzimologia , IMP Desidrogenase/metabolismo
2.
Dev Biol ; 478: 89-101, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34048735

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in de novo guanine nucleotide biosynthesis. Its activity is negatively regulated by the binding of GTP. IMPDH can form a membraneless subcellular structure termed the cytoophidium in response to certain changes in the metabolic status of the cell. The polymeric form of IMPDH, which is the subunit of the cytoophidium, has been shown to be more resistant to the inhibition by GTP at physiological concentrations, implying a functional correlation between cytoophidium formation and the upregulation of GTP biosynthesis. Herein we demonstrate that zebrafish IMPDH1b and IMPDH2 isoforms can assemble abundant cytoophidium in most of cultured cells under stimuli, while zebrafish IMPDH1a shows distinctive properties of forming the cytoophidium in different cell types. Point mutations that disrupt cytoophidium structure in mammalian models also prevent the aggregation of zebrafish IMPDHs. In addition, we discover the presence of the IMPDH cytoophidium in various tissues of larval and adult fish under normal growth conditions. Our results reveal that polymerization and cytoophidium assembly of IMPDH can be a regulatory machinery conserved among vertebrates, and with specific physiological purposes.


Assuntos
Estruturas Citoplasmáticas/ultraestrutura , IMP Desidrogenase/química , Proteínas de Peixe-Zebra/química , Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Estruturas Citoplasmáticas/química , Expressão Gênica , Guanosina Trifosfato/biossíntese , Guanosina Trifosfato/metabolismo , Humanos , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Isoenzimas/química , Isoenzimas/genética , Mutação Puntual , Regulação para Cima , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
3.
Elife ; 92020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254022

RESUMO

We report the in vivo regulation of Inosine-5´-monophosphate dehydrogenase 1 (IMPDH1) in the retina. IMPDH1 catalyzes the rate-limiting step in the de novo synthesis of guanine nucleotides, impacting the cellular pools of GMP, GDP and GTP. Guanine nucleotide homeostasis is central to photoreceptor cells, where cGMP is the signal transducing molecule in the light response. Mutations in IMPDH1 lead to inherited blindness. We unveil a light-dependent phosphorylation of retinal IMPDH1 at Thr159/Ser160 in the Bateman domain that desensitizes the enzyme to allosteric inhibition by GDP/GTP. When exposed to bright light, living mice increase the rate of GTP and ATP synthesis in their retinas; concomitant with IMPDH1 aggregate formation at the outer segment layer. Inhibiting IMPDH activity in living mice delays rod mass recovery. We unveil a novel mechanism of regulation of IMPDH1 in vivo, important for understanding GTP homeostasis in the retina and the pathogenesis of adRP10 IMPDH1 mutations.


Assuntos
Guanosina Trifosfato/biossíntese , IMP Desidrogenase/genética , Luz , Processamento de Proteína Pós-Traducional , Retina/metabolismo , Retina/efeitos da radiação , Trifosfato de Adenosina/biossíntese , Animais , Fenômenos Bioquímicos , Regulação da Expressão Gênica , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fosforilação , Estimulação Luminosa , Células Fotorreceptoras/fisiologia
4.
Mol Microbiol ; 113(6): 1155-1169, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32052499

RESUMO

In bacteria, guanosine (penta)tetra-phosphate ([p]ppGpp) is essential for controlling intracellular metabolism that is needed to adapt to environmental changes, such as amino acid starvation. The (p)ppGpp0 strain of Bacillus subtilis, which lacks (p)ppGpp synthetase, is unable to form colonies on minimal medium. Here, we found suppressor mutations in the (p)ppGpp0 strain, in the purine nucleotide biosynthesis genes, prs, purF and rpoB/C, which encode RNA polymerase core enzymes. In comparing our work with prior studies of ppGpp0 suppressors, we discovered that methionine addition masks the suppression on minimal medium, especially of rpoB/C mutations. Furthermore, methionine addition increases intracellular GTP in rpoB suppressor and this effect is decreased by inhibiting GTP biosynthesis, indicating that methionine addition activated GTP biosynthesis and inhibited growth under amino acid starvation conditions in (p)ppGpp0 backgrounds. Furthermore, we propose that the increase in intracellular GTP levels induced by methionine is due to methionine derivatives that increase the activity of the de novo GTP biosynthesis enzyme, GuaB. Our study sheds light on the potential relationship between GTP homeostasis and methionine metabolism, which may be the key to adapting to environmental changes.


Assuntos
Bacillus subtilis/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Trifosfato/biossíntese , Ligases/metabolismo , Metionina/metabolismo , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Regulação Bacteriana da Expressão Gênica/genética , Ligases/genética , Supressão Genética/genética , Transcrição Gênica/genética
5.
Biol Chem ; 401(1): 131-142, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31600135

RESUMO

Elongation factor G (EF-G) is a translational GTPase that acts at several stages of protein synthesis. Its canonical function is to catalyze tRNA movement during translation elongation, but it also acts at the last step of translation to promote ribosome recycling. Moreover, EF-G has additional functions, such as helping the ribosome to maintain the mRNA reading frame or to slide over non-coding stretches of the mRNA. EF-G has an unconventional GTPase cycle that couples the energy of GTP hydrolysis to movement. EF-G facilitates movement in the GDP-Pi form. To convert the energy of hydrolysis to movement, it requires various ligands in the A site, such as a tRNA in translocation, an mRNA secondary structure element in ribosome sliding, or ribosome recycling factor in post-termination complex disassembly. The ligand defines the direction and timing of EF-G-facilitated motion. In this review, we summarize recent advances in understanding the mechanism of EF-G action as a remarkable force-generating GTPase.


Assuntos
Guanosina Trifosfato/biossíntese , Fator G para Elongação de Peptídeos/genética , Biossíntese de Proteínas/genética , Ribossomos/genética , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/genética , Hidrólise , Fator G para Elongação de Peptídeos/biossíntese , RNA Mensageiro/genética , RNA de Transferência/genética
6.
Biotechnol Bioeng ; 116(12): 3324-3332, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31478191

RESUMO

3-Fucosyllactose (3-FL) is one of the major fucosylated oligosaccharides in human milk. Along with 2'-fucosyllactose (2'-FL), it is known for its prebiotic, immunomodulator, neonatal brain development, and antimicrobial function. Whereas the biological production of 2'-FL has been widely studied and made significant progress over the years, the biological production of 3-FL has been hampered by the low activity and insoluble expression of α-1,3-fucosyltransferase (FutA), relatively low abundance in human milk oligosaccharides compared with 2'-FL, and lower digestibility of 3-FL than 2'-FL by bifidobacteria. In this study, we report the gram-scale production of 3-FL using E. coli BL21(DE3). We previously generated the FutA quadruple mutant (mFutA) with four site mutations at S46F, A128N, H129E, Y132I, and its specific activity was increased by nearly 15 times compared with that of wild-type FutA owing to the increase in kcat and the decrease in Km . We overexpressed mFutA in its maximum expression level, which was achieved by the optimization of yeast extract concentration in culture media. We also overexpressed L-fucokinase/GDP- L-fucose pyrophosphorylase to increase the supply of GDP-fucose in the cytoplasm. To increase the mass of recombinant whole-cell catalysts, the host E. coli BW25113 was switched to E. coli BL21(DE3) because of the lower acetate accumulation of E. coli BL21(DE3) than that of E. coli BW25113. Finally, the lactose operon was modified by partially deleting the sequence of LacZ (lacZΔm15) for better utilization of D-lactose. Production using the lacZΔm15 mutant yielded 3-FL concentration of 4.6 g/L with the productivity of 0.076 g·L-1 ·hr-1 and the specific 3-FL yield of 0.5 g/g dry cell weight.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Guanosina Trifosfato , Engenharia Metabólica , Leite Humano/química , Oligossacarídeos , beta-Galactosidase , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Difosfato Fucose/genética , Guanosina Difosfato Fucose/metabolismo , Guanosina Trifosfato/biossíntese , Guanosina Trifosfato/genética , Humanos , Oligossacarídeos/biossíntese , Oligossacarídeos/química , Oligossacarídeos/genética , Trissacarídeos/genética , Trissacarídeos/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
7.
Neuropharmacology ; 148: 347-357, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30710569

RESUMO

Spinal cord injury results in sensation dysfunction. This study explored miR-142-3p, which acts a critical role in sciatic nerve conditioning injury (SNCI) promoting the repair of the dorsal column injury and validated its function on primary sensory neuron(DRG). miR-142-3p expression increased greatly in the spinal cord dorsal column lesion (SDCL) group and increased slightly in the SNCI group. Subsequently, the expression of adenylate cyclase 9 (AC9), the target gene of miR-142-3p, declined sharply in the SDCL group and declined limitedly in the SNCI group. The expression trend of cAMP was opposite to that of miR-142-3p. MiR-142-3p inhibitor improved the axon length, upregulated the expression of AC9, cAMP, p-CREB, IL-6, and GAP43, and downregulated the expression of GTP-RhoA. miR-142-3p inhibitor combined with AC9 siRNA showed shorter axon length, the expression of AC9, cAMP, p-CREB, IL-6, and GAP43 was decreased, and the expression of GTP-RhoA was increased. H89 and AG490, inhibitors of cAMP/PKA pathway and IL6/STAT3/GAP43 axis, respectively, declined the enhanced axonal growth by miR-142-3p inhibitor and altered the expression level of the corresponding proteins. Thus, a substitution therapy using Sorafenib that downregulates the miR-142-3p expression for SNCI was investigated. The results showed the effect of Sorafenib was similar to that of miR-142-3p inhibitor and SNCI on both axon growth in vitro and sensory conduction function recovery in vivo. In conclusion, miR-142-3p acts a pivotal role in SNCI promoting the repair of dorsal column injury. Sorafenib mimics the treatment effect of SNCI via downregulation of miR-142-3p, subsequently, promoting sensory conduction function recovery post dorsal column injury.


Assuntos
Adenilil Ciclases/fisiologia , AMP Cíclico/fisiologia , MicroRNAs/fisiologia , Sensação/efeitos dos fármacos , Sorafenibe/farmacologia , Traumatismos da Medula Espinal/fisiopatologia , Adenilil Ciclases/biossíntese , Animais , AMP Cíclico/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Proteína GAP-43/biossíntese , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/biossíntese , Interleucina-6/biossíntese , Isoquinolinas/farmacologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Rodaminas , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Sulfonamidas/farmacologia , Tirfostinas/farmacologia , Regulação para Cima/efeitos dos fármacos
8.
Sci Rep ; 7: 44324, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295017

RESUMO

Many antimicrobial peptides are synthesized non-ribosomally in bacteria, but little is known about their subcellular route of biosynthesis, their mode of intracellular accumulation, or their role in the physiology of the producer cells. Here, we present a comprehensive view on the biosynthesis of gramicidin S (GS) in Aneurinibacillus migulanus, having observed a peripheral membrane localization of its synthetases. The peptide gets accumulated in nano-globules, which mature by fusion into larger granules and end up within vacuolar structures. These granules serve as energy storage devices, as they contain GS molecules that are non-covalently attached to alkyl phosphates and protect them from dephosphorylation and premature release of energy. This finding of a fundamentally new type of high-energy phosphate storage mechanism can explain the curious role of GS biosynthesis in the physiology of the bacterial producer cells. The unknown role of the GrsT protein, which is part of the non-ribosomal GS synthetase operon, can thus be assumed to be responsible for the biosynthesis of alkyl phosphates. GS binding to alkyl phosphates may suggest its general affinity to phosphagens such as ATP and GTP, which can represent the important intracellular targets in pathogenic bacteria.


Assuntos
Antibacterianos/biossíntese , Bacillales/metabolismo , Proteínas de Bactérias/genética , Grânulos Citoplasmáticos/metabolismo , Regulação Bacteriana da Expressão Gênica , Gramicidina/biossíntese , Trifosfato de Adenosina/biossíntese , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Bacillales/genética , Bacillales/ultraestrutura , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Grânulos Citoplasmáticos/ultraestrutura , Guanosina Trifosfato/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Óperon , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Ligação Proteica , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
9.
Mol Cell ; 64(3): 480-492, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27746019

RESUMO

The synthesis of ribosomes is regulated by both amino acid abundance and the availability of ATP, which regenerates guanosine triphosphate (GTP), powers ribosomes, and promotes transcription of rRNA genes. We now report that bacteria supersede both of these controls when experiencing low cytosolic magnesium (Mg2+), a divalent cation essential for ribosome stabilization and for neutralization of ATP's negative charge. We uncover a regulatory circuit that responds to low cytosolic Mg2+ by promoting expression of proteins that import Mg2+ and lower ATP amounts. This response reduces the levels of ATP and ribosomes, making Mg2+ ions available for translation. Mutants defective in Mg2+ uptake and unable to reduce ATP levels accumulate non-functional ribosomal components and undergo translational arrest. Our findings establish a paradigm whereby cells reduce the amounts of translating ribosomes to carry out protein synthesis.


Assuntos
Regulação Bacteriana da Expressão Gênica , Magnésio/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Ribossômicas/biossíntese , Ribossomos/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Cátions Bivalentes , Meios de Cultura/química , Meios de Cultura/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina Trifosfato/biossíntese , Magnésio/metabolismo , Biogênese de Organelas , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Eletricidade Estática , Estresse Fisiológico/genética
10.
Proc Natl Acad Sci U S A ; 113(12): E1710-9, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951678

RESUMO

The stringent response is a survival mechanism used by bacteria to deal with stress. It is coordinated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp], which interact with target proteins to promote bacterial survival. Although this response has been well characterized in proteobacteria, very little is known about the effectors of this signaling system in Gram-positive species. Here, we report on the identification of seven target proteins for the stringent response nucleotides in the Gram-positive bacterium Staphylococcus aureus We demonstrate that the GTP synthesis enzymes HprT and Gmk bind with a high affinity, leading to an inhibition of GTP production. In addition, we identified five putative GTPases--RsgA, RbgA, Era, HflX, and ObgE--as (p)ppGpp target proteins. We show that RsgA, RbgA, Era, and HflX are functional GTPases and that their activity is promoted in the presence of ribosomes but strongly inhibited by the stringent response nucleotides. By characterizing the function of RsgA in vivo, we ascertain that this protein is involved in ribosome assembly, with an rsgA deletion strain, or a strain inactivated for GTPase activity, displaying decreased growth, a decrease in the amount of mature 70S ribosomes, and an increased level of tolerance to antimicrobials. We additionally demonstrate that the interaction of ppGpp with cellular GTPases is not unique to the staphylococci, as homologs from Bacillus subtilis and Enterococcus faecalis retain this ability. Taken together, this study reveals ribosome inactivation as a previously unidentified mechanism through which the stringent response functions in Gram-positive bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , GTP Fosfo-Hidrolases/metabolismo , Guanosina Tetrafosfato/fisiologia , Biogênese de Organelas , Ribossomos/metabolismo , Staphylococcus aureus/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/metabolismo , Enterococcus faecalis/metabolismo , Escherichia coli , Biblioteca Gênica , Guanosina Trifosfato/biossíntese , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Fases de Leitura Aberta , Ligação Proteica , Ribossomos/ultraestrutura , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
11.
PLoS One ; 10(12): e0143677, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26630542

RESUMO

INTRODUCTION: Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation. Therefore, we examined whether NDK can interact with FtsZ to convert FtsZ-bound GDP and/or free GDP to GTP to trigger FtsZ polymerisation. METHODS: Recombinant and native NDK and FtsZ proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis were used as the experimental samples. FtsZ polymersation was monitored using 90° light scattering and FtsZ polymer pelleting assays. The γ32P-GTP synthesised by NDK from GDP and γ32P-ATP was detected using thin layer chromatography and quantitated using phosphorimager. The FtsZ bound 32P-GTP was quantitated using phosphorimager, after UV-crosslinking, followed by SDS-PAGE. The NDK-FtsZ interaction was determined using Ni2+-NTA-pulldown assay and co-immunoprecipitation of the recombinant and native proteins in vitro and ex vivo, respectively. RESULTS: NDK triggered instantaneous polymerisation of GDP-precharged recombinant FtsZ in the presence of ATP, similar to the polymerisation of recombinant FtsZ (not GDP-precharged) upon the direct addition of GTP. Similarly, NDK triggered polymerisation of recombinant FtsZ (not GDP-precharged) in the presence of free GDP and ATP as well. Mutant NDK, partially deficient in GTP synthesis from ATP and GDP, triggered low level of polymerisation of MsFtsZ, but not of MtFtsZ. As characteristic of NDK's NTP substrate non-specificity, it used CTP, TTP, and UTP also to convert GDP to GTP, to trigger FtsZ polymerisation. The NDK of one mycobacterial species could trigger the polymerisation of the FtsZ of another mycobacterial species. Both the recombinant and the native NDK and FtsZ showed interaction with each other in vitro and ex vivo, alluding to the possibility of direct phosphorylation of FtsZ-bound GDP by NDK. CONCLUSION: Irrespective of the bacterial species, NDK interacts with FtsZ in vitro and ex vivo and, through the synthesis of GTP from FtsZ-bound GDP and/or free GDP, and ATP (CTP/TTP/UTP), triggers FtsZ polymerisation. The possible biological context of this novel activity of NDK is presented.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/biossíntese , Núcleosídeo-Difosfato Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Microscopia Eletrônica de Transmissão , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Núcleosídeo-Difosfato Quinase/genética , Polimerização , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Antimicrob Agents Chemother ; 59(10): 6328-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248377

RESUMO

The prevention of mother-to-child transmission (MTCT) of HIV is a crucial component in HIV therapy. Nucleoside reverse transcriptase inhibitors (NRTIs), primarily 3'-azido-3'-thymidine (AZT [zidovudine]), have been used to treat both mothers and neonates. While AZT is being replaced with less toxic drugs in treating mothers in MTCT prevention, it is still commonly used to treat neonates. Problems related to mitochondrial toxicity and potential mutagenesis associated with AZT treatment have been reported in treated cohorts. Yet little is known concerning the metabolism and potential toxicity of AZT on embryonic and neonatal tissues, especially considering that the enzymes of nucleoside metabolism change dramatically as many tissues convert from hyperplastic to hypertrophic growth during this period. AZT is known to inhibit thymidine phosphorylation and potentially alter deoxynucleoside triphosphate (dNTP) pools in adults. This study examines the effects of AZT on dNTP pools, mRNA expression of deoxynucleoside/deoxynucleotide metabolic enzymes, and mitochondrial DNA levels in a neonatal rat model. Results show that AZT treatment dramatically altered dNTP pools in the first 7 days of life after birth, which normalized to age-matched controls in the second and third weeks. Additionally, AZT treatment dramatically increased the mRNA levels of many enzymes involved in deoxynucleotide synthesis and mitochondrial biogenesis during the first week of life, which normalized to age-matched controls by the third week. These results were correlated with depletion of mitochondrial DNA noted in the second week. Taken together, results demonstrated that AZT treatment has a powerful effect on the deoxynucleotide synthesis pathways that may be associated with toxicity and mutagenesis.


Assuntos
Fármacos Anti-HIV/toxicidade , DNA Mitocondrial/antagonistas & inibidores , Coração/efeitos dos fármacos , RNA Mensageiro/antagonistas & inibidores , Inibidores da Transcriptase Reversa/toxicidade , Zidovudina/toxicidade , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Animais , Animais Recém-Nascidos , Citidina Trifosfato/antagonistas & inibidores , Citidina Trifosfato/biossíntese , Variações do Número de Cópias de DNA/efeitos dos fármacos , DNA Mitocondrial/biossíntese , Feminino , Regulação da Expressão Gênica , Guanosina Trifosfato/antagonistas & inibidores , Guanosina Trifosfato/biossíntese , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação/efeitos dos fármacos , Gravidez , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Uridina Trifosfato/antagonistas & inibidores , Uridina Trifosfato/biossíntese
13.
Dev Cell ; 31(4): 393-404, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25458009

RESUMO

Accurate control of the Ras-related nuclear protein (Ran) GTPase cycle depends on the regulated activity of regulator of chromosome condensation 1 (RCC1), Ran's nucleotide exchange factor. RanBP1 has been characterized as a coactivator of the Ran GTPase-activating protein RanGAP1. RanBP1 can also form a stable complex with Ran and RCC1, although the dynamics and function of this complex remain poorly understood. Here, we show that formation of the heterotrimeric RCC1/Ran/RanBP1 complex in M phase Xenopus egg extracts controls both RCC1's enzymatic activity and partitioning between the chromatin-bound and soluble pools of RCC1. This mechanism is critical for spatial control of Ran-guanosine triphosphate (GTP) gradients that guide mitotic spindle assembly. Moreover, phosphorylation of RanBP1 drives changes in the dynamics of chromatin-bound RCC1 pools at the metaphase-anaphase transition. Our findings reveal an important mitotic role for RanBP1, controlling the spatial distribution and magnitude of mitotic Ran-GTP production and thereby ensuring accurate execution of Ran-dependent mitotic events.


Assuntos
Guanosina Trifosfato/biossíntese , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Fuso Acromático/metabolismo , Proteína ran de Ligação ao GTP/biossíntese , Animais , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Xenopus , Proteínas de Xenopus/metabolismo
14.
PLoS Pathog ; 8(10): e1002957, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071437

RESUMO

We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus.


Assuntos
Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/patogenicidade , Guanosina Trifosfato/biossíntese , IMP Desidrogenase/química , IMP Desidrogenase/metabolismo , Ácido Micofenólico/farmacologia , Animais , Antifúngicos/farmacologia , Caenorhabditis elegans/microbiologia , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus gattii/genética , Cryptococcus gattii/isolamento & purificação , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/metabolismo , Cristalografia por Raios X , Farmacorresistência Fúngica/genética , Inibidores Enzimáticos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , IMP Desidrogenase/genética , Meningoencefalite/microbiologia
15.
Proc Natl Acad Sci U S A ; 108(48): 19264-9, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22084084

RESUMO

Pancreatic ß-cells are an essential source of insulin and their destruction because of autoimmunity causes type I diabetes. We conducted a chemical screen to identify compounds that would induce the differentiation of insulin-producing ß-cells in vivo. To do this screen, we brought together the use of transgenic zebrafish as a model of ß-cell differentiation, a unique multiwell plate that allows easy visualization of lateral views of swimming larval fish and a library of clinical drugs. We identified six hits that can induce precocious differentiation of secondary islets in larval zebrafish. Three of these six hits were known drugs with a considerable background of published data on mechanism of action. Using pharmacological approaches, we have identified and characterized two unique pathways in ß-cell differentiation in the zebrafish, including down-regulation of GTP production and retinoic acid biosynthesis.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Acetanilidas/farmacologia , Animais , Animais Geneticamente Modificados , Ácidos Cafeicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Primers do DNA/genética , Dimetil Sulfóxido , Relação Dose-Resposta a Droga , Epirizol/farmacologia , Imunofluorescência , Proteínas de Fluorescência Verde , Guanosina Trifosfato/biossíntese , Proteína HMGB1/metabolismo , Larva/efeitos dos fármacos , Microscopia Confocal , Ácido Micofenólico/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Ácidos Sulfanílicos/farmacologia , Tretinoína/metabolismo , Peixe-Zebra , p-Aminoazobenzeno/análogos & derivados , p-Aminoazobenzeno/farmacologia
16.
PLoS One ; 5(8): e12142, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20808906

RESUMO

BACKGROUND: Inorganic polyphosphate (poly P) plays an important role in stress tolerance and virulence in many bacteria. PPK1 is the principal enzyme involved in poly P synthesis, while PPK2 uses poly P to generate GTP, a signaling molecule that serves as an alternative energy source and a precursor for various physiological processes. Campylobacter jejuni, an important cause of foodborne gastroenteritis in humans, possesses homologs of both ppk1 and ppk2. ppk1 has been previously shown to impact the pathobiology of C. jejuni. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate for the first time that the deletion of ppk2 in C. jejuni resulted in a significant decrease in poly P-dependent GTP synthesis, while displaying an increased intracellular ATP:GTP ratio. The Deltappk2 mutant exhibited a significant survival defect under osmotic, nutrient, aerobic, and antimicrobial stresses and displayed an enhanced ability to form static biofilms. However, the Deltappk2 mutant was not defective in poly P and ppGpp synthesis suggesting that PPK2-mediated stress tolerance is not ppGpp-mediated. Importantly, the Deltappk2 mutant was significantly attenuated in invasion and intracellular survival within human intestinal epithelial cells as well as in chicken colonization. CONCLUSIONS/SIGNIFICANCE: Taken together, we have highlighted the role of PPK2 as a novel pathogenicity determinant that is critical for C. jejuni survival, adaptation, and persistence in the host environments. PPK2 is absent in humans and animals; therefore, can serve as a novel target for therapeutic intervention of C. jejuni infections.


Assuntos
Campylobacter jejuni/enzimologia , Campylobacter jejuni/fisiologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Estresse Fisiológico , Trifosfato de Adenosina/metabolismo , Animais , Anti-Infecciosos/farmacologia , Biofilmes , Campylobacter jejuni/citologia , Campylobacter jejuni/patogenicidade , Galinhas/microbiologia , Alimentos , Guanosina Tetrafosfato/metabolismo , Guanosina Trifosfato/biossíntese , Guanosina Trifosfato/metabolismo , Humanos , Espaço Intracelular/metabolismo , Mutação , Osmose , Fenótipo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Polifosfatos/metabolismo , Regulação para Cima
17.
Exp Cell Res ; 316(20): 3443-53, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20603113

RESUMO

The deoxyguanosine (GdR) analog guanine-ß-d-arabinofuranoside (araG) has a specific toxicity for T lymphocytes. Also GdR is toxic for T lymphocytes, provided its degradation by purine nucleoside phosphorylase (PNP) is prevented, by genetic loss of PNP or by enzyme inhibitors. The toxicity of both nucleosides requires their phosphorylation to triphosphates, indicating involvement of DNA replication. In cultured cells we found by isotope-flow experiments with labeled araG a rapid accumulation and turnover of araG phosphates regulated by cytosolic and mitochondrial kinases and deoxynucleotidases. At equilibrium their partition between cytosol and mitochondria depended on the substrate saturation kinetics and cellular abundance of the kinases leading to higher araGTP concentrations in mitochondria. dGTP interfered with the allosteric regulation of ribonucleotide reduction, led to highly imbalanced dNTP pools with gradual inhibition of DNA synthesis and cell-cycle arrest at the G1-S boundary. AraGTP had no effect on ribonucleotide reduction. AraG was in minute amounts incorporated into nuclear DNA and stopped DNA synthesis arresting cells in S-phase. Both nucleosides eventually induced caspases and led to apoptosis. We used high, clinically relevant concentrations of araG, toxic for nuclear DNA synthesis. Our experiments do not exclude an effect on mitochondrial DNA at low araG concentrations when phosphorylation occurs mainly in mitochondria.


Assuntos
Arabinonucleosídeos/metabolismo , Arabinonucleotídeos/metabolismo , Ciclo Celular , Nucleotídeos de Desoxiguanina/metabolismo , Desoxiguanosina/metabolismo , Guanosina Trifosfato/análogos & derivados , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Animais , Apoptose/efeitos dos fármacos , Arabinonucleosídeos/farmacologia , Arabinonucleotídeos/biossíntese , Biocatálise , Células CHO , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cricetinae , Cricetulus , Citosol/enzimologia , DNA/metabolismo , Replicação do DNA/efeitos dos fármacos , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Nucleotídeos de Desoxiguanina/biossíntese , Desoxiguanosina/farmacologia , Desoxirribonucleotídeos/metabolismo , Fibroblastos/enzimologia , Fase G1/efeitos dos fármacos , Guanosina Trifosfato/biossíntese , Guanosina Trifosfato/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/genética , Cinética , Mitocôndrias/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Purina-Núcleosídeo Fosforilase/metabolismo , Fase S/efeitos dos fármacos
18.
FEBS J ; 274(8): 1983-90, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17355283

RESUMO

Mollicutes are wall-less bacteria and cause various diseases in humans, animals and plants. They have the smallest genomes with low G + C content and lack many genes of DNA, RNA and protein precursor biosynthesis. Nucleoside diphosphate kinase (NDK), a house-keeping enzyme that plays a critical role in the synthesis of nucleic acids precursors, i.e. NTPs and dNTPs, is absent in all the Mollicutes genomes sequenced to date. Therefore, it would be of interest to know how Mollicutes synthesize dNTPs/NTPs without NDK. To answer this question, nucleoside monophosphate kinases (NMPKs) from Ureaplasma were studied regarding their role in the synthesis of NTPs/dNTPs. In this work, Ureaplasma adenylate kinase, cytidylate kinase, uridylate kinase and thymidylate kinase were cloned and expressed in Escherichia coli. The recombinant enzymes were purified and characterized. These NMPKs are base specific, as indicated by their names, and capable of converting (d)NMPs directly to (d)NTPs. The catalytic rates of (d)NTPs and (d)NDP synthesis by these NMPKs were determined using tritium-labelled (d)NMPs, and the rates for (d)NDP synthesis, in general, were much higher (up to 100-fold) than that of (d)NTP. Equilibrium studies with adenylate kinase suggested that the rates of NTPs/dNTPs synthesis by NMPKs in vivo are probably regulated by the levels of (d)NMPs. These results strongly indicate that NMPKs could substitute the NDK function in vivo.


Assuntos
Trifosfato de Adenosina/biossíntese , Citidina Trifosfato/biossíntese , Guanosina Trifosfato/biossíntese , Núcleosídeo-Fosfato Quinase/fisiologia , Ureaplasma/enzimologia , Adenilato Quinase/fisiologia , Clonagem Molecular , Núcleosídeo-Difosfato Quinase/fisiologia , Especificidade por Substrato
19.
Proc Natl Acad Sci U S A ; 99(26): 16684-8, 2002 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-12482933

RESUMO

An enzyme that uses inorganic polyphosphate (poly P) as a donor to convert GDP to GTP has been purified 1,300-fold to homogeneity from lysates of Pseudomonas aeruginosa PAOM5. Poly P chains of 30-50 residues are optimal; those of 15-700 residues can also serve. GDP is preferred over ADP among nucleoside diphosphate acceptors. This nucleoside diphosphate kinase (NDK) activity resides in the same protein isolated for its synthesis of poly P from GTP and designated PPK2 in an accompanying report. The reaction that synthesizes poly P and the reaction that utilizes poly P differ in their kinetic features. Especially notable is the catalytic potency of the NDK activity, which is 75-fold greater than that of poly P synthesis. PPK2 appears in the stationary phase of growth and reaches NDK levels of 5-10% that of the classic NDK; both kinase activities may figure in the generation of the guanosine precursors in the synthesis of alginate, an exopolysaccharide essential for the virulence of P. aeruginosa.


Assuntos
Guanosina Difosfato/metabolismo , Guanosina Trifosfato/biossíntese , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Pseudomonas aeruginosa/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Fosfotransferases (Aceptor do Grupo Fosfato)/isolamento & purificação , Pseudomonas aeruginosa/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA