Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.125
Filtrar
1.
J Chromatogr A ; 1726: 464946, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38744185

RESUMO

On-line coupled high performance liquid chromatography-gas chromatography-flame ionisation detection (HPLC-GC-FID) was used to compare the effect of hydrogen, helium and nitrogen as carrier gases on the chromatographic characteristics for the quantification of mineral oil hydrocarbon (MOH) traces in food related matrices. After optimisation of chromatographic parameters nitrogen carrier gas exhibited characteristics equivalent to hydrogen and helium regarding requirements set by current guidelines and standardisation such as linear range, quantification limit and carry over. Though nitrogen expectedly led to greater peak widths, all required separations of standard compounds were sufficient and humps of saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) were appropriate to enable quantitation similar to situations where hydrogen or helium had been used. Slightly increased peak widths of individual hump components did not affect shapes and widths of the MOSH and MOAH humps were not significantly affected by the use of nitrogen as carrier gas. Notably, nitrogen carrier gas led to less solvent peak tailing and smaller baseline offset. Overall, nitrogen may be regarded as viable alternative to hydrogen or helium and may even extend the range of quantifiable compounds to highly volatile hydrocarbon eluting directly after the solvent peak.


Assuntos
Hidrocarbonetos , Óleo Mineral , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa/métodos , Óleo Mineral/química , Óleo Mineral/análise , Hidrocarbonetos/análise , Nitrogênio/análise , Hélio/química , Hidrogênio/química , Ionização de Chama/métodos , Gases/química
2.
PLoS One ; 19(5): e0301216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743641

RESUMO

Non-thermal atmospheric-pressure plasma (NTAPP) has been widely studied for clinical applications, e.g., disinfection, wound healing, cancer therapy, hemostasis, and bone regeneration. It is being revealed that the physical and chemical actions of plasma have enabled these clinical applications. Based on our previous report regarding plasma-stimulated bone regeneration, this study focused on Achilles tendon repair by NTAPP. This is the first study to reveal that exposure to NTAPP can accelerate Achilles tendon repair using a well-established Achilles tendon injury rat model. Histological evaluation using the Stoll's and histological scores showed a significant improvement at 2 and 4 weeks, with type I collagen content being substantial at the early time point of 2 weeks post-surgery. Notably, the replacement of type III collagen with type I collagen occurred more frequently in the plasma-treated groups at the early stage of repair. Tensile strength test results showed that the maximum breaking strength in the plasma-treated group at two weeks was significantly higher than that in the untreated group. Overall, our results indicate that a single event of NTAPP treatment during the surgery can contribute to an early recovery of an injured tendon.


Assuntos
Tendão do Calcâneo , Gases em Plasma , Traumatismos dos Tendões , Cicatrização , Animais , Tendão do Calcâneo/lesões , Ratos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Cicatrização/efeitos dos fármacos , Traumatismos dos Tendões/terapia , Masculino , Hélio/farmacologia , Ratos Sprague-Dawley , Colágeno Tipo I/metabolismo , Resistência à Tração , Pressão Atmosférica , Colágeno Tipo III/metabolismo
3.
BMC Vet Res ; 20(1): 153, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659026

RESUMO

BACKGROUND: Melting corneal ulcers are a serious condition that affects a great number of animals and people around the world and it is characterised by a progressive weakening of the tissue leading to possible severe ophthalmic complications, such as visual impairment or blindness. This disease is routinely treated with medical therapy and keratoplasty, and recently also with alternative regenerative therapies, such as cross-linking, amniotic membrane transplant, and laser. Plasma medicine is another recent example of regenerative treatment that showed promising results in reducing the microbial load of corneal tissue together with maintaining its cellular vitality. Since the effect of helium plasma application on corneal mechanical viscoelasticity has not yet been investigated, the aim of this study is first to evaluate it on ex vivo porcine corneas for different exposition times and then to compare the results with previous data on cross-linking treatment. RESULTS: 94 ex vivo porcine corneas divided into 16 populations (healthy or injured, fresh or cultured and treated or not with plasma or cross-linking) were analysed. For each population, a biomechanical analysis was performed by uniaxial stress-relaxation tests, and a statistical analysis was carried out considering the characteristic mechanical parameters. In terms of equilibrium normalised stress, no statistically significant difference resulted when the healthy corneas were compared with lesioned plasma-treated ones, independently of treatment time, contrary to what was obtained about the cross-linking treated corneas which exhibited more intense relaxation phenomena. CONCLUSIONS: In this study, the influence of the Helium plasma treatment was observed on the viscoelasticity of porcine corneas ex vivo, by restoring in lesioned tissue a degree of relaxation similar to the one of the native tissue, even after only 2 min of application. Therefore, the obtained results suggest that plasma treatment is a promising new regenerative ophthalmic therapy for melting corneal ulcers, laying the groundwork for further studies to correlate the mechanical findings with corneal histology and ultrastructural anatomy after plasma treatment.


Assuntos
Córnea , Hélio , Gases em Plasma , Animais , Suínos , Córnea/efeitos dos fármacos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Fenômenos Biomecânicos , Álcalis , Pressão Atmosférica , Úlcera da Córnea/veterinária , Úlcera da Córnea/terapia
4.
J Chromatogr A ; 1722: 464869, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604057

RESUMO

Hydrodynamics, efficiency, and loading capacity of two semi-packed columns with different cross sections (NANO 315 µm x 18 µm; CAP 1000 µm x 28 µm) and similar pillar diameter and pillar-pillar distance (respectively 5 µm and 2.5 µm) have been compared in high-pressure gas chromatography. A flow prediction tool has been first designed to determine pressure variations and hold-up time across the chromatographic system taking into account the rectangular geometry of the ducts into the semi-packed columns. Intrinsic values of Height Equivalent to Theoretical Plate were determined for NANO and CAP columns using helium as carrier gas and similar values have been obtained (30 µm) for the two columns. Loading capacity of semi-packed columns were determined for decane at 70 °C using helium, and the highest value was obtained from CAP column (larger cross section and stationary phase content). Finally, significant HETP improvement (down to 15 µm) and peak shape were observed when carbon dioxide was used as carrier gas, suggesting mobile phase adsorption on stationary phase in high pressure conditions.


Assuntos
Hélio , Pressão , Cromatografia Gasosa/métodos , Cromatografia Gasosa/instrumentação , Hélio/química , Hidrodinâmica , Dióxido de Carbono/química , Adsorção
5.
Biosensors (Basel) ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38667151

RESUMO

Solid-state nanopores have become a prominent tool in the field of single-molecule detection. Conventional solid-state nanopores are thick, which affects the spatial resolution of the detection results. Graphene is the thinnest 2D material and has the highest spatial detection resolution. In this study, a graphene membrane chip was fabricated by combining a MEMS process with a 2D material wet transfer process. Raman spectroscopy was used to assess the quality of graphene after the transfer. The mechanism behind the influence of the processing dose and residence time of the helium ion beam on the processed pore size was investigated. Subsequently, graphene nanopores with diameters less than 10 nm were fabricated via helium ion microscopy. DNA was detected using a 5.8 nm graphene nanopore chip, and the appearance of double-peak signals on the surface of 20 mer DNA was successfully detected. These results serve as a valuable reference for nanopore fabrication using 2D material for DNA analysis.


Assuntos
DNA , Grafite , Hélio , Nanoporos , Grafite/química , Análise Espectral Raman , Técnicas Biossensoriais , Microscopia
6.
PLoS One ; 19(4): e0296845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635742

RESUMO

Electron cyclotron resonance heating method of Particle-in-Cell code was used to analyze heating phenomena, axial kinetic energy, and self-consistent electric field of confined electron plasma in ELTRAP device by hydrogen and helium background gases. The electromagnetic simulations were performed at a constant power of 3.8 V for different RF drives (0.5 GHz- 8 GHz), as well as for 1 GHz constant frequency at these varying amplitudes (1 V-3.8 V). The impacts of axial and radial temperatures were found maximum at 1.8 V and 5 GHz as compared to other amplitudes and frequencies for both background gases. These effects are higher at varying radio frequencies due to more ionization and secondary electrons production and maximum recorded radial temperature for hydrogen background gas was 170.41 eV. The axial kinetic energy impacts were found more effective in the outer radial part (between 0.03 and 0.04 meters) of the ELTRAP device due to applied VRF through C8 electrode. The self-consistent electric field was found higher for helium background gas at 5 GHz RF than other amplitudes and radio frequencies. The excitation and ionization rates were found to be higher along the radial direction (r-axis) than the axial direction (z-axis) in helium background gas as compared to hydrogen background gas. The current studies are advantageous for nuclear physics applications, beam physics, microelectronics, coherent radiation devices and also in magnetrons.


Assuntos
Ciclotrons , Elétrons , Calefação , Hélio , Hidrogênio
7.
ACS Appl Mater Interfaces ; 16(11): 13597-13610, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38453642

RESUMO

Atmospheric pressure coaxial gaseous discharge tubes (DTs) with helium have demonstrated potential for in vitro inactivation or sensitization of glioblastoma cancer cells. Here, we study the effect of two configurations of the DT electrode system on its electromagnetic emissivity as well as other physical factors (heating and UV emission) that form in the vicinity of this device. We demonstrate that the configuration of the DT electrodes that concentrates the discharge streamers near the top of the device has a distant (cm scale) deactivation effect on U87-MG glioblastoma cancer cells when irradiated, without measurable UV components in the DT optical emission spectra. This effect persists even through different barriers such as glass, plastic, or quartz Petri dishes but is eliminated when glass or plastic dishes are filled with water. These findings demonstrate the potential for development of noninvasive, physical-based treatment methods of deep-tissue tumors.


Assuntos
Glioblastoma , Gases em Plasma , Humanos , Gases em Plasma/farmacologia , Hélio , Glioblastoma/terapia , Fenômenos Eletromagnéticos , Pressão Atmosférica
8.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 260-265, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38538354

RESUMO

OBJECTIVE: To investigate the clinical effect of helium-oxygen mechanical ventilation on inflammation of the diseased lung segment and diaphragm function in patients with acute respiratory distress syndrome (ARDS) caused by pneumonia who suffered difficulty weaning from mechanical ventilation. METHODS: A prospective controlled study was conducted. A total of 40 patients with ARDS caused by pneumonia and requiring tracheal intubation with difficulty weaning from mechanical ventilation, admitted to the department of critical care medicine in Pingtan Branch of Fujian Medical University Union Hospital from October 2020 to December 2021 were enrolled. Patients were divided into nitrogen oxygen ventilation group and helium-oxygen ventilation group according to random number table, with 20 cases in each group. The nitrogen oxygen ventilation group was given 60% nitrogen and 40% oxygen ventilation treatment, and the helium-oxygen ventilation group was given 60% helium and 40% oxygen ventilation treatment. Peak airway pressure (Ppeak), plateau airway pressure (Pplat), tidal volume (VT), minute ventilation volume (MV) and pulse oxygen saturation (SpO2) were collected at 0, 1, 2, 3 hours after ventilation treatment. At the same time, the concentrations of inflammatory factors interleukin-6 (IL-6) and C-reactive protein (CRP) in epithelial lining fluid in patients with diseased lung segments were measured before and after ventilation treatment for 3 hours, and the diaphragmatic excursion and the diaphragmatic thickening fraction were measured before and after ventilation treatment for 3 hours. RESULTS: There were no significant differences in gender, age, oxygenation index, serum CRP, serum procalcitonin (PCT), body temperature, serum creatinine (SCr), alanine aminotransferase (ALT), fasting blood glucose (FPG), hemoglobin (Hb), and basic heart and lung diseases between the two groups. Under the condition that VT and SpO2 are relatively unchanged, the airway pressure in helium-oxygen ventilation group decreased significantly after 1 hour of ventilation [Ppeak (cmH2O, 1 cmH2O≈0.098 kPa): 22.80±4.47 vs. 28.00±5.07, Pplat (cmH2O): 19.15±3.90 vs. 23.20±3.81, both P < 0.05], and the airway pressure in the nitrogen oxygen ventilation group increased significantly after 1 hour [Ppeak (cmH2O): 22.35±2.13 vs. 19.75±1.94, Pplat (cmH2O): 18.50±1.70 vs. 16.50±1.88, both P < 0.05]. There were no significant differences in CRP and IL-6 levels in epithelial lining fluid in the diseased lung segment before and after ventilation in the nitrogen oxygen ventilation group, while the levels of these indexes in the helium-oxygen ventilation group after ventilation were significantly lower than those before ventilation, and significantly lower than those in the nitrogen oxygen ventilation group [CRP (mg/L): 10.15 (6.39, 15.84) vs. 16.10 (11.63, 18.66), IL-6 (µg/L): 1.15 (0.78, 1.86) vs. 2.67 (1.67, 4.85), both P < 0.05]. There were no statistically significant differences in the diaphragmatic excursion and the diaphragmatic thickening fraction before and after ventilation in the nitrogen oxygen ventilation group, while the above indexes in the helium-oxygen ventilation group were significantly higher than those before ventilation, and were significantly higher than those in the nitrogen oxygen ventilation group [diaphragmatic excursion (cm): 1.93 (1.69, 2.20) vs. 1.34 (1.22, 1.83), diaphragmatic thickening fraction: (48.22±8.61)% vs. (33.29±11.04)%, both P < 0.05]. CONCLUSIONS: Helium-oxygen ventilation can reduce the airway pressure of patients with mechanical ventilation, alleviate the inflammatory response of lung segment, improve the function of respiratory muscle, and is expected to be an important treatment for severe lung rehabilitation.


Assuntos
Pneumonia , Síndrome do Desconforto Respiratório , Humanos , Respiração Artificial , Hélio , Estudos Prospectivos , Diafragma , Interleucina-6 , Pulmão , Síndrome do Desconforto Respiratório/terapia , Volume de Ventilação Pulmonar , Oxigênio , Nitrogênio
9.
Diving Hyperb Med ; 54(1): 23-38, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38507907

RESUMO

Introduction: This is a review of commercial heliox saturation decompression procedures. The scope does not include compression, storage depth or bell excursion dive procedures. The objectives are to: identify the sources of the procedures; trace their evolution; describe the current practice; and detect relevant trends. Methods: Eleven international commercial diving companies provided their diving manuals for review under a confidentiality agreement. Results: Modern commercial diving saturation procedures are derived from a small number of original procedures (United States Navy, Comex, and NORSOK). In the absence of relevant scientific studies since the late 80's, the companies have empirically adapted these procedures according to their needs and experience. Such adaptation has caused differences in decompression rates shallower than 60 msw, decompression rest stops and the decision to decompress linearly or stepwise. Nevertheless, the decompression procedures present a remarkable homogeneity in chamber PO2 and daily decompression rates when deeper than 60 msw. The companies have also developed common rules of good practice; no final decompression should start with an initial ascending excursion; a minimum hold is required before starting a final decompression after an excursion dive. Recommendation is made for the divers to exercise during decompression. Conclusions: We observed a trend towards harmonisation within the companies that enforce international procedures, and, between companies through cooperation inside the committees of the industry associations.


Assuntos
Doença da Descompressão , Mergulho , Humanos , Descompressão/efeitos adversos , Oxigênio , Hélio , Doença da Descompressão/etiologia
10.
Diving Hyperb Med ; 54(1): 69-72, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38507913

RESUMO

Bounce diving with rapid descents to very deep depths may provoke the high-pressure neurological syndrome (HPNS). The strategy of including small fractions of nitrogen in the respired gas to produce an anti-HPNS narcotic effect increases the gas density which may exceed recommended guidelines. In 2020 the 'Wetmules' dive team explored the Pearse Resurgence cave (New Zealand) to 245 m breathing trimix (approximately 4% oxygen, 91% helium and 5% nitrogen). Despite the presence of nitrogen, one diver experienced HPNS tremors beyond 200 m. The use of hydrogen (a light yet slightly narcotic gas) has been suggested as a solution to this problem but there are concerns, including the potential for ignition and explosion of hydrogen-containing gases, and accelerated heat loss. In February 2023 a single dive to 230 m was conducted in the Pearse Resurgence to experience hydrogen as a breathing gas in a deep bounce dive. Using an electronic closed-circuit rebreather, helihydrox (approximately 3% oxygen, 59% helium and 38% hydrogen) was breathed between 200 and 230 m. This was associated with amelioration of HPNS symptoms in the vulnerable diver and no obvious adverse effects. The use of hydrogen is a potential means of progressing deeper with effective HPNS amelioration while maintaining respired gas density within advised guidelines.


Assuntos
Mergulho , Síndrome Neurológica de Alta Pressão , Humanos , Mergulho/efeitos adversos , Hélio , Hidrogênio , Nitrogênio , Oxigênio
11.
Sci Rep ; 14(1): 4401, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388562

RESUMO

Imaging the structure and observing the dynamics of isolated proteins using single-particle X-ray diffractive imaging (SPI) is one of the potential applications of X-ray free-electron lasers (XFELs). Currently, SPI experiments on isolated proteins are limited by three factors: low signal strength, limited data and high background from gas scattering. The last two factors are largely due to the shortcomings of the aerosol sample delivery methods in use. Here we present our modified electrospray ionization (ESI) source, which we dubbed helium-ESI (He-ESI). With it, we increased particle delivery into the interaction region by a factor of 10, for 26 nm-sized biological particles, and decreased the gas load in the interaction chamber corresponding to an 80% reduction in gas scattering when compared to the original ESI. These improvements have the potential to significantly increase the quality and quantity of SPI diffraction patterns in future experiments using He-ESI, resulting in higher-resolution structures.


Assuntos
Hélio , Proteínas , Raios X , Difração de Raios X , Lasers
12.
Anal Methods ; 16(11): 1564-1569, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38406836

RESUMO

In this comprehensive study, we evaluated the feasibility of using hydrogen instead of helium as a carrier gas in a GC-MS/MS system for pesticide residue analysis, spanning three matrices: pepper, tomato, and zucchini. Initial assessments focused on the ion source's chemical inertness, employing nitrobenzene as a benchmark to monitor the hydrogenation process. A method with a duration of less than 12 minutes was developed, achieving good chromatographic peak resolution attributable to the enhanced chromatographic performance of hydrogen as a carrier gas. The study emphasized the optimization of system parameters, testing various ion source temperatures, detector voltages, and injection volumes. Sensitivity assessments, based on the DG-SANTE criteria, indicated that the majority of compounds were identifiable at a concentration of 5 µg kg-1 (81% in tomato, 84% in pepper and 73% in zucchini). Detailed validation for reproducibility, matrix effects, and linearity across 150 pesticides unveiled generally favorable outcomes, with a notable majority of compounds displaying low matrix effects, satisfactory linearity ranges and good reproducibility with most compounds returning a relative standard deviation (RSD) below 10%. When applied to 15 real samples, the hydrogen-based system's performance was juxtaposed against a helium-based counterpart, revealing that results are very comparable between both systems. This comparative approach highlights hydrogen's potential as a reliable and efficient carrier gas in pesticide residue analysis for routine food control laboratories, overcoming difficulties resulting from the lack of helium supplies.


Assuntos
Resíduos de Praguicidas , Praguicidas , Espectrometria de Massas em Tandem/métodos , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Verduras/química , Praguicidas/análise , Hélio/análise , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Reprodutibilidade dos Testes , Hidrogênio/análise
13.
Sci Rep ; 14(1): 3578, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347045

RESUMO

Recent research has highlighted the promising potential of cold atmospheric plasma (CAP) in cancer therapy. However, variations in study outcomes are attributed to differences in CAP devices and plasma parameters, which lead to diverse compositions of plasma products, including electrons, charged particles, reactive species, UV light, and heat. This study aimed to evaluate and compare the optimal exposure time, duration, and direction-dependent cellular effects of two CAPs, based on argon and helium gases, on glioblastoma U-87 MG cancer cells and an animal model of GBM. Two plasma jets were used as low-temperature plasma sources in which helium or argon gas was ionized by high voltage (4.5 kV) and frequency (20 kHz). In vitro assessments on human GBM and normal astrocyte cell lines, using MTT assays, flow cytometry analysis, wound healing assays, and immunocytochemistry for Caspase3 and P53 proteins, demonstrated that all studied plasma jets, especially indirect argon CAP, selectively induced apoptosis, hindered tumor cell growth, and inhibited migration. These effects occurred concurrently with increased intracellular levels of reactive oxygen species and decreased total antioxidant capacity in the cells. In vivo results further supported these findings, indicating that single indirect argon and direct helium CAP therapy, equal to high dose Temozolomide treatment, induced tumor cell death in a rat model of GBM. This was concurrent with a reduction in tumor size observed through PET-CT scan imaging and a significant increase in the survival rate. Additionally, there was a decrease in GFAP protein levels, a significant GBM tumor marker, and an increase in P53 protein expression based on immunohistochemical analyses. Furthermore, Ledge beam test analysis revealed general motor function improvement after indirect argon CAP therapy, similar to Temozolomide treatment. Taken together, these results suggest that CAP therapy, using indirect argon and direct helium jets, holds great promise for clinical applications in GBM treatment.


Assuntos
Glioblastoma , Gases em Plasma , Humanos , Ratos , Animais , Hélio/farmacologia , Hélio/uso terapêutico , Argônio/farmacologia , Proteína Supressora de Tumor p53 , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Temozolomida , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
14.
J Integr Neurosci ; 23(1): 14, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38287843

RESUMO

BACKGROUND: Heliox shows protective effects against acute focal ischemia-reperfusion injury in the brain. However, further research is needed to unveil the intricate molecular mechanisms involved. Determining how heliox affects ferroptosis caused by oxygen-glucose deprivation/reoxygenation (OGD/R) in SH-SY5Y cells as well as the underlying mechanism was the goal of the current work. METHODS: With the use of 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA), JC-1, and methyl thiazolyl tetrazolium, we assessed the survival, reactive oxygen species (ROS), and mitochondrial membrane potential in SH-SY5Y cells after they had been exposed to OGD/R and heliox. The expression of molecules associated with ferroptosis and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway was analyzed using quantitative polymerase chain reaction (PCR) and immunoblotting, while malondialdehyde (MDA), oxidized glutathione disulfide (GSSG), ferrous ion (Fe2+), and reduced glutathione (GSH) levels were evaluated using biochemical kits. RESULTS: OGD/R treatment reduced the GSH to GSSG ratio; the potential of the mitochondrial membrane; the expression of the proteins GSH, SLC7A11, and glutathione peroxidase 4 (GPX4); and the ability of SH-SY5Y cells to survive. In contrast, OGD/R treatment increased the expression of cyclooxygenase-2 (COX2), ACSL4, and ferritin heavy chain 1 (FTH1) proteins, the production of MDA and GSSG, and the levels of ROS and Fe2+. However, heliox effectively mitigated all these OGD/R-induced effects. Furthermore, in OGD/R-treated SH-SY5Y cells, heliox administration stimulated the PI3K/AKT pathway while suppressing the nuclear factor-κB (NF-κB) pathway. When MK-2206, an AKT inhibitor, was applied concurrently to the cells, these outcomes were reversed. CONCLUSIONS: Heliox prevents OGD/R from causing ferroptosis in SH-SY5Y cells by activating the PI3K/AKT pathway. This suggests a promising therapeutic potential for heliox use in the management of ischemia/reperfusion injury.


Assuntos
Ferroptose , Hélio , Neuroblastoma , Traumatismo por Reperfusão , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glucose/metabolismo , Dissulfeto de Glutationa/uso terapêutico , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Reperfusão
15.
ACS Appl Mater Interfaces ; 16(4): 4439-4448, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38244049

RESUMO

We demonstrate the fabrication of sharp nanopillars of high aspect ratio onto specialized atomic force microscopy (AFM) microcantilevers and their use for high-speed AFM of DNA and nucleoproteins in liquid. The fabrication technique uses localized charged-particle-induced deposition with either a focused beam of helium ions or electrons in a helium ion microscope (HIM) or scanning electron microscope (SEM). This approach enables customized growth onto delicate substrates with nanometer-scale placement precision and in situ imaging of the final tip structures using the HIM or SEM. Tip radii of <10 nm are obtained and the underlying microcantilever remains intact. Instead of the more commonly used organic precursors employed for bio-AFM applications, we use an organometallic precursor (tungsten hexacarbonyl) resulting in tungsten-containing tips. Transmission electron microscopy reveals a thin layer of carbon on the tips. The interaction of the new tips with biological specimens is therefore likely very similar to that of standard carbonaceous tips, with the added benefit of robustness. A further advantage of the organometallic tips is that compared to carbonaceous tips they better withstand UV-ozone cleaning treatments to remove residual organic contaminants between experiments, which are inevitable during the scanning of soft biomolecules in liquid. Our tips can also be grown onto the blunted tips of previously used cantilevers, thus providing a means to recycle specialized cantilevers and restore their performance to the original manufacturer specifications. Finally, a focused helium ion beam milling technique to reduce the tip radii and thus further improve lateral spatial resolution in the AFM scans is demonstrated.


Assuntos
Elétrons , Hélio , Microscopia de Força Atômica/métodos , Carbono , Íons
16.
Methods Mol Biol ; 2742: 123-129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165620

RESUMO

Preparation of mammalian cells for a Borrelia burgdorferi infection can be cumbersome especially if investigating possible cell entry processes. The initial steps of infection or entry into cells by a pathogen often involve attachment to the cell surface and plasma membrane changes. To topologically investigate with great resolution and detail these interactions of the pathogen and the mammalian cell, helium ion microscopy (HIM) can be employed. Here we describe a protocol used to define a specific multiplicity of infection (MOI) of Borrelia burgdorferi on a human chondrosarcoma cell line (SW1353) so that fine detail structures on the mammalian cell can be observed and quantified by HIM.


Assuntos
Borrelia burgdorferi , Borrelia , Doença de Lyme , Animais , Humanos , Hélio , Microscopia , Mamíferos
17.
Phys Med Biol ; 69(4)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232394

RESUMO

Objective. Helium, oxygen, and neon ions in addition to carbon ions will be used for hypofractionated multi-ion therapy to maximize the therapeutic effectiveness of charged-particle therapy. To use new ions in cancer treatments based on the dose-fractionation protocols established in carbon-ion therapy, this study examined the cell-line-specific radioresponse to therapeutic helium-, oxygen-, and neon-ion beams within wide dose ranges.Approach. Response of cells to ions was described by the stochastic microdosimetric kinetic model. First, simulations were made for the irradiation of one-field spread-out Bragg peak beams in water with helium, carbon, oxygen, and neon ions to achieve uniform survival fractions at 37%, 10%, and 1% for human salivary gland tumor (HSG) cells, the reference cell line for the Japanese relative biological effectiveness weighted dose system, within the target region defined at depths from 90 to 150 mm. The HSG cells were then replaced by other cell lines with different radioresponses to evaluate differences in the biological dose distributions of each ion beam with respect to those of carbon-ion beams.Main results. For oxygen- and neon-ion beams, the biological dose distributions within the target region were almost equivalent to those of carbon-ion beams, differing by less than 5% in most cases. In contrast, for helium-ion beams, the biological dose distributions within the target region were largely different from those of carbon-ion beams, more than 10% in several cases.Significance.From the standpoint of tumor control evaluated by the clonogenic cell survival, this study suggests that the dose-fractionation protocols established in carbon-ion therapy could be reasonably applied to oxygen- and neon-ion beams while some modifications in dose prescription would be needed when the protocols are applied to helium-ion beams. This study bridges the gap between carbon-ion therapy and hypofractionated multi-ion therapy.


Assuntos
Carbono , Hélio , Humanos , Neônio/uso terapêutico , Carbono/uso terapêutico , Hélio/uso terapêutico , Oxigênio/uso terapêutico , Íons , Eficiência Biológica Relativa
18.
Phys Med Biol ; 69(5)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38295403

RESUMO

Objective.Compact ion imaging systems based on thin detectors are a promising prospect for the clinical environment since they are easily integrated into the clinical workflow. Their measurement principle is based on energy deposition instead of the conventionally measured residual energy or range. Therefore, thin detectors are limited in the water-equivalent thickness range they can image with high precision. This article presents ourenergy paintingmethod, which has been developed to render high precision imaging with thin detectors feasible even for objects with larger, clinically relevant water-equivalent thickness (WET) ranges.Approach.A detection system exclusively based on pixelated silicon Timepix detectors was used at the Heidelberg ion-beam therapy center to track single helium ions and measure their energy deposition behind the imaged object. Calibration curves were established for five initial beam energies to relate the measured energy deposition to WET. They were evaluated regarding their accuracy, precision and temporal stability. Furthermore, a 60 mm × 12 mm region of a wedge phantom was imaged quantitatively exploiting the calibrated energies and five different mono-energetic images. These mono-energetic images were combined in a pixel-by-pixel manner by averaging the WET-data weighted according to their single-ion WET precision (SIWP) and the number of contributing ions.Main result.A quantitative helium-beam radiograph of the wedge phantom with an average SIWP of 1.82(5) % over the entire WET interval from 150 mm to 220 mm was obtained. Compared to the previously used methodology, the SIWP improved by a factor of 2.49 ± 0.16. The relative stopping power value of the wedge derived from the energy-painted image matches the result from range pullback measurements with a relative deviation of only 0.4 %.Significance.The proposed method overcomes the insufficient precision for wide WET ranges when employing detection systems with thin detectors. Applying this method is an important prerequisite for imaging of patients. Hence, it advances detection systems based on energy deposition measurements towards clinical implementation.


Assuntos
Hélio , Água , Humanos , Hélio/uso terapêutico , Radiografia , Íons , Imagens de Fantasmas
19.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 80-92, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265873

RESUMO

This article describes the High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX) at the ESRF, and highlights new and complementary research opportunities that can be explored using this facility. The laboratory is dedicated to investigating interactions between macromolecules and gases in crystallo, and finds applications in many fields of research, including fundamental biology, biochemistry, and environmental and medical science. At present, the HPMX laboratory offers the use of different high-pressure cells adapted for helium, argon, krypton, xenon, nitrogen, oxygen, carbon dioxide and methane. Important scientific applications of high pressure to macromolecules at the HPMX include noble-gas derivatization of crystals to detect and map the internal architecture of proteins (pockets, tunnels and channels) that allows the storage and diffusion of ligands or substrates/products, the investigation of the catalytic mechanisms of gas-employing enzymes (using oxygen, carbon dioxide or methane as substrates) to possibly decipher intermediates, and studies of the conformational fluctuations or structure modifications that are necessary for proteins to function. Additionally, cryo-cooling protein crystals under high pressure (helium or argon at 2000 bar) enables the addition of cryo-protectant to be avoided and noble gases can be employed to produce derivatives for structure resolution. The high-pressure systems are designed to process crystals along a well defined pathway in the phase diagram (pressure-temperature) of the gas to cryo-cool the samples according to the three-step `soak-and-freeze method'. Firstly, crystals are soaked in a pressurized pure gas atmosphere (at 294 K) to introduce the gas and facilitate its interactions within the macromolecules. Samples are then flash-cooled (at 100 K) while still under pressure to cryo-trap macromolecule-gas complexation states or pressure-induced protein modifications. Finally, the samples are recovered after depressurization at cryo-temperatures. The final section of this publication presents a selection of different typical high-pressure experiments carried out at the HPMX, showing that this technique has already answered a wide range of scientific questions. It is shown that the use of different gases and pressure conditions can be used to probe various effects, such as mapping the functional internal architectures of enzymes (tunnels in the haloalkane dehalogenase DhaA) and allosteric sites on membrane-protein surfaces, the interaction of non-inert gases with proteins (oxygen in the hydrogenase ReMBH) and pressure-induced structural changes of proteins (tetramer dissociation in urate oxidase). The technique is versatile and the provision of pressure cells and their application at the HPMX is gradually being extended to address new scientific questions.


Assuntos
Dióxido de Carbono , Hélio , Congelamento , Cristalografia por Raios X , Argônio , Proteínas/química , Oxigênio , Metano
20.
Z Med Phys ; 34(1): 140-152, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36803393

RESUMO

The quantification of the effects of space radiation for manned spaceflight can be approximated by nanodosimetric measurements. For the development of nanodosimetric detectors, a Monte Carlo model for ion mobility and diffusion for characteristic electric fields is presented. This model can be used to describe the interactions of ions in their parent gas based solely on commonly known input parameters, such as the ionization potential, kinetic diameter, molar mass, and polarizability of the gas. A model for approximating the resonant charge exchange cross section has been proposed, requiring only the ionization energy and mass of the parent gas as input parameters. The method proposed in this work was tested against experimental drift velocity data for a wide range of gases (helium, neon, nitrogen, argon, krypton, carbon monoxide, carbon dioxide, oxygen, propane). The transverse diffusion coefficients were compared to experimental values for helium, nitrogen, neon, argon, and propane gas. With the Monte Carlo code and resonant charge exchange cross section approximation model presented in this work, it is now possible to calculate an estimate of the drift velocities, transverse diffusion, and thus the ion mobility of ions in their parent gas. This is essential for further nanodosimetric detector development, as those parameters are often not well known for the gas mixtures used in nanodosimetry.


Assuntos
Hélio , Propano , Neônio , Argônio , Íons , Nitrogênio , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA