Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1385599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741893

RESUMO

Avian haemosporidian parasites are useful model organisms to study the ecology and evolution of parasite-host interactions due to their global distribution and extensive biodiversity. Detection of these parasites has evolved from microscopic examination to PCR-based methods, with the mitochondrial cytochrome b gene serving as barcoding region. However, standard PCR protocols used for screening and identification purposes have limitations in detecting mixed infections and generating phylogenetically informative data due to short amplicon lengths. To address these issues, we developed a novel genus-specific nested PCR protocol targeting avian haemosporidian parasites. The protocol underwent rigorous testing utilizing a large dataset comprising blood samples from Malagasy birds of three distinct Passeriformes families. Furthermore, validation was done by examining smaller datasets in two other laboratories employing divergent master mixes and different bird species. Comparative analyses were conducted between the outcomes of the novel PCR protocol and those obtained through the widely used standard nested PCR method. The novel protocol enables specific identification of Plasmodium, Haemoproteus (Parahaemoproteus), and Leucocytozoon parasites. The analyses demonstrated comparable sensitivity to the standard nested PCR with notable improvements in detecting mixed infections. In addition, phylogenetic resolution is improved by amplification of longer fragments, leading to a better understanding of the haemosporidian biodiversity and evolution. Overall, the novel protocol represents a valuable addition to avian haemosporidian detection methodologies, facilitating comprehensive studies on parasite ecology, epidemiology, and evolution.


Assuntos
Haemosporida , Reação em Cadeia da Polimerase , Infecções Protozoárias em Animais , Animais , Haemosporida/genética , Haemosporida/isolamento & purificação , Haemosporida/classificação , Reação em Cadeia da Polimerase/métodos , Infecções Protozoárias em Animais/diagnóstico , Infecções Protozoárias em Animais/parasitologia , Doenças das Aves/parasitologia , Doenças das Aves/diagnóstico , Aves/parasitologia , Filogenia , Sensibilidade e Especificidade , Passeriformes/parasitologia , DNA de Protozoário/genética
2.
Parasitol Res ; 123(5): 206, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713306

RESUMO

The Australian skink Egernia stokesii had been recognised as a host of two species of Plasmodium, Plasmodium mackerrasae and P. circularis; nevertheless, molecular data are available for only a single haemosporidian species of this host. Its sequences are labelled as "Plasmodium sp." or "Plasmodium mackerrasae", but morphological characteristics of this isolate are unavailable. Phylogenetic analyses of these sequences placed them into the clade of the genus Haemocystidium. In this study, blood samples of six E. stokesii were analysed by both, molecular and microscopic methods to clarify the haemosporidia of this lizard. Application of these approaches offered discordant results. Whereas sequence analysis clustered our isolates with lizard species of Haemocystidium, morphology of blood stages is more akin to Plasmodium than Haemocystidium. However, limited sampling, indistinguishable nuclei/merozoites and risk of possible hidden presence of mixed infection prevent reliable species identification of detected parasites or their description as new species of Haemocystidium.


Assuntos
Haemosporida , Lagartos , Filogenia , Animais , Lagartos/parasitologia , Austrália , Haemosporida/genética , Haemosporida/classificação , Haemosporida/isolamento & purificação , DNA de Protozoário/genética , Análise de Sequência de DNA , Dados de Sequência Molecular , Análise por Conglomerados , DNA Ribossômico/genética , Microscopia , Sangue/parasitologia , RNA Ribossômico 18S/genética , Infecções Protozoárias em Animais/parasitologia
3.
Malar J ; 23(1): 134, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704592

RESUMO

BACKGROUND: Studies on haemosporidian diversity, including origin of human malaria parasites, malaria's zoonotic dynamic, and regional biodiversity patterns, have used target gene approaches. However, current methods have a trade-off between scalability and data quality. Here, a long-read Next-Generation Sequencing protocol using PacBio HiFi is presented. The data processing is supported by a pipeline that uses machine-learning for analysing the reads. METHODS: A set of primers was designed to target approximately 6 kb, almost the entire length of the haemosporidian mitochondrial genome. Amplicons from different samples were multiplexed in an SMRTbell® library preparation. A pipeline (HmtG-PacBio Pipeline) to process the reads is also provided; it integrates multiple sequence alignments, a machine-learning algorithm that uses modified variational autoencoders, and a clustering method to identify the mitochondrial haplotypes/species in a sample. Although 192 specimens could be studied simultaneously, a pilot experiment with 15 specimens is presented, including in silico experiments where multiple data combinations were tested. RESULTS: The primers amplified various haemosporidian parasite genomes and yielded high-quality mt genome sequences. This new protocol allowed the detection and characterization of mixed infections and co-infections in the samples. The machine-learning approach converged into reproducible haplotypes with a low error rate, averaging 0.2% per read (minimum of 0.03% and maximum of 0.46%). The minimum recommended coverage per haplotype is 30X based on the detected error rates. The pipeline facilitates inspecting the data, including a local blast against a file of provided mitochondrial sequences that the researcher can customize. CONCLUSIONS: This is not a diagnostic approach but a high-throughput method to study haemosporidian sequence assemblages and perform genotyping by targeting the mitochondrial genome. Accordingly, the methodology allowed for examining specimens with multiple infections and co-infections of different haemosporidian parasites. The pipeline enables data quality assessment and comparison of the haplotypes obtained to those from previous studies. Although a single locus approach, whole mitochondrial data provide high-quality information to characterize species pools of haemosporidian parasites.


Assuntos
Genoma Mitocondrial , Haemosporida , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Haemosporida/genética , Haemosporida/classificação , Biodiversidade , Aprendizado de Máquina
4.
Parasitology ; 151(5): 478-484, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634315

RESUMO

Biodiversity varies worldwide and is influenced by multiple factors, such as environmental stability and past historical events (e.g. Panama Isthmus). At the same time, organisms with unique life histories (e.g. parasites) are subject to unique selective pressures that structure their diversity patterns. Parasites represent one of the most successful life strategies, impacting, directly and indirectly, ecosystems by cascading effects on host fitness and survival. Here, I focused on a highly diverse, prevalent and cosmopolitan group of parasites (avian haemosporidians) to investigate the main drivers (e.g. host and environmental features) of regional parasite diversity on a global scale. To do so, I compiled data from 4 global datasets on (i) avian haemosporidian (malaria and malaria-like) parasites, (ii) bird species diversity, (iii) avian functional traits and (iv) climate data. Then, using generalized least square models, I evaluated the effect of host and environmental features on haemosporidian diversity. I found that haemosporidian diversity mirrors host regional diversity and that higher host body mass increases haemosporidian diversity. On the other hand, climatic conditions had no effect on haemosporidian diversity in any model. When evaluating Leucocytozoon parasites separately, I found parasite diversity was boosted by a higher proportion of migratory hosts. In conclusion, I demonstrated that haemosporidian parasite diversity is intrinsically associated with their hosts' diversity and body mass.


Assuntos
Biodiversidade , Doenças das Aves , Aves , Haemosporida , Animais , Haemosporida/classificação , Haemosporida/genética , Haemosporida/fisiologia , Haemosporida/isolamento & purificação , Aves/parasitologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Interações Hospedeiro-Parasita , Peso Corporal , Clima
5.
Acta Trop ; 254: 107207, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579961

RESUMO

Species of the Simulium varicorne group in Thailand have veterinary significance as vectors of haemosporidian parasites. Accurate identification is, therefore, critical to the study of vectors and parasites. We used morphology and molecular markers to investigate cryptic genetic lineages in samples identified as Simulium chumpornense Takaoka & Kuvangkadilok, 2000. We also tested the efficiency of the nuclear internal transcribed spacer 2 (ITS2) marker for the identification of species in this group. Morphological examinations revealed that S. chumpornense lineage A is most similar to S. khelangense Takaoka, Srisuka & Saeung, 2022, with minor morphological differences. They are also genetically similar based on mitochondrial cytochrome c oxidase I (COI) sequences. Geographically, the sampling site where paratypes of S. khelangense were originally collected is <50 km from where S. chumpornense lineage A was collected. We concluded that cryptic lineage A of S. chumpornense is actually S. khelangense. COI sequences could not differentiate S. kuvangkadilokae Pramual and Tangkawanit, 2008 from S. chumpornense and S. khelangense. In contrast, ITS2 sequences provided perfect accuracy in the identification of these species. Molecular analyses of the blood protozoa Leucocytozoon and Trypanosoma demonstrated that S. khelangense carries L. shoutedeni, Leucocytozoon sp., and Trypanosoma avium. The Leucocytozoon sp. in S. khelangense differs genetically from that in S. asakoae Takaoka & Davies, 1995, signaling the possibility of vector-parasite specificity.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Filogenia , Simuliidae , Animais , Simuliidae/parasitologia , Simuliidae/genética , Simuliidae/classificação , Tailândia , Complexo IV da Cadeia de Transporte de Elétrons/genética , DNA de Protozoário/genética , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA , Haemosporida/genética , Haemosporida/isolamento & purificação , Haemosporida/classificação
6.
Parasitol Res ; 121(9): 2547-2559, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35819494

RESUMO

Bats (order, Chiroptera) account for more than one-fifth of all mammalian species in the world and are infected by various intra-erythrocytic parasites of the family Plasmodiidae (Apicomplexa: Haemosporida), including Polychromophilus Dionisi, 1899. Recent advance in the molecular characterization of haemosporidian isolates has enabled their accurate identification, particularly in the last decade. Studies are actively conducted in tropical regions, Europe, and Australia; however, data on haemosporidian infection in bats in Asian temperate areas, including Japan, remain limited. In this study, 75 bats of 4 species (Miniopterus fuliginosus, Myotis macrodactylus, Rhinolophus nippon, and Rhinolophus cornutus) were captured at three sites in western Japan (Yamaguchi Prefecture), and haemosporidian parasites were screened microscopically and molecularly via nested polymerase chain reaction (PCR) targeting the cytochrome b (cytb), cytochrome c oxidase subunit I (cox-1), apicoplast caseinolytic protease C (clpc), and nuclear elongation factor 2 (EF2) genes. The survey detected Polychromophilus melanipherus in 15 (40.5%) miniopterid bats (M. fuliginosus) and Polychromophilus murinus in 6 (46.2%) vespertilionid bats (M. macrodactylus), whereas none of the 25 rhinolophid bats (R. nippon and R. cornutus) was infected, indicating the robust host specificity for miniopterid (P. melanipherus) and vespertilionid (P. murinus) bats regardless of orthotopic nesting. The 15 Polychromophilus cytb sequences obtained from 11 miniopterid and 4 vespertilionid bats were classified into six cytb haplotypes (three for each species), showing no region-specific variation in a phylogenetic tree of Polychromophilus isolates in the Old World. Similarly, multiple haplotypes (seven for cox-1 and nine for clpc) and genotypes (three for EF2) were characterized for the Japanese isolates of Polychromophilus, and the results were consistent with those based on a haemosporidian cytb analysis. Bat flies (Nycteribia allotopa and another undetermined Nycteribia sp.) collected from the body surface of bats harbored Polychromophilus oocysts on the external surface of the midgut. This is the first study to report the isolation and molecular characterization of Polychromophilus spp. in miniopterid and vespertilionid bats in the temperate area of Asia (western Japan). Future studies should evaluate the global prevalence of haemosporidian infections in bats.


Assuntos
Quirópteros/parasitologia , Haemosporida/genética , Haemosporida/isolamento & purificação , Infecções Protozoárias em Animais/parasitologia , Animais , Citocromos b/genética , Haemosporida/classificação , Japão/epidemiologia , Filogenia , Prevalência , Infecções Protozoárias em Animais/epidemiologia
7.
Malar J ; 21(1): 14, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986864

RESUMO

BACKGROUND: The order Accipitriformes comprises the largest group of birds of prey with 260 species in four families. So far, 21 haemosporidian parasite species have been described from or reported to occur in accipitriform birds. Only five of these parasite species have been characterized molecular genetically. The first part of this study involved molecular genetic screening of accipitriform raptors from Austria and Bosnia-Herzegovina and the first chromogenic in situ hybridization approach targeting parasites in this host group. The aim of the second part of this study was to summarize the CytB sequence data of haemosporidian parasites from accipitriform raptors and to visualize the geographic and host distribution of the lineages. METHODS: Blood and tissue samples of 183 accipitriform raptors from Austria and Bosnia-Herzegovina were screened for Plasmodium, Haemoproteus and Leucocytozoon parasites by nested PCR, and tissue samples of 23 PCR-positive birds were subjected to chromogenic in situ hybridization using genus-specific probes targeting the parasites' 18S rRNAs. All published CytB sequence data from accipitriform raptors were analysed, phylogenetic trees were calculated, and DNA haplotype network analyses were performed with sequences from clades featuring multiple lineages detected in this host group. RESULTS: Of the 183 raptors from Austria and Bosnia-Herzegovina screened by PCR and sequencing, 80 individuals (44%) were infected with haemosporidian parasites. Among the 39 CytB lineages detected, 18 were found for the first time in the present study. The chromogenic in situ hybridization revealed exo-erythrocytic tissue stages of Leucocytozoon parasites belonging to the Leucocytozoon toddi species group in the kidneys of 14 infected birds. The total number of CytB lineages recorded in accipitriform birds worldwide was 57 for Leucocytozoon, 25 for Plasmodium, and 21 for Haemoproteus. CONCLUSION: The analysis of the DNA haplotype networks allowed identifying numerous distinct groups of lineages, which have not yet been linked to morphospecies, and many of them likely belong to yet undescribed parasite species. Tissue stages of Leucocytozoon parasites developing in accipitriform raptors were discovered and described. The majority of Leucocytozoon and Haemoproteus lineages are specific to this host group, but most Plasmodium lineages were found in birds of other orders. This might indicate local transmission from birds kept at the same facilities (raptor rescue centres and zoos), likely resulting in abortive infections. To clarify the taxonomic and systematic problems, combined morphological and molecular genetic analyses on a wider range of accipitriform host species are needed.


Assuntos
Doenças das Aves/parasitologia , Falconiformes , Haemosporida/isolamento & purificação , Infecções Protozoárias em Animais/parasitologia , Animais , Áustria , Bósnia e Herzegóvina , Haemosporida/classificação , Haemosporida/fisiologia , Filogenia , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Aves Predatórias , Especificidade da Espécie
8.
Parasitol Int ; 84: 102375, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33957295

RESUMO

Parasites of the genus Haemoproteus have been reported in almost all avian clades and zoogeographic regions, except Antarctica. However, despite the large number of reports worldwide, they are poorly studied in the Neotropical region, which includes the Atlantic Forest, a biodiversity hotspot with more than 890 bird species, of which 24% are endemic. Haemoproteus (Haemoproteus) paramultipigmentatus was described by morphological and molecular analyses in 2013 infecting Columbiform birds in Mexico. However, since the original description this parasite has not been studied in detail. Here, we investigate the prevalence of Haemoproteus spp. in Brazilian Columbiformes and conducted a taxonomic integrative study of the species Haemoproteus (Haemoproteus) paramultipigmentatus, including new morphological and molecular data from a Brazilian population. Moreover, we provide discussions about the geographic distribution and phylogenetic relationships between different lineages of this parasite. Our findings demonstrated a high prevalence of Haemoproteus spp. infection in Brazilian Columbiformes, which is in accordance with previous studies. Morphological characterization of H. paramultipigmentatus revealed minor differences from the original description. Through molecular and phylogenetic analyses we identified a new lineage of H. paramultipigmentatus that was added to the genetic databases. Our findings also suggest a new geographical distribution for this hemoparasite, including South American countries, and raise discussions about its current distribution.


Assuntos
Doenças das Aves/epidemiologia , Columbidae , Haemosporida/classificação , Interações Hospedeiro-Parasita , Infecções Protozoárias em Animais/epidemiologia , Animais , Animais Selvagens , Doenças das Aves/parasitologia , Brasil , Citocromos b/análise , Haemosporida/genética , Haemosporida/isolamento & purificação , Prevalência , Infecções Protozoárias em Animais/parasitologia , Proteínas de Protozoários/análise
9.
Vet Parasitol ; 293: 109431, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33906095

RESUMO

Haemosporidian infections in domestic chickens (Gallus gallus domesticus) are not only widely prevalent but also cause economic loss. Diagnosis is usually made by microscopic examination; however, the method has several drawbacks such as requiring an experienced microscopist, being unreliable when parasitemia is low and being unable to accurately differentiate between co-infections from multiple parasite species. Therefore, the current extent of haemosporidian infections might be underestimated and neglected. We have developed a novel multiplex PCR assay to simultaneously detect and differentiate between four haemosporidian parasites: Leucocytozoon caulleryi, Leucocytozoon sabrazesi, Plasmodium juxtanucleare and Plasmodium gallinaceum. Primers in the present study specifically amplified the corresponding targets with no cross-species amplification detected. The multiplex PCR exhibited a significantly greater detection rate when compared with microscopic examination (p = 0.0001). The results demonstrate that the detection rate of multiplex PCR for L. sabrazesi, P. juxtanucleare, and P. gallinaceum are all greater than that of microscopic examination with p = 0.002, 0.0001 and 0.004, respectively. Co-infections were also detected more effectively by multiplex PCR. We applied the current method to field samples originating from Nan, Prachinburi, and Chachoengsao Provinces. The current study revealed that positive rates of haemosporidian parasites in chickens in the three study sites ranging from 39.5%-93.8%. The present assay offers a timesaving option for molecular diagnosis instead of using singleplex PCRs for detecting the parasites individually. Within a single reaction, this assay would be a useful tool for the detection of avian haemosporidian parasites either single or under co-infection conditions and for large-scale epidemiology studies.


Assuntos
DNA de Protozoário , Haemosporida , Reação em Cadeia da Polimerase Multiplex , Animais , Galinhas , DNA de Protozoário/genética , Haemosporida/classificação , Haemosporida/genética , Reação em Cadeia da Polimerase Multiplex/normas , Reação em Cadeia da Polimerase Multiplex/veterinária , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/parasitologia , Reprodutibilidade dos Testes , Especificidade da Espécie , Tailândia
10.
Acta Trop ; 218: 105905, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33775628

RESUMO

Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan blood parasites, which have been neglected for over 100-years, but attracted attention recently due to reports of severe and even lethal haemoproteosis in birds and vectors. Approximately 150 species of avian Haemoproteus have been described and named, but molecular data suggest that hundreds of independently evolving molecular lineages might occur, indicating the existence of a remarkable undescribed species diversity. It is timely to develop a methodology, which allow the application of available genetic data in taxonomy of haemosporidians on species levels. This study aimed to test a hypothesis suggesting that DNA haplotype networks might aid in targeting genetically distinct, but still undescribed parasites, and might be used to direct taxonomic studies on haemosporidian species levels. Mainly, we tested a prediction that the lineage hTUPHI01, a common Haemoproteus parasite of Turdus philomelos, might be a new species, which is morphologically similar and genetically closely related to the parasites of Haemoproteus minutus group. Blood samples of T. philomelos naturally infected with this parasite lineage were collected and studied using microscopic examination of blood films and PCR-based methods. Haemoproteus asymmetricus n. sp. was found in this bird, described and characterised molecularly using partial cytochrome b (cytb) sequences. The new species shared some features with parasites of the H. minutus group, as was predicted by the DNA haplotype network. Due to the visualisation of closely related lineages as well as the evaluation of their host and geographic distributions, DNA haplotype networks can be recommended as the helpful methodology, able to direct and speed practical work on parasite species taxonomy and pathogen biodiversity. The combined molecular phylogenetic and morphological approaches showed that the well-supported clades in Bayesian phylogenetic trees based on the partial cytb gene sequences contain morphologically remarkably different Haemoproteus parasite species, which however, share some basic biological features. Phylogenetic analysis can be used for prediction of these basic features in still undescribed parasites. This study calls for further fusion of advanced molecular and microscopy approaches for better understanding haemosporidian parasite biology.


Assuntos
Doenças das Aves/parasitologia , Aves/parasitologia , Haemosporida/citologia , Haemosporida/genética , Infecções Protozoárias em Animais/parasitologia , Animais , Teorema de Bayes , Doenças das Aves/sangue , Aves/sangue , Citocromos b/genética , DNA de Protozoário , Testes Diagnósticos de Rotina , Gametogênese , Genes de Protozoários , Genoma de Protozoário , Haemosporida/classificação , Haplótipos , Tipagem Molecular , Filogenia , Reação em Cadeia da Polimerase
11.
Vet Parasitol Reg Stud Reports ; 23: 100521, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33678376

RESUMO

The order Haemosporida is widely distributed parasitizing members of the Aves class. In birds of prey, infection with Plasmodium spp. parasites varies from an apathogenic form to a clinical syndrome. However, studies on Haemosporida in raptors from the neotropical region are scarce. The aim of this study was to investigate natural infection by Plasmodium spp., Haemoproteus spp. and Leucocytozoon spp. in free-ranging wild raptors from southern Brazil. For this, we sampled 206 individuals of 21 species: 94 live-trapped Southern Caracaras (Caracara plancus) and 112 raptors from other species that were brought to rehabilitation centers. The presence of infection was investigated using a nested-PCR for Haemosporida performed on blood samples. Overall, 56 out of 206 birds were positive for Plasmodium spp./Haemoproteus spp. Twenty-two percent (21/94) of the C. plancus samples were positive. Of the 112 wild raptors rescued, 31% (35/112) of those belonging to 15 other species tested positive. No sample was positive for Leucocytozoon spp. Herein, we demonstrated nine lineages of Haemosporidian parasites (eight Plasmodium sp. and one Haemoproteus sp.) in free-living species of Brazilian birds of prey, being six of them potential novel lineages. It suggests that information currently available on South-American haemosporidian from these birds greatly underestimate the potential lineage diversity in this region.


Assuntos
Haemosporida , Filogenia , Aves Predatórias , Animais , Brasil/epidemiologia , Haemosporida/classificação , Aves Predatórias/parasitologia
12.
Parasit Vectors ; 14(1): 145, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33685479

RESUMO

BACKGROUND: The prevalence of avian haemosporidian parasites and the factors influencing infection in the Colorado Rocky Mountains are largely unknown. With climate change expected to promote the expansion of vector and avian blood parasite distributions, baseline knowledge and continued monitoring of the prevalence and diversity of these parasites is needed. METHODS: Using an occupancy modeling framework, we conducted a survey of haemosporidian parasite species infecting an avian community in the Colorado Rocky Mountains in order to estimate the prevalence and diversity of blood parasites and to investigate species-level and individual-level characteristics that may influence infection. RESULTS: We estimated the prevalence and diversity of avian Haemosporidia across 24 bird species, detecting 39 parasite haplotypes. We found that open-cup nesters have higher Haemoproteus prevalence than cavity or ground nesters. Additionally, we found that male Ruby-crowned Kinglets, White-crowned Sparrows, and Wilson's Warblers have higher Haemoproteus prevalence compared to other host species. Plasmodium prevalence was relatively low (5%), consistent with the idea that competent vectors may be rare at high altitudes. CONCLUSIONS: Our study presents baseline knowledge of haemosporidian parasite presence, prevalence, and diversity among avian species in the Colorado Rocky Mountains and adds to our knowledge of host-parasite relationships of blood parasites and their avian hosts.


Assuntos
Doenças das Aves/parasitologia , Aves/parasitologia , Haemosporida/genética , Interações Hospedeiro-Parasita , Comportamento de Nidação , Infecções Protozoárias em Animais/epidemiologia , Animais , Doenças das Aves/epidemiologia , Colorado/epidemiologia , Feminino , Variação Genética , Haemosporida/classificação , Haemosporida/patogenicidade , Especificidade de Hospedeiro , Masculino , Filogenia , Prevalência , Infecções Protozoárias em Animais/sangue , Fatores Sexuais
13.
Parasitol Res ; 120(4): 1405-1420, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33521839

RESUMO

Diseases can play a role in species decline. Among them, haemosporidian parasites, vector-transmitted protozoan parasites, are known to constitute a risk for different avian species. However, the magnitude of haemosporidian infection in wild columbiform birds, including strongly decreasing European turtle doves, is largely unknown. We examined the prevalence and diversity of haemosporidian parasites Plasmodium, Leucocytozoon and subgenera Haemoproteus and Parahaemoproteus in six species of the order Columbiformes during breeding season and migration by applying nested PCR, one-step multiplex PCR assay and microscopy. We detected infections in 109 of the 259 screened individuals (42%), including 15 distinct haemosporidian mitochondrial cytochrome b lineages, representing five H. (Haemoproteus), two H. (Parahaemoproteus), five Leucocytozoon and three Plasmodium lineages. Five of these lineages have never been described before. We discriminated between single and mixed infections and determined host species-specific prevalence for each parasite genus. Observed differences among sampled host species are discussed with reference to behavioural characteristics, including nesting and migration strategy. Our results support previous suggestions that migratory birds have a higher prevalence and diversity of blood parasites than resident or short-distance migratory species. A phylogenetic reconstruction provided evidence for H. (Haemoproteus) as well as H. (Parahaemoproteus) infections in columbiform birds. Based on microscopic examination, we quantified parasitemia, indicating the probability of negative effects on the host. This study provides a large-scale baseline description of haemosporidian infections of wild birds belonging to the order Columbiformes sampled in the northern hemisphere. The results enable the monitoring of future changes in parasite transmission areas, distribution and diversity associated with global change, posing a potential risk for declining avian species as the European turtle dove.


Assuntos
Doenças das Aves/epidemiologia , Columbiformes/parasitologia , Haemosporida/genética , Infecções Protozoárias em Animais/epidemiologia , Migração Animal , Animais , Doenças das Aves/parasitologia , Columbidae/parasitologia , Citocromos b/genética , Variação Genética , Aquecimento Global , Haemosporida/classificação , Haemosporida/crescimento & desenvolvimento , Especificidade de Hospedeiro , Mitocôndrias/genética , Reação em Cadeia da Polimerase Multiplex/veterinária , Filogenia , Plasmodium/genética , Reação em Cadeia da Polimerase/veterinária , Prevalência , Infecções Protozoárias em Animais/parasitologia
14.
Parasitol Res ; 120(2): 693-703, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33452590

RESUMO

Avian blood parasites have been shown to have significant health effects on avifauna worldwide. Sri Lanka, a tropical island rich with resident and migratory birds, has not been properly evaluated for avian blood parasites or their vectors. We investigated the presence of avian haemoparasites in Sri Lankan birds and the potential mosquito vectors of those pathogens. Blood samples were collected from local/migratory birds captured by standard mist nets from Anawilundawa bird sanctuary, Hanthana mountain range, and the University of Peradeniya park. Mosquitoes were collected from Halgolla forest reserve and the forest patches in Kurunegala and Gampola areas in addition to the above mist-netting localities. Part of the mitochondrial cytochrome b (cytb) gene was amplified and sequenced to detect the presence of haemoparasites from avian blood samples (86) and mosquito samples (480). Blood parasites of the two genera, i.e., Haemoproteus (4 species; Haemoproteus sp. 1-4) and Plasmodium (5 species; Plasmodium sp. 1-5) were identified from seven bird species (four resident and three migratory). Among these, three bird species (Red-vented bulbul (3/16), Asian Brown flycatcher (1/1), and India pitta (1/1)) were positive for Plasmodium spp., while four (Yellow-browed bulbul (1/4), oriental white-eye (1/4), brown-headed Barbet (1/4), and Indian blue robin (1/1)) were positive for Haemoproteus spp. Two mosquito species were also positive for Plasmodium (3) and Haemoproteus (1) species. Phylogenetic analysis and haplotype networks created using positive sequences of haemoparasites showed that a Plasmodium clade was shared by Cx nigropunctatus mosquitoes and the migratory bird, Indian pitta. The majority (85%) of the Plasmodium and Haemoproteus sequences of this study were not linked to the well-characterized species suggesting the distinct nature of the lineages. Associations between mosquito species and blood parasites of birds suggest the possible vector status of these mosquitoes.


Assuntos
Aves/parasitologia , Mosquitos Vetores/parasitologia , Infecções Protozoárias em Animais/parasitologia , Infecções Protozoárias em Animais/transmissão , Animais , Aves/sangue , Aves/classificação , Sangue/parasitologia , Citocromos b/genética , Haemosporida/classificação , Haemosporida/genética , Haemosporida/isolamento & purificação , Mosquitos Vetores/classificação , Filogenia , Plasmodium/classificação , Plasmodium/genética , Plasmodium/isolamento & purificação , Infecções Protozoárias em Animais/epidemiologia , Sri Lanka/epidemiologia
15.
Parasit Vectors ; 14(1): 27, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413582

RESUMO

BACKGROUND: Culicoides biting midges (Diptera, Ceratopogonidae) are known vectors of avian Haemoproteus parasites. These parasites cause diseases, pathology and even mortality in birds. The diversity of biting midges in Europe is great, but only four Culicoides species are known to be vectors of avian Haemoproteus parasites. In general, our knowledge about the role of the particular Culicoides species in the transmission of Haemoproteus parasites remains insufficient. Information gaps hinder a better understanding of parasite biology and the epizootiology of parasite-caused diseases. The aim of this study was to determine new Culicoides species involved in the transmission of Haemoproteus parasites. METHODS: Biting midges were collected using a UV trap as well as sticky traps installed in bird nest boxes. Individual parous females were diagnosed for the presence of haemoproteids using both PCR-based and microscopic methods. RESULTS: We collected and dissected 232 parous Culicoides females from 9 species using a UV trap and 293 females from 11 species from bird nest boxes. Culicoides obsoletus was the dominant species collected using a UV trap, and Culicoides kibunensis dominated among midges collected in nest boxes. PCR-based screening showed that 5.2% of parous biting midges collected using a UV trap and 4.4% of midges collected from nest boxes were infected with avian haemosporidian parasites. Haemoproteid DNA was detected in C. kibunensis, Culicoides pictipennis, Culicoides punctatus, Culicoides segnis and Culicoides impunctatus females. The sporozoites of Haemoproteus minutus (genetic lineages hTURDUS2 and hTUPHI01) were detected in the salivary glands of two C. kibunensis females using microscopy, and this finding was confirmed by PCR. CONCLUSIONS: Culicoides kibunensis was detected as a new natural vector of Haemoproteus minutus (hTURDUS2 and hTUPHI01). Haemoproteid DNA was detected in females from five Culicoides species. This study contributes to the epizootiology of avian Haemoproteus infections by specifying Culicoides species as vectors and species that are likely to be responsible for the transmission of haemoproteids in Europe.


Assuntos
Doenças das Aves/transmissão , Aves/parasitologia , Ceratopogonidae/parasitologia , Haemosporida/isolamento & purificação , Insetos Vetores/parasitologia , Infecções Protozoárias em Animais/transmissão , Animais , Doenças das Aves/parasitologia , Citocromos b/genética , Feminino , Haemosporida/classificação , Haemosporida/genética , Filogenia
17.
Parasitology ; 148(4): 495-499, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33256862

RESUMO

Parasites of the haemosporidian genus Polychromophilus have exclusively been described in bats. These parasites belong to the diverse group of malaria parasites, and Polychromophilus presents the only haemosporidian taxon that infects mammalian hosts in tropical as well as in temperate climate zones. This study provides the first information of Polychromophilus parasites in the lesser Asiatic yellow bat (Scotophilus kuhlii) in Thailand, a common vespertilionid bat species distributed in South and Southeast Asia. The gametocyte blood stages of the parasites could not be assigned to a described morphospecies and molecular analysis revealed that these parasites might represent a distinct Polychromophilus species. In contrast to Plasmodium species, Polychromophilus parasites do not multiply in red blood cells and, thus, do not cause the clinical symptoms of malaria. Parasitological and molecular investigation of haemosporidian parasites of wildlife, such as the neglected genus Polychromophilus, will contribute to a better understanding of the evolution of malaria parasites.


Assuntos
Quirópteros/parasitologia , Haemosporida/genética , Infecções Protozoárias em Animais/parasitologia , Animais , Teorema de Bayes , Haemosporida/classificação , Filogenia , Tailândia
18.
Parasitol Res ; 120(1): 243-255, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169308

RESUMO

Haemoproteus syrnii is a haemosporidian parasite found in owls. Although morphological and molecular data on the species is available, its exo-erythrocytic development was never researched. In this study, we provide the morphological, morphometric, and molecular characterization of H. syrnii populations found in owl species from Minas Gerais, southeast Brazil. We also characterized the coalescent species delimitation based on the molecular and histopathology data. Samples from 54 owls from six different species were analyzed, generating 11 sequences of the cyt b gene, from which six were new sequences. The overall prevalence of infection was high (72.22%). The H. syrnii sequences were grouped into two well-supported independent clades, which included other Haemoproteus (Parahaemoproteus) species. This was supported by both the coalescent species delimitation analysis and by the genetic divergence between lineages of these distinct clades. There were small morphological and morphometric differences within the population presented in this study. However, when compared with other studies, the molecular analysis demonstrated considerable intraspecific variation and suggests potential cryptic species. The histopathological analysis revealed, for the first time, that lungs and skeletal muscle are exo-erythrocytic stage location of H. syrnii, and that the parasite is linked to the histopathological changes found in owls. This study brings new data from Haemoproteus species biology and host infection, and improves host-parasite relationship understanding under an owl conservation perspective.


Assuntos
Doenças das Aves/parasitologia , Haemosporida/genética , Infecções Protozoárias em Animais/parasitologia , Estrigiformes/parasitologia , Animais , Brasil , Citocromos b/genética , Eritrócitos/parasitologia , Haemosporida/classificação , Haemosporida/isolamento & purificação , Interações Hospedeiro-Parasita , Filogenia
19.
Infect Genet Evol ; 85: 104576, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33002605

RESUMO

Haemosporida are diverse vector-borne parasites associated with terrestrial vertebrates. Driven by the interest in species causing malaria (genus Plasmodium), the diversity of avian and mammalian haemosporidian species has been extensively studied, relying mostly on mitochondrial genes, particularly cytochrome b. However, parasites from reptiles have been neglected in biodiversity surveys. Reptilian haemosporidian parasites include Haemocystidium, a genus that shares morphological features with Plasmodium and Haemoproteus. Here, the first complete Haemocystidium mitochondrial DNA (mtDNA) genomes are studied. In particular, three mtDNA genomes from Haemocystidium spp. sampled in Africa, Oceania, and South America, are described. The Haemocystidium mtDNA genomes showed a high A + T content and a gene organization, including an extreme fragmentation of the rRNAs, found in other Haemosporida. These Haemocystidium mtDNA genomes were incorporated in phylogenetic and molecular clock analyses together with a representative sample of haemosporidian parasites from birds, mammals, and reptiles. The recovered phylogeny supported Haemocystidium as a monophyletic group apart from Plasmodium and other Haemosporida. Both the phylogenetic and molecular clock analyses yielded results consistent with a scenario in which haemosporidian parasites radiated with modern birds. Haemocystidium, like mammalian parasite clades, seems to originate from host switches by avian Haemosporida that allowed for the colonization of new vertebrate hosts. This hypothesis can be tested by investigating additional parasite species from all vertebrate hosts, particularly from reptiles. The mtDNA genomes reported here provide baseline data that can be used to scale up studies in haemosporidian parasites of reptiles using barcode approaches.


Assuntos
Genoma Mitocondrial , Genômica , Haemosporida/classificação , Haemosporida/genética , Filogenia , África , Biodiversidade , DNA de Protozoário , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , América do Sul
20.
Parasitol Res ; 119(12): 4033-4047, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33030600

RESUMO

Haemoproteus spp. and Plasmodium spp. are blood parasites that occur in birds worldwide. Identifying the species within this group is complex, especially in wild birds that present low parasitemia when captured, making morphological identification very difficult. Thus, the use of alternative tools to identify species may be useful in the elucidation of the distribution of parasites that circulate in bird populations. The objectives of this study were to determine the prevalence and parasitemia of the genera Plasmodium and Haemoproteus in Tachyphonus coronatus in the Atlantic Forest, Brazil, and to evaluate the molecular diversity, geographic distribution, and specificity of these parasites based on coalescent species delimitation methods. Microscopic analysis, PCR, cyt b gene sequencing, phylogenetic analysis and coalescent species delimitation using single-locus algorithms were performed (Poisson tree process (PTP) and multi-rate Poisson tree process (MPTP) methods). The analyses were performed in 117 avian host individuals. The prevalence was 55.5% for Plasmodium and 1.7% for Haemoproteus, with a mean parasitemia of 0.06%. Twenty-five Plasmodium and two Haemoproteus lineages were recovered. The MPTP method recovered seven different evolutionarily significant units (ESUs) of Plasmodium and one of Haemoproteus, whereas PTP presented fourteen ESUs of Plasmodium and one of Haemoproteus. The MPTP was more consistent with current taxonomy, while PTP overestimated the number of lineages. These ESUs are widely distributed and have already been found in 22 orders of birds that, all together, inhabit every continent, except Antarctica. The computational methods of species delimitation proved to be effective in cases where the classification of Haemosporida based just on morphology is insufficient.


Assuntos
Doenças das Aves/parasitologia , Aves/parasitologia , Haemosporida/classificação , Parasitemia/epidemiologia , Parasitemia/veterinária , Animais , Animais Selvagens/genética , Brasil/epidemiologia , Citocromos b/genética , Haemosporida/genética , Haemosporida/isolamento & purificação , Filogenia , Plasmodium/genética , Reação em Cadeia da Polimerase/veterinária , Infecções Protozoárias em Animais/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA