Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
1.
Nat Commun ; 15(1): 5841, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992036

RESUMO

The swimming device of archaea-the archaellum-presents asparagine (N)-linked glycans. While N-glycosylation serves numerous roles in archaea, including enabling their survival in extreme environments, how this post-translational modification contributes to cell motility remains under-explored. Here, we report the cryo-EM structure of archaellum filaments from the haloarchaeon Halobacterium salinarum, where archaellins, the building blocks of the archaellum, are N-glycosylated, and the N-glycosylation pathway is well-resolved. We further determined structures of archaellum filaments from two N-glycosylation mutant strains that generate truncated glycans and analyzed their motility. While cells from the parent strain exhibited unidirectional motility, the N-glycosylation mutant strain cells swam in ever-changing directions within a limited area. Although these mutant strain cells presented archaellum filaments that were highly similar in architecture to those of the parent strain, N-linked glycan truncation greatly affected interactions between archaellum filaments, leading to dramatic clustering of both isolated and cell-attached filaments. We propose that the N-linked tetrasaccharides decorating archaellins act as physical spacers that minimize the archaellum filament aggregation that limits cell motility.


Assuntos
Proteínas Arqueais , Halobacterium salinarum , Glicosilação , Halobacterium salinarum/metabolismo , Halobacterium salinarum/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Polissacarídeos/metabolismo , Microscopia Crioeletrônica , Mutação , Citoesqueleto/metabolismo , Processamento de Proteína Pós-Traducional , Movimento Celular
2.
Biomolecules ; 14(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38785941

RESUMO

Only a few halophilic archaea producing carboxylesterases have been reported. The limited research on biocatalytic characteristics of archaeal esterases is primarily due to their very low production in native organisms. A gene encoding carboxylesterase from Halobacterium salinarum NRC-1 was cloned and successfully expressed in Haloferax volcanii. The recombinant carboxylesterase (rHsEst) was purified by affinity chromatography with a yield of 81%, and its molecular weight was estimated by SDS-PAGE (33 kDa). The best kinetic parameters of rHsEst were achieved using p-nitrophenyl valerate as substrate (KM = 78 µM, kcat = 0.67 s-1). rHsEst exhibited great stability to most metal ions tested and some solvents (diethyl ether, n-hexane, n-heptane). Purified rHsEst was effectively immobilized using Celite 545. Esterase activities of rHsEst were confirmed by substrate specificity studies. The presence of a serine residue in rHsEst active site was revealed through inhibition with PMSF. The pH for optimal activity of free rHsEst was 8, while for immobilized rHsEst, maximal activity was at a pH range between 8 to 10. Immobilization of rHsEst increased its thermostability, halophilicity and protection against inhibitors such as EDTA, BME and PMSF. Remarkably, immobilized rHsEst was stable and active in NaCl concentrations as high as 5M. These biochemical characteristics of immobilized rHsEst reveal its potential as a biocatalyst for industrial applications.


Assuntos
Carboxilesterase , Clonagem Molecular , Halobacterium salinarum , Proteínas Recombinantes , Carboxilesterase/genética , Carboxilesterase/metabolismo , Carboxilesterase/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Halobacterium salinarum/enzimologia , Halobacterium salinarum/genética , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Concentração de Íons de Hidrogênio , Cinética , Estabilidade Enzimática , Proteínas Arqueais/genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Temperatura
3.
Biochim Biophys Acta Biomembr ; 1866(5): 184325, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653423

RESUMO

Helical membrane proteins generally have a hydrophobic nature, with apolar side chains comprising the majority of the transmembrane (TM) helices. However, whenever polar side chains are present in the TM domain, they often exert a crucial role in structural interactions with other polar residues, such as TM helix associations and oligomerization. Moreover, polar residues in the TM region also often participate in protein functions, such as the Schiff base bonding between Lys residues and retinal in rhodopsin-like membrane proteins. Although many studies have focused on these functional polar residues, our understanding of stand-alone polar residues that are energetically unfavored in TM helixes is limited. Here, we adopted bacteriorhodopsin (bR) as a model system and systematically mutated 17 of its apolar Leu or Phe residues to polar Asn. Stability measurements of the resulting mutants revealed that all of these polar substitutions reduced bR stability to various extents, and the extent of destabilization of each mutant bR is also correlated to different structural factors, such as the relative accessible surface area and membrane depth of the mutation site. Structural analyses of these Asn residues revealed that they form sidechain-to-backbone hydrogen bonds that alleviate the unfavorable energetics in hydrophobic and apolar surroundings. Our results indicate that membrane proteins are able to accommodate certain stand-alone polar residues in the TM region without disrupting overall structures.


Assuntos
Bacteriorodopsinas , Interações Hidrofóbicas e Hidrofílicas , Estabilidade Proteica , Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Bacteriorodopsinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Estrutura Secundária de Proteína , Halobacterium salinarum/química , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Modelos Moleculares
4.
FEBS Lett ; 597(18): 2334-2344, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532685

RESUMO

The cell membrane of Halobacterium salinarum contains a retinal-binding photoreceptor, sensory rhodopsin II (HsSRII), coupled with its cognate transducer (HsHtrII), allowing repellent phototaxis behavior for shorter wavelength light. Previous studies on SRII from Natronomonas pharaonis (NpSRII) pointed out the importance of the hydrogen bonding interaction between Thr204NpSRII and Tyr174NpSRII in signal transfer from SRII to HtrII. Here, we investigated the effect on phototactic function by replacing residues in HsSRII corresponding to Thr204NpSRII and Tyr174NpSRII . Whereas replacement of either residue altered the photocycle kinetics, introduction of any mutations at Ser201HsSRII and Tyr171HsSRII did not eliminate negative phototaxis function. These observations imply the possibility of the presence of an unidentified molecular mechanism for photophobic signal transduction differing from NpSRII-NpHtrII.


Assuntos
Proteínas Arqueais , Halobacteriaceae , Rodopsinas Sensoriais , Rodopsinas Sensoriais/genética , Rodopsinas Sensoriais/química , Rodopsinas Sensoriais/metabolismo , Halobacterium salinarum/genética , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Transdução de Sinais , Proteínas Arqueais/metabolismo , Halorrodopsinas/genética , Halorrodopsinas/química , Halorrodopsinas/metabolismo
5.
Microbiologyopen ; 12(3): e1365, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379421

RESUMO

The genome of Halobacterium strain 63-R2 was recently reported and provides the opportunity to resolve long-standing issues regarding the source of two widely used model strains of Halobacterium salinarum, NRC-1 and R1. Strain 63-R2 was isolated in 1934 from a salted buffalo hide (epithet "cutirubra"), along with another strain from a salted cow hide (91-R6T , epithet "salinaria," the type strain of Hbt. salinarum). Both strains belong to the same species according to genome-based taxonomy analysis (TYGS), with chromosome sequences showing 99.64% identity over 1.85 Mb. The chromosome of strain 63-R2 is 99.99% identical to the two laboratory strains NRC-1 and R1, with only five indels, excluding the mobilome. The two reported plasmids of strain 63-R2 share their architecture with plasmids of strain R1 (pHcu43/pHS4, 99.89% identity; pHcu235/pHS3, 100.0% identity). We detected and assembled additional plasmids using PacBio reads deposited at the SRA database, further corroborating that strain differences are minimal. One plasmid, pHcu190 (190,816 bp) corresponds to pHS1 (strain R1) but is even more similar in architecture to pNRC100 (strain NRC-1). Another plasmid, pHcu229, assembled partially and completed in silico (229,124 bp), shares most of its architecture with pHS2 (strain R1). In deviating regions, it corresponds to pNRC200 (strain NRC-1). Further architectural differences between the laboratory strain plasmids are not unique, but are present in strain 63-R2, which contains characteristics from both of them. Based on these observations, it is proposed that the early twentieth-century isolate 63-R2 is the immediate ancestor of the twin laboratory strains NRC-1 and R1.


Assuntos
Halobacterium salinarum , Halobacterium , Halobacterium salinarum/genética , Plasmídeos/genética , Halobacterium/genética
6.
Microbiology (Reading) ; 169(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068123

RESUMO

Halobacterium salinarum is a halophilic (salt-loving) archaeon that grows in salt concentrations near or at saturation. Although isolated from salted fish a century ago, it was the 1971 discovery of bacteriorhodopsin, the light-driven proton pump, that raised interest in Hbt. salinarum across a range of disciplines, including biophysics, chemistry, molecular evolution and biotechnology. Hbt. salinarum have since contributed to numerous discoveries, such as advances in membrane protein structure determination and the first example of a non-eukaryal glycoprotein. Work on Hbt. salinarum, one of the species used to define Archaea, has also elucidated molecular workings in the third domain. Finally, Hbt. salinarum presents creative solutions to the challenges of life in high salt.


Assuntos
Halobacterium salinarum , Cloreto de Sódio , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Cloreto de Sódio/metabolismo , Archaea/genética
7.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36866517

RESUMO

Although Halobacterim salinarum provided the first example of N-glycosylation outside the Eukarya, only recently has attention focused on delineating the pathway responsible for the assembly of the N-linked tetrasaccharide decorating selected proteins in this haloarchaeon. In the present report, the roles of VNG1053G and VNG1054G, two proteins encoded by genes clustered together with a set of genes demonstrated to encode N-glycosylation pathway components, were considered. Relying on both bioinformatics and gene deletion and subsequent mass spectrometry analysis of known N-glycosylated proteins, VNG1053G was determined to be the glycosyltransferase responsible for addition of the linking glucose, while VNG1054G was deemed to be the flippase that translocates the lipid-bound tetrasaccharide across the plasma membrane to face the cell exterior, or to contribute to such activity. As observed with Hbt. salinarum lacking other components of the N-glycosylation machinery, both cell growth and motility were compromised in the absence of VNG1053G or VNG1054G. Thus, given their demonstrated roles in Hbt. salinarum N-glycosylation, VNG1053G and VNG1054G were re-annotated as Agl28 and Agl29, according to the nomenclature used to define archaeal N-glycosylation pathway components.


Assuntos
Proteínas Arqueais , Halobacterium salinarum , Glicosilação , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Glicosiltransferases/metabolismo , Espectrometria de Massas , Oligossacarídeos/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo
8.
Biophys J ; 121(16): 3136-3145, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35808832

RESUMO

Bacteriorhodopsin (BR) is a light-driven outward proton pump found mainly in halophilic archaea. A BR from an archaeon Haloquadratum walsbyi (HwBR) was found to pump protons under more acidic conditions compared with most known BR proteins. The atomic structural study on HwBR unveiled that a pair of hydrogen bonds between the BC and FG loop in its periplasmic region may be a factor in such improved pumping capability. Here, we further investigated the retinal-binding pocket of HwBR and found that Trp94 contributes to the higher acid tolerance. Through single mutations in a BR from Halobacterium salinarum and HwBR, we examined the conserved tryptophan residues in the retinal-binding pocket. Among these residues of HwBR, mutagenesis at Trp94 facing the periplasmic region caused the most significant disruption to optical stability and proton-pumping capability under acidic conditions. The other tryptophan residues of HwBR exerted little impact on both maximum absorption wavelength and pH-dependent proton pumping. Our findings suggest that the residues from Trp94 to the hydrogen bonds at the BC loop confer both optical stability and functionality on the overall protein in low-pH environments.


Assuntos
Bacteriorodopsinas , Halobacteriaceae , Bacteriorodopsinas/química , Halobacteriaceae/metabolismo , Halobacterium salinarum/química , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Concentração de Íons de Hidrogênio , Bombas de Próton/metabolismo , Prótons , Triptofano/metabolismo
9.
Extremophiles ; 26(2): 25, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842547

RESUMO

The draft genome sequences of five archaeal strains, isolated from Sfax solar saltern sediments and affiliated with Halobacterium salinarum, were analyzed in order to reveal their adaptive strategies to live in hypersaline environments polluted with heavy metals. The genomes of the strains (named AS1, AS2, AS8, AS11, and AS19) are found to contain 2,060,688; 2,467,461; 2,236,624; 2,432,692; and 2,428,727 bp respectively, with a G + C content of 65.5, 66.0, 67.0, and 66.2%. The majority of these genes (43.69-55.65%) are annotated as hypothetical proteins. Growth under osmotic stress is possible by genes coding for potassium uptake, sodium efflux, and kinases, as well as stress proteins, DNA repair systems, and proteasomal components. These strains harbor many genes responsible for metal transport/resistance, such as: copper-translocating P-type ATPases, ABC transporter, and cobalt-zinc-cadmium resistance protein. In addition, detoxification enzymes and secondary metabolites are also identified. The results show strain AS1, as compared to the other strains, is more adapted to heavy metals and may be used in the bioremediation of multi-metal contaminated environments. This study highlights the presence of several commercially valuable bioproducts (carotenoids, retinal proteins, exopolysaccharide, stress proteins, squalene, and siderophores) and enzymes (protease, sulfatase, phosphatase, phosphoesterase, and chitinase) that can be used in many industrial applications.


Assuntos
Halobacterium salinarum , Metais Pesados , Biodegradação Ambiental , Genômica , Halobacterium salinarum/genética , Proteínas de Choque Térmico
10.
BMC Microbiol ; 22(1): 79, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331139

RESUMO

BACKGROUND: Archaea form a third domain of life that is distinct from Bacteria and Eukarya. So far, many scholars have elucidated considerable details about the typical promoter architectures of the three domains of life. However, a functional promoter from the archaeon Halobacterium salinarum has never been studied in Escherichia coli. RESULTS: This paper found that the promoter of Halobacterium salinarum showed a promoter function in Escherichia coli. This Escherichia coli promoter structure contains - 10 box, -10 box extension and - 29 elements, however, no -35 box. The - 29 element is exercised by the TATA box in archaea. And we isolated the RM10 fragment that possessed the fusion characteristics of bacteria and archaea, which was overlapped with functionality of TATA box and - 29 elements. CONCLUSIONS: The - 29 element reflects the evolutionary relationship between the archaeal promoter and the bacterial promoter. The result possibly indicated that there may be a certain internal connection between archaea and bacteria. We hypothesized that it provided a new viewpoint of the evolutionary relationship of archaea and other organisms.


Assuntos
Proteínas Arqueais , Halobacterium salinarum , Archaea/metabolismo , Proteínas Arqueais/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Regiões Promotoras Genéticas
11.
Nucleic Acids Res ; 49(22): 12732-12743, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34883507

RESUMO

Histones, ubiquitous in eukaryotes as DNA-packing proteins, find their evolutionary origins in archaea. Unlike the characterized histone proteins of a number of methanogenic and themophilic archaea, previous research indicated that HpyA, the sole histone encoded in the model halophile Halobacterium salinarum, is not involved in DNA packaging. Instead, it was found to have widespread but subtle effects on gene expression and to maintain wild type cell morphology. However, the precise function of halophilic histone-like proteins remain unclear. Here we use quantitative phenotyping, genetics, and functional genomics to investigate HpyA function. These experiments revealed that HpyA is important for growth and rod-shaped morphology in reduced salinity. HpyA preferentially binds DNA at discrete genomic sites under low salt to regulate expression of ion uptake, particularly iron. HpyA also globally but indirectly activates other ion uptake and nucleotide biosynthesis pathways in a salt-dependent manner. Taken together, these results demonstrate an alternative function for an archaeal histone-like protein as a transcriptional regulator, with its function tuned to the physiological stressors of the hypersaline environment.


Assuntos
Proteínas Arqueais/fisiologia , Regulação da Expressão Gênica em Archaea , Halobacterium salinarum/genética , Histonas/fisiologia , Estresse Salino/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Halobacterium salinarum/citologia , Halobacterium salinarum/crescimento & desenvolvimento , Halobacterium salinarum/metabolismo , Histonas/genética , Histonas/metabolismo , Transporte de Íons
12.
Genes (Basel) ; 12(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209065

RESUMO

Post-transcriptional processing of messenger RNA is an important regulatory strategy that allows relatively fast responses to changes in environmental conditions. In halophile systems biology, the protein perspective of this problem (i.e., ribonucleases which implement the cleavages) is generally more studied than the RNA perspective (i.e., processing sites). In the present in silico work, we mapped genome-wide transcriptional processing sites (TPS) in two halophilic model organisms, Halobacterium salinarum NRC-1 and Haloferax volcanii DS2. TPS were established by reanalysis of publicly available differential RNA-seq (dRNA-seq) data, searching for non-primary (monophosphorylated RNAs) enrichment. We found 2093 TPS in 43% of H. salinarum genes and 3515 TPS in 49% of H. volcanii chromosomal genes. Of the 244 conserved TPS sites found, the majority were located around start and stop codons of orthologous genes. Specific genes are highlighted when discussing antisense, ribosome and insertion sequence associated TPS. Examples include the cell division gene ftsZ2, whose differential processing signal along growth was detected and correlated with post-transcriptional regulation, and biogenesis of sense overlapping transcripts associated with IS200/IS605. We hereby present the comparative, transcriptomics-based processing site maps with a companion browsing interface.


Assuntos
Proteínas Arqueais/genética , Regulação da Expressão Gênica em Archaea , Genoma Arqueal , Halobacterium salinarum/genética , Haloferax volcanii/genética , Sítio de Iniciação de Transcrição , Transcriptoma , Proteínas Arqueais/metabolismo , Halobacterium salinarum/metabolismo , Haloferax volcanii/metabolismo , RNA-Seq , Ribossomos
13.
Mol Cell ; 81(3): 459-472.e10, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33382984

RESUMO

Hi-C has become a routine method for probing the 3D organization of genomes. However, when applied to prokaryotes and archaea, the current protocols are expensive and limited in their resolution. We develop a cost-effective Hi-C protocol to explore chromosome conformations of these two kingdoms at the gene or operon level. We first validate it on E. coli and V. cholera, generating sub-kilobase-resolution contact maps, and then apply it to the euryarchaeota H. volcanii, Hbt. salinarum, and T. kodakaraensis. With a resolution of up to 1 kb, we explore the diversity of chromosome folding in this phylum. In contrast to crenarchaeota, these euryarchaeota lack (active/inactive) compartment-like structures. Instead, their genomes are composed of self-interacting domains and chromatin loops. In H. volcanii, these structures are regulated by transcription and the archaeal structural maintenance of chromosomes (SMC) protein, further supporting the ubiquitous role of these processes in shaping the higher-order organization of genomes.


Assuntos
Compartimento Celular , Cromatina/genética , Cromossomos de Archaea , DNA Arqueal/genética , Euryarchaeota/genética , Genoma Arqueal , Transcrição Gênica , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica em Archaea , Halobacterium salinarum/genética , Haloferax volcanii/genética , Motivos de Nucleotídeos , Filogenia , Thermococcus/genética
14.
Microbiologyopen ; 9(2): e974, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31797576

RESUMO

Halobacterium salinarum is an extremely halophilic archaeon that is widely distributed in hypersaline environments and was originally isolated as a spoilage organism of salted fish and hides. The type strain 91-R6 (DSM 3754T ) has seldom been studied and its genome sequence has only recently been determined by our group. The exact relationship between the type strain and two widely used model strains, NRC-1 and R1, has not been described before. The genome of Hbt. salinarum strain 91-R6 consists of a chromosome (2.17 Mb) and two large plasmids (148 and 102 kb, with 39,230 bp being duplicated). Cytosine residues are methylated (m4 C) within CTAG motifs. The genomes of type and laboratory strains are closely related, their chromosomes sharing average nucleotide identity (ANIb) values of 98% and in silico DNA-DNA hybridization (DDH) values of 95%. The chromosomes are completely colinear, do not show genome rearrangement, and matching segments show <1% sequence difference. Among the strain-specific sequences are three large chromosomal replacement regions (>10 kb). The well-studied AT-rich island (61 kb) of the laboratory strains is replaced by a distinct AT-rich sequence (47 kb) in 91-R6. Another large replacement (91-R6: 78 kb, R1: 44 kb) codes for distinct homologs of proteins involved in motility and N-glycosylation. Most (107 kb) of plasmid pHSAL1 (91-R6) is very closely related to part of plasmid pHS3 (R1) and codes for essential genes (e.g. arginine-tRNA ligase and the pyrimidine biosynthesis enzyme aspartate carbamoyltransferase). Part of pHS3 (42.5 kb total) is closely related to the largest strain-specific sequence (164 kb) in the type strain chromosome. Genome sequencing unraveled the close relationship between the Hbt. salinarum type strain and two well-studied laboratory strains at the DNA and protein levels. Although an independent isolate, the type strain shows a remarkably low evolutionary difference to the laboratory strains.


Assuntos
Genoma Arqueal , Genômica , Halobacterium salinarum/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Evolução Biológica , Biologia Computacional/métodos , Ordem dos Genes , Heterogeneidade Genética , Genômica/métodos , Anotação de Sequência Molecular , Plasmídeos
15.
Biotechnol Lett ; 42(1): 45-55, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31679097

RESUMO

OBJECTIVES: The twin-arginine translocation (Tat) pathway is one of the bacterial secretory strategies which exports folded proteins across the cytoplasmic membrane. RESULTS: In the present study, we designed a novel Tat-signal peptide for secretion of human activin A used as a recombinant protein model here. In doing so, Haloferax volcanii, Halobacterium salinarum, and Escherichia coli Tat specific signal peptides were aligned by ClustalW program to determine conserved and more frequently used residues. After making the initial signal peptide sequence and doing some mutations, efficiency of this designed signal peptide was evaluated using a set of well-known software programs such as TatP, PRED-TAT, and Phobius. Then the best complex between TatC as an initiator protein in Tat secretory machine and the new designed signal peptide connected to activin A with the lowest binding energy was constructed by HADDOCK server, and ΔΔG value of - 5.5 kcal/mol was calculated by FoldX module. After that, efficiency of this novel signal peptide for secretion of human activin A to the periplasmic space of E. coli Rosetta-gami (DE3) strain was experimentally evaluated; to scrutinize the activity of the novel signal peptide, Iranian Bacillus Licheniformis α-Amylase enzyme signal peptide as a Sec pathway signal peptide was used as a positive control. The quantitative analysis of western blotting bands by ImageJ software confirmed the high secretion ability of the new designed signal peptide; translocation of 69% of the produced recombinant activin A to the periplasmic space of E. coli. Circular Dichroism (CD) spectroscopy technique also approved the proper secondary structure of activin A secreted to the periplasmic space. The biological activity of activin A was also confirmed by differentiation of K562 erythroleukemia cells to the red blood cell by measuring the amount of hemoglobin or Fe2+ ion using ICP method. CONCLUSIONS: In conclusion, this novel designed signal peptide can be used to secrete any other recombinant proteins to the periplasmic space of E. coli efficiently.


Assuntos
Ativinas/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Periplasma/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/metabolismo , Sistema de Translocação de Argininas Geminadas/metabolismo , Ativinas/química , Ativinas/genética , Membrana Celular/enzimologia , Dicroísmo Circular , Escherichia coli/genética , Halobacterium salinarum/genética , Haloferax volcanii/genética , Humanos , Dobramento de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência
16.
Science ; 365(6460): 1469-1475, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31604277

RESUMO

The study of cellular processes occurring inside intact organisms requires methods to visualize cellular functions such as gene expression in deep tissues. Ultrasound is a widely used biomedical technology enabling noninvasive imaging with high spatial and temporal resolution. However, no genetically encoded molecular reporters are available to connect ultrasound contrast to gene expression in mammalian cells. To address this limitation, we introduce mammalian acoustic reporter genes. Starting with a gene cluster derived from bacteria, we engineered a eukaryotic genetic program whose introduction into mammalian cells results in the expression of intracellular air-filled protein nanostructures called gas vesicles, which produce ultrasound contrast. Mammalian acoustic reporter genes allow cells to be visualized at volumetric densities below 0.5% and permit high-resolution imaging of gene expression in living animals.


Assuntos
Expressão Gênica , Genes Reporter , Proteínas/genética , Ultrassonografia , Acústica , Animais , Bacillus megaterium/genética , Células CHO , Cricetulus , Dolichospermum flosaquae/genética , Células HEK293 , Halobacterium salinarum/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Família Multigênica , Nanoestruturas/química , Transfecção
17.
J Mol Biol ; 431(20): 4147-4166, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31437442

RESUMO

The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.


Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica em Archaea , Halobacterium salinarum/genética , Estresse Fisiológico , Transcrição Gênica , Fungos/genética , Perfilação da Expressão Gênica
18.
Nucleic Acids Res ; 47(16): 8860-8873, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31310308

RESUMO

Interactions between proteins and DNA are crucial for all biological systems. Many studies have shown the dependence of protein-DNA interactions on the surrounding salt concentration. How these interactions are maintained in the hypersaline environments that halophiles inhabit remains puzzling. Towards solving this enigma, we identified the DNA motif recognized by the Halobactrium salinarum ROS-dependent transcription factor (hsRosR), determined the structure of several hsRosR-DNA complexes and investigated the DNA-binding process under extreme high-salt conditions. The picture that emerges from this work contributes to our understanding of the principles underlying the interplay between electrostatic interactions and salt-mediated protein-DNA interactions in an ionic environment characterized by molar salt concentrations.


Assuntos
Proteínas Arqueais/química , DNA Arqueal/química , Halobacterium salinarum/genética , Cloreto de Potássio/química , Tolerância ao Sal/genética , Fatores de Transcrição/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , DNA Arqueal/genética , DNA Arqueal/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Halobacterium salinarum/metabolismo , Haloferax/genética , Haloferax/metabolismo , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Cloreto de Potássio/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , Termodinâmica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Genes (Basel) ; 10(4)2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959844

RESUMO

Antisense RNAs (asRNAs) are present in diverse organisms and play important roles in gene regulation. In this work, we mapped the primary antisense transcriptome in the halophilic archaeon Halobacterium salinarum NRC-1. By reanalyzing publicly available data, we mapped antisense transcription start sites (aTSSs) and inferred the probable 3' ends of these transcripts. We analyzed the resulting asRNAs according to the size, location, function of genes on the opposite strand, expression levels and conservation. We show that at least 21% of the genes contain asRNAs in H. salinarum. Most of these asRNAs are expressed at low levels. They are located antisense to genes related to distinctive characteristics of H. salinarum, such as bacteriorhodopsin, gas vesicles, transposases and other important biological processes such as translation. We provide evidence to support asRNAs in type II toxin⁻antitoxin systems in archaea. We also analyzed public Ribosome profiling (Ribo-seq) data and found that ~10% of the asRNAs are ribosome-associated non-coding RNAs (rancRNAs), with asRNAs from transposases overrepresented. Using a comparative transcriptomics approach, we found that ~19% of the asRNAs annotated in H. salinarum belong to genes with an ortholog in Haloferax volcanii, in which an aTSS could be identified with positional equivalence. This shows that most asRNAs are not conserved between these halophilic archaea.


Assuntos
Perfilação da Expressão Gênica , Halobacterium salinarum/genética , RNA Antissenso/genética , Transcriptoma/genética , Regulação da Expressão Gênica em Archaea/genética , Genoma Arqueal/genética , RNA não Traduzido/genética , Ribossomos/genética , Sítio de Iniciação de Transcrição
20.
Extremophiles ; 23(1): 59-67, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30350225

RESUMO

DNA-binding motif of bacterioopsin activator (Bat) protein is a Helix-Turn-Helix motif, which binds to bop promoter and induces bacterioopsin (Bop) expression under light and low oxygen tension. Bacterioopsin is linked to retinal to produce bacteriorhodopsin (BR), which in turn supplies energy source in Halobacterium salinarum. In this study, effect of Bat HTH motif-promoter DNA interaction on bacterioopsin (Bop) expression was investigated using in silico and experimental approaches. Molecular docking showed that the most stable DNA-protein complex was generated by Q661R/Q665R mutant. Based on the in silico analysis, HTH motif was mutated using site-directed mutagenesis and Hbt. salinarum recombinant strains were developed by introduction of mutant bat genes. Double positively charged amino acid substitutions (Q661R/Q665R) in second helix of HTH motif increased whereas deletion of this region decreased BR production. However, other single substitutions (Q665R and Q661H) did not change BR production. These findings represent key role of HTH motif stability for DNA binding and regulation of bacterioopsin (Bop) expression and bacteriorhodopsin (BR) production independent of environmental condition.


Assuntos
Bacteriorodopsinas/genética , Halobacterium salinarum/genética , Fatores de Transcrição/metabolismo , Bacteriorodopsinas/metabolismo , Sítios de Ligação , Halobacterium salinarum/metabolismo , Microbiologia Industrial/métodos , Simulação de Acoplamento Molecular , Mutação de Sentido Incorreto , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA